Automated Verification of Nested DFS

Jaco C. van de Pol®)

Formal Methods and Tools, Department of Computer Science,
CTIT, University of Twente, Enschede, The Netherlands
j.c.vandepol@utwente.nl

Abstract. In this paper we demonstrate the automated verification of
the Nested Depth-First Search (NDFS) algorithm for detecting accepting
cycles. The starting point is a recursive formulation of the NDFS algo-
rithm. We use Dafny to annotate the algorithm with invariants and a
global specification. The global specification requires that NDFS indeed
solves the accepting cycle problem. The invariants are proved automati-
cally by the SMT solver Z3 underlying Dafny. The global specifications,
however, need some inductive reasoning on paths in a graph. To prove
these properties, some auxiliary lemmas had to be provided. The full
specification is contained in this paper. It fits on 4 pages, is verified by
Dafny in about 2 minutes, and was developed in a couple of weeks.

1 Introduction

Model checking is an attractive verification technique because it is fully auto-
matic. Since model checking is memory and time intensive, scalability of model
checking to industrial systems requires sophisticated algorithms and high-perfor-
mance implementations. This makes the construction of model checkers intricate
and error prone. When model checkers are used for the verification of industrial
critical systems, they themselves become part of the critical engineering infras-
tructure. This motivated several efforts to verify the verification algorithms and
tools themselves.

Recently, model checkers have been verified using interactive theorem provers.
Here users are responsible for creating a proof, which is then checked by the
machine. Examples include the verification of a p-calculus model checker in
Coq [14], compositional model checkers in ACL2 [12], and a depth-first search
algorithm for strongly connected components in Coq [11]. Probably the largest
piece of work in this direction is the development of a reasonably efficient, certi-
fied automata-based LTL model checker in Isabelle/HOL [4]. This includes the
translation of LTL properties to Biichi automata, and an algorithm to detect
accepting cycles in the result graph.

The purpose of the current paper is to raise the level of automation. We inves-
tigated whether full functional correctness of graph-based verification algorithms
can be established by automatic program verifiers. These tools depend on user
added annotations to a program, like pre- and postconditions and loop invari-
ants. The program verifier then generates proof obligations, which are discharged
automatically by an SMT solver.

© Springer International Publishing Switzerland 2015
M. Niifiez and M. Giidemann (Eds.): FMICS 2015, LNCS 9128, pp. 181-197, 2015.
DOI: 10.1007/978-3-319-19458-5 12

182 J.C. van de Pol

Concretely, this paper demonstrates how the Nested Depth-First Search al-
gorithm (NDFS) can be expressed in DAFNY, and how it can be verified in an
incremental manner. The complete specification (Section A) demonstrates that
NDFS correctly decides if the input graph contains an accepting cycle. DAFNY
is an automatic program verifier created by Rustan Leino and relies on the
workhorse Z3 as the underlying SMT solver. We took inspiration from the ver-
ification of the Schorr-Waite graph algorithm, also by Leino [10]. However, we
insist on the natural recursive formulation of NDFS.

As far as we know, we provide the first verification of full correctness of a model
checking algorithm by an automatic program verifier. A related approach [6]
applied automatic program verifiers to distributed state space generators (but
not on the model checking algorithm). Another approach based on annotations
is the PAT model checker, model checking its own annotations [15] (but not full
functional correctness).

2 Nested Depth-First Search and Dafny

2.1 Dafny

DAFNY [10] provides a straightforward imperative programming language. It
supports sequential programs, with classes and dynamic allocation. The pro-
gram can be mixed freely with specification annotations, like preconditions
(requires), postconditions (ensures) and invariants. Loops and recursion
require termination metrics (decreases) to ensure termination. In order to
support modularity, framing conditions restrict read and write permissions on
objects.

The specification language is quite liberal: specifications can introduce ghost
variables in program text, mathematical functions, and built-in value types like
sets and sequences. We heavily depend on these features.

DAFNY parses and type-checks the program, and generates proof obligations
to guarantee absence of runtime errors, termination, and the validity of all spec-
ification annotations. DAFNY works in a modular fashion, method by method.
It relies on the SMT solver Z3 [3] to discharge the proof obligations, and recon-
structs sensible error messages at the program level when verification fails.

2.2 Nested Depth-First Search

The automata based approach [16] reduces the LTL model checking problem to
the detection of accepting cycles. Given a graph G = (V, E, 59, A), with nodes
V, edges F, root sy € V and accepting states A C V, the question is whether
there exists a reachable accepting cycle, i.e. a state t € A with soE*t and tE™t.
The famous linear-time algorithm to detect accepting cycles on-the-fly is called
Nested Depth-First Search [2]. NDFS performs a first (blue) DFS to detect
accepting states, and a second (red) search to identify cycles on those states. Both
searches visit nodes at most once, by colouring them cyan/blue and pink/red.

Automated Verification of Nested DF'S 183

NDFS is heavily used as the core algorithm of LTL model checkers, starting
with SPIN model checker [7], and also forms the basis of parallel LTL model
checking in LTSmin [8]. Its memory overhead is negligible: only two bits per
state [13]. The version verified in this paper is the new NDFS [13] without early
cycle detection, and with a distinction in pink and red nodes. It corresponds to
the sequential version of the parallel algorithm in [8]. We claim that the pink
colour not only helped in parallelizing NDFS, but is also instrumental in the
formal verification proof.

2.3 Formulation of the NDFS Algorithm in Dafny

datatype Color = white | cyan | blue | pink | red;

1
2

3 class Node {

4 var next: seq<Node>;

5 var accepting: bool;

6 var colorl: Color;

7 var color2: Color;

8}

9

10 method ndfs(root:Node) returns (found:bool)
11 { found := dfsblue(root); }
12

13 method dfsblue(s:Node) returns (found:bool)
14 { s.colorl := cyan;

15 var i := 0;

16 while (i < |s.next]|)

17 { var t := s.next[i];

18 = i+1;

19 if (t.colorl = white)

20 { found := dfsblue(t);
21 if (found) { return; }
22 }

23

24 if (s.accepting)

25 { found := dfsred(s);

26 if (found) { return; }
27

28 s.colorl := blue;

29 return false;

30 }

31

32 method dfsred(s:Node) returns (found:bool)
33 { s.color2 := pink;

34 var i := 0;

35 while (i < |s.next]|)

36 { var t := s.next[i]

37 = i41;

38 if (t.colorl = cyan) { return true; }
39 if (t.color2 = white)

40 { found := dfsred(t);

41 if (found) { return; }
42

43 }

44 s.color2 := red;

45 return false;

46}

Fig. 1. Expressing the plain NDFS algorithm in DAFNY syntax

184 J.C. van de Pol

Figure 1 introduces the recursive formulation of the NDFS algorithm in DAFNY
syntax. After introducing the enumerated datatype Color ({. 1), the class
Node of nodes in the underlying graph is defined (£. 3-8). Each node is equipped
with a sequence next of successors in the graph and a Boolean accepting.
These attributes will never be changed. Two colours are introduced as well,
which will be manipulated by the algorithm. Alternatively, one could introduce
distinct types for bluish and reddish colours.

The main algorithm is method ndfs (¢. 10,11). Its single argument is the
root :Node where the algorithm starts, and its return value found:Bool indi-
cates whether an accepting cycle was found. Return values are named in DAFNY,
so they can be referred to in the postcondition of the specification. They can be
used as normal local variables in the method body. The main method just calls
method dfsblue. The reason to have ndfs as a separate method is to be able
to attach the top-level specification to it later.

The recursive formulation of method dfsblue
(s:Node) (¢.13-30) closely follows the textbook de-
scription, see for instance [13, Fig 3.]. After marking
s cyan (£. 14), all successor nodes ¢ of s are iterated
over (. 15-18). If t is seen for the first time (£. 19),
it is processed recursively (£. 20) and the result is
stored in found. As soon as an accepting cycle has
been found, the search can be terminated (¢. 21); note
that return is an abbreviation for return found
in Dafny, since we named the return value found.

After processing all successors of s, the red search
is started with dfsred (s) (¢. 25), provided that s is
accepting (¢. 24). Again, if an accepting cycle is found
we return immediately. When no cycle is found, node
s is coloured blue and the procedure returns (£. 28-
29).

The method dfsred(s:Node) (¢. 32-46) per-
forms the red search in a similar fashion. Initially,
nodes are coloured pink (¢. 33). All successors t are
processed sequentially (¢£. 34-37). If ¢ is cyan, a cycle
has been found and is reported (£. 38). Otherwise,
the procedure continues recursively and the results
are propagated (£. 39-41). Finally, when no cycle has
been found at all, node s is coloured red and the procedure returns (¢. 44-45).

Figure 2 illustrates the colours. Cyan and pink nodes are still in progress.
After backtracking from the search, nodes are coloured blue or red. So for these
colours we can establish strong invariants.

Fig. 2. Illustrating NDFS

Automated Verification of Nested DF'S 185

3 Developing the Correctness Proof

The verification was carried out incrementally. First, runtime errors are elimi-
nated by appropriate preconditions, then termination is addressed. To verify the
algorithm, the key approach was to identify invariants on the local properties
of the colours in the graph. These invariants can be checked easily. Similar in-
variants played a crucial role in the manual proof of parallel NDFS [8]. Finally,
completeness and soundness of NDFS are proved using auxiliary lemmas, which
reason on global properties of paths and cycles in the graph.

3.1 Absence of Runtime Errors

Even though we did not specify any requirements on NDFS, the code in Figure 1
is not regarded correct by DAFNY. It does not report syntax or type check errors,
but the verifier complains (¢. 14, 33):

Error: assignment may update an object not in ... modifies clause
Error: target object may be null

First, in order to allow for modular verification, DAFNY uses dynamic frames,
insisting on explicit permissions to modify objects. In Figure 3, we added the
permissions to modify the color-fields only (¢. 10, 16, 22). Note that dfsred
only modifies color2.

In order to guarantee absence of runtime errors, DAFNY has generated some
implicit proof obligations. In our case, runtime errors could occur due to null
dereferences (e.g. in s.colorl) and out-of-bound indexing (e.g. in next [1]).
The latter is excluded, since DAFNY easily deduces 0 < i < |s.next| from the
loop bounds. However, if initially s:Node = null, indeed s.next would lead
to a run-time error.

In order to solve both problems, we use the technique explained in [10] in the
verification of the Schorr-Waite graph algorithm. We extend the specification as
indicated in Figure 3. We define a ghost variable G: set<Node> (¢. 1), indicating
the universe of all (reachable) nodes in the graph. As a ghost variable, G can only
be used in specification annotations; it cannot modify the program execution.
Next, the predicate graph (G) is defined (¢. 3-5). G is a valid graph if its
nodes are non-null records and their successors are in G again. We equip all
methods with a precondition that requires that the start node is contained in
the valid graph G (e.g., £. 14-15). Since graph (G) is closed, there is no risk to
run into null nodes anymore.

3.2 Termination

Still, DAFNY is not satisfied. In order to guarantee total correctness, it insists on
termination. Termination of the while loops in our case (cf. Figure 1, ¢. 16, 35)
is easily discharged automatically. However, the recursive calls (¢. 20, 40) lead
to the following complaint:

Error: cannot prove termination; try supplying a decreases clause

186 J.C. van de Pol

ghost var G: set<Node>;

1
2
3 predicate graph(G:set<Node>)
4 reads G;

5 {Vm e me G = (m#% null AV n e n & mnext = n€G) }
6

7 method ndfs(root:Node) returns (found:bool)
8 requires graph(G);

9 requires root € G;

10 modifies G'colorl, G'color2;

1 {...}

12

13 method dfsblue(s:Node) returns (found:bool)
14 requires s € G;

15 requires graph(G);

16 modifies G'colorl, G'color2;

v {)

18

19 method dfsred(s:Node) returns (found:bool)
20 requires s € G;

21 requires graph(G);

22 modifies G'color2;

23 {...}

Fig. 3. Specifying a well-defined and closed graph

So why does NDFS terminate at all? Basically, because every node is visited
at most twice: once during dfsblue and once during dfsred. This is realized
by the colours: we only recurse on white nodes, and immediately colour them
cyan. We specify this insight by declaring that the function G-Cyan (G) de-
creases for each call to dfsblue (£. 11 in Figure 4), where the set Cyan (G) is
defined as those nodes n € G with n.colorl=cyan (£. 1-3)!. We add similar
definitions and annotations for pink nodes in dfsred.

DAFNY is not yet convinced: We clearly need to require that initially all
nodes are white (¢. 6) and we only meet white nodes along the way (¢. 10),
otherwise the termination function wouldn’t decrease. Moreover, recursive calls
to dfsblue could manipulate the Cyan set arbitrarily in principle, leading to
non-termination for calls to subsequent successors. To exclude this, dfsblue
must ensure that it will leave the Cyan set unchanged (¢. 12). Note that this
is realized in (¢. 23), but only in case no accepting cycle is found. An invariant
(€. 15) is required to reason about the value of Cyan during and after the loop.

We are nearly there, but not quite! The preconditions lead to new proof obli-
gations. Obviously, the recursive call to dfsblue (t) (¢. 18) satisfies the precon-
dition that t.colorl=white. However, DAFNY points out that at (Figure 4,
£. 21) there is a call to dfsred, but the precondition t.color2=white at
(Figure 4, ¢. 28) is not guaranteed:

Error: A precondition for this call might not hold.
Related location: This is the precondition that might not hold.

! An alternative is to introduce and manipulate a ghost variable Cyan in the method
body, but we prefer our more declarative approach, since it does not clutter the code.

Automated Verification of Nested DF'S 187

1 function Cyan(G:set(Node)): set(Node)

2 reads G; requires graph(G);

3 { setn| né&€GAn.colorl =cyan e n }

4

5 method ndfs(root:Node) returns (found:bool)
6 requires Vs o s € G = s.colorl = s.color2 = white;
7o)

8

9 method dfsblue(s:Node) returns (found:bool)
10 requires s.colorl = white;

11 decreases G — Cyan(G);

12 ensures —found = old(Cyan(G)) = Cyan(G);
13 {...

14 while (i < |s.next]|)

15 invariant Cyan(G) = old(Cyan(G)) U {s};

16

17 if (t.colorl = white)

18 { found := dfsblue(t);

19

20 if (s.accepting)

21 { found := dfsred(s); // still to prove: why is s.color2 white?
22

23 s.colorl := blue;

24 return false;

25}

26
27 method dfsred(s:Node) returns (found:bool)

28 requires s.color2 = white;

29 decreases G — Pink(G);

30 ensures —found = old(Pink(G)) = Pink(G);
s (...}

Fig. 4. Specifying decreasing termination functions

Indeed, the insight that the red search does not escape the blue territory is
subtle. It depends on the very depth-first nature of NDFS! Proving the main
invariants on the NDFS colours will also complete the termination proof.

3.3 Main Local Invariants on NDFS Colours

In order to prove the main invariant Red C Blue we have to provide several
additional invariants. These invariants are needed in the termination proof, but
they will be reused in the completeness proof of NDFS. All invariants in this
section can be proved locally, without reasoning about the whole graph.

We now come to the formulation of the main invariants. They capture the very
basic idea of Depth-First Search: A node is only coloured blue if its successors
are processed, i.e. they are coloured blue or cyan. Similarly, all successors of
red nodes are red or pink. We express these invariants concisely with a special
predicate Next, where Next (G, X, Y) indicates that all successors in G of nodes
X arein Y. See Figure 5 for the statement of the main invariants.

Another important local property is that there will never be an edge from a
red node to a cyan node, Next (G,Red (G) ,G-Cyan (G)). This is guaranteed
by the cycle detection in dfsred at (Section A.5, £. 38).

For the complete proof we refer to Section A. One of the subtleties is that
in dfsred (Section A.5, . 50) we colour the start node red, just before it

188 J.C. van de Pol

predicate Next(G:set(Node) X:set(Node),KY:set(Node))
reads G; requires graph(G);
{Vn,i ¢ neGAO<L i< |n.next|] = (né&€X = n.next[i] €Y) }

invariant Red(G) C Blue(G);
invariant Next(G, Blue(G), Blue(G) U Cyan(G));
invariant Next(G, Red(G) , Red(G) U Pink(G));
invariant Next(G, Red(G) , G — Cyan(G));

AW N e

o N o a

Fig. 5. Stating the main local invariants on the colours in NDFS

becomes blue, temporarily violating the main invariant. This is solved by re-
membering the starting point of df sred in a ghost variable ghost root:Node
(Section A.5, £. 1). The invariants on Blue in dfsred are modified to Blue U
{root} (Section A.5, ¢. 8, 10, 19, 32). Also, we must explicitly state that all
successors of s up to ¢ are in Blue U Cyan (Section A4, ¢. 33), or RedU Pink
(Section A.5, £. 29), respectively. In order to prove this under the given condi-
tions, we introduce an invariant on the exact types that the two colour variables
may assume (Section A.1, £. 16-20).

Adding the invariants expands the DAFNY code considerably, since most in-
variants must be repeated six times: before and after each recursive call, and in
the while loops. See for instance the six occurrences of invariant types (G)
in Section A.4, A.5.

At this point, DAFNY is happy, since the code is guaranteed to terminate with-
out run time errors. This run takes about 10 seconds (on a 2.7GHz Macbook).

Dafny program verifier finished with 13 verified, 0 errors

3.4 Completeness

We can now proceed to specify and prove that NDFS accomplishes a useful task.
The correctness criterion is that the result found indicates correctly whether
the graph G has an accepting cycle. In order to specify this, we first define the
notions of paths and cycles, in terms of sequences of nodes, Figure 6.

A sequence of nodes p is a path from x to y in graph G if it starts with x,
ends with y, and successive members are linked by an edge in G. A reachable
accepting cycle is defined as a lasso: a path p from root x to accepting state y,
and the cycle is a non-empty path g from y to itself.

Next, correctness of ndfs is ensured, distinguishing soundness and complete-
ness. In the rest of this section, we prove completeness, i.e. the algorithm does
not miss an accepting cycle. To this end we state the key invariant (Figure 6,
£. 13-15). The completeness proof consists of two parts: proving the key invari-
ant, that no blue nodes can have an accepting cycle, and proving that all nodes
will be blue if ndfs terminates with found=false.

Let us see what we know after dfsblue(root) terminates with
found=false; we refer to the line numbers in Section A.4. We have already
proved the invariant Next (G, Blue (G) ,Blue(G) U Cyan(G)) (¢. 16). Since
0ld(Cyan) =Cyan (¢. 19) and Cyan={} initially (nodes start white), we obtain

Automated Verification of Nested DF'S 189

function Path(G:set(Node) ,x:Node,y:Node,p:seq(Node)):bool
reads G; requires graph(G);

{ Ip[>0APp[O] =xAp[lp[-1]=y
AV i o 0< i< |p|-1 = pli]l € GApl[i+1] € p[i].next }

function Cycle (G:set(Node) ,x:Node,y:Node,p:seq(Node) ,q:seq(Node)) :bool
reads G; requires graph(G);

{ Path(G,x,y,p) A Path(G,y,y,

® 9 U B W -

q) A |a] > 1 A y.accepting }

10 | ensures found = (3 a,p,q e Cycle(G,root,a,p,q)); // soundness

11 | ensures (3 s,p,q e Cycle(G,root,s,p,q)) = found; // completeness
12
13 | function Keylnvariant(G: set(Node)) :bool

14 reads G; requires graph(G);

15 |[{Vs e s c Blue(G) A s.accepting — ~ 3 p e |p| > 1A Path(G,s,s,p) }

Fig. 6. Specification of the full functional correctness and key invariant of NDFS

Next (G, Blue (G) ,Blue(G)).Since root.colorl=blue (£. 18), we can now
prove inductively that all reachable nodes are indeed in Blue (G) . So if the Key
Invariant holds, there cannot be an accepting cycle.

Since finding inductive proofs is beyond the capabilities of DAFNY, we must
prove this with a separate lemma. In DAFNY, an inductive proof corresponds to a
recursive function that establishes the correct post condition. Function NoCycle
(Section A.2, £. 15-21) represents a proof by induction over the reachable nodes
that the key invariant indeed implies that there is no accepting cycle. Note that
we have to explicitly apply this lemma in ndfs (Section A.3, £.9).

Next we must still prove the Key Invariant (¢. 10, 23, 38). The crucial step
is just before we assign s.colorl = blue for an accepting state s (£. 58). At
this point we apply a new lemma, NoPath, which basically reasons about the
result of dfsred, with another inductive argument.

So what do we know after calling df sred when found=false? We now refer
to line numbers in Section A.5. We already proved Next (G, Red (G) ,Red (G) U
Pink (G)) (4. 18). Since 01d (Pink) =Pink (¢. 16) and Pink={} before the call
(Section A 4,¢.31)weobtainNext (G, Red (G) ,Red (G)) .Sinces.color2=red
(. 15), we can now prove inductively that all reachable nodes are in Red (G) . One
of our main invariants on colours is that there is no edge between red nodes and cyan
nodes (¢. 11). So indeed, the root node, which is still cyan, is not reachable.

Again, this requires an inductive argument, which is provided by the recur-
sive function NoPath (Section A.2, ¢. 5-13) that establishes the correct post-
condition.

3.5 Soundness

The final task is to prove soundness, i.e., if ndfs reports found=true, then
there exists an accepting cycle. This is intuitively an easy task, since the stack
of the program execution corresponds to the accepting cycle (cf. the cyan and
pink nodes in Figure 2). However, we have no access to the stack. Actually, the
soundness proof posed some verification challenges to the underlying Z3 SMT
solver, since it introduces quantifications over sequences. To limit the search

190 J.C. van de Pol

1 method ndfs(root:Node)

2 { try

3 { dfsblue(root);

4 assert - CycleExists;

6 catch CycleFound = { assert CycleExists; }
7

8

9 method dfsblue(s:Node) raises CycleFound
10 { s.colorl := cyan;

11 var i := 0;

12 while (i < |s.next]|)

13 { var t := s.next[i];

14 = i+1;

15 if (t.colorl = white) { dfsblue(t); }
16

17 if (s.accepting) { dfsred(s); }

18 s.colorl := blue;

19}

20

21 method dfsred(s:Node) raises CycleFound
22 { s.color2 := pink;

23 var i := 0;

24 while (i < [s.next])

25 { var t := s.next[i];

26 ii= i+1;

27 if (t.colorl cyan) { raise CycleFound; }

28 if (t.color2 white) { dfsred(t); }
29 }

30 s.color2 := red;

31}

Fig. 7. Specification in DAFNY language extended with exceptions

space, DAFNY does not try extensively to find a witness to an obligation of the
form exists p:seg<<Node>>. So at certain places in the program we must
add assertions, to suggest the correct witnesses. Alternatively, one could add
ghost variables to manipulate paths explicitly, as done in [10].

The blue search ensures that when found=true, there is indeed an accept-
ing cycle (Section A.4, ¢. 22). The assertion at (£. 46) shows how this cycle is
constructed from the path obtained from the recursive call. In the other case, at
(€. 55), the situation is less trivial. Here we apply lemma CycleFoundHere
to reconstruct the cycle.

Let us first consider this situation. Assume that the blue search started in
node s, calls the red search from an accepting node ¢, which hits a cyan state r.
Note that r is not necessarily accepting. In this case, the accepting cycle consists
of the prefix s to t, followed by the loop ¢ to r back tot (s =0,t=5,r=11in
Figure 2).

The fact that there is a path from r to ¢ is not obvious. We added a new
precondition (Section A.4, £. 11) that from any cyan state ¢ (in particular r)
there is a path to the current state s. When we color s cyan, the path is trivial,
but still we must assert it (¢. 26). Before the recursive call (¢. 43) we use 1lemma
NextCyan (Section A.2, £. 23-29) to tell DAFNY how the path to the next cyan
node is constructed by concatenation.

To reconstruct the path from ¢ to some r, the red search ensures that if
found=true, there is a path from the current state to some cyan state

Automated Verification of Nested DF'S 191

(Section A.5, ¢. 21). The assertion at (£. 39) indicates how this path is con-
structed in case the cyan state is found, and (¢. 45) indicates how the path is
created from the path obtained in the recursive call.

Lemma CycleFoundHere (Section A.2, ¢. 31-41) checks the reasoning that
we sketched above. It was fairly non-trivial to convince DAFNY that this con-
struction is correct, even though it is basic first-order reasoning without induc-
tion. Actually, the interaction with DAFNY at this point was quite inconvenient:
DAFNY just tells that the proof does not go through, and the user has to find
out, via numerous assertions, which facts DAFNY does or does not see. This small
part of the proof would have been easier with an interactive theorem prover. But
then it is extra rewarding to see (in 2 minutes):

Dafny program verifier finished with 22 verified, 0 errors

4 Conclusion

The main conclusion is that verification of recursive graph algorithms with auto-
matic program verifiers is feasible. In particular, the functional correctness proof
of NDFS with DAFNY was successful.

Success Factors. One of the success factors is the rich specification language of
DAFNY. We heavily depended on set values (for sets of nodes with a particular
colour) and sequence values (representing paths and cycles in the graph). We also
made extensive use of quantifiers. We feel that every line of the specification is
straightforward and understandable. Also, the recursive nature of the algorithm
did not pose any problem.

Another success factor is the power of the SMT solver Z3, and the error
reporting by DAFNY. In nearly all cases of a failed verification DAFNY came
back with a line number and a diagnosis of the cause, on which the user could
take action.

This was the first experience with DAFNY by the author, or with any auto-
matic program verifier at all. Still it took only a couple of weeks to finish the
complete proof. Here it should be noted that the author was already familiar with
the details of the NDFS algorithm, and also with interactive theorem provers.

Finally, the proof strategy to split local invariants on colours from inductive
arguments on paths helped to structure the proof. These invariants contribute to
the global understanding of the NDFS algorithm. Also, the modular approach
was essential to build up the specification incrementally, even though DAFNY
does not provide extra support for specification refinement. But also it was
necessary to keep the verification task manageable.

Useful Ertensions to DAFNY. There are still a few issues where DAFNY could
be improved to be even more useful. The complete verification takes about 2
minutes, which is fine. However, when the user checks intermediate attempts
frequently, 2 minutes imply a considerable slowdown. But even worse, DAFNY
(or rather Z3) chokes on failed proof attempts: DAFNY simply does not come

192 J.C. van de Pol

back at all within a reasonable amount of time. This was the main reason to
follow an incremental approach. Maybe the IDE interface to DAFNY would have
better supported an incremental approach.

There are also two reasons why the specification has increased more than
necessary. First, many invariants are repeated six times: in both while-loops, and
before and after each recursive procedure. This could be mitigated by allowing
an invariant keyword for recursive functions. A more drastic solution would
be to generate invariants, possibly guided by some hints. For example, specify
once hint types (G) ; instead of six times as in Section A.4, A.5.

The other extension on the wish list is exceptions. Several lines in the plain
code (Figure 1) just handle return values. A more natural coding would use
exceptions, as illustrated in (Figure 7). This is probably a non-trivial extension
to the verification condition generator in DAFNY.

Finally, SMT solving for full first-order logic is necessarily incomplete. So,
when DAFNY reports that an assertion at some line number fails, that assertion
may hold or not. No further diagnostic information is given. At one place we
struggled hard to come up with the three intermediate assertions to convince
DAFNY, cf. CycleFoundHere in (Section A.2, £. 38-40). It would be nice if the
user had the possibility to fall back on an interactive proof session to deal with
such cases, in order to avoid blind guessing.

Perspectives for Future Work. It is now possible to easily play with variants of
NDFS, for instance those introduced by [5]. After submission of the paper, the
author modified the code and proof in a couple of hours to the 2-bit version
of [13], basically by replacing the pink colour by a ghost variable OnStack. The
basic setup might also be reused to automate the verification of other DFS al-
gorithms, e.g. SCC-based algorithms [9]. A more challenging assignment would
be to include partial-order reduction, the LTL-to-Biichi translation, or the op-
erational semantics of a modeling language. It is not clear that these tasks are
in the scope of an automatic program verifier right now.

The most useful extension would be the application to parallel graph algo-
rithms, like the parallel NDFS in [8]. This would require a program verifier for
multi-threaded programs that synchronize by reading and writing colours on a
shared graph. Such a tool would help researchers in developing parallel graph
algorithms, especially when small input graphs could be generated as counter
examples for faulty programs.

Acknowledgement. The author is grateful to the organisers and participants of
Dagstuhl Seminar 14171 [1] in April 2014 on Software Verification System benchmarks,
which initiated this research. In particular, the author is thankful to Rustan Leino for
creating DAFNY, and supporting the author during and after the workshop. The re-
viewers of this paper provided several useful suggestions to improve the presentation.

Automated Verification of Nested DF'S 193

References

10.

11.

12.

13.

14.

15.

16.

Beyer, D., Huisman, M., Klebanov, V., Monahan, R.: Evaluating Software Verifica-
tion Systems: Benchmarks and Competitions (Dagstuhl Reports 14171). Dagstuhl
Reports 4(4), 1-19 (2014)

Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-Efficient Al-
gorithms for the Verification of Temporal Properties. Formal Methods in System
Design 1(2/3), 275-288 (1992)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463-478. Springer, Heidelberg (2013)

Gaiser, A., Schwoon, S.: Comparison of Algorithms for Checking Emptiness on
Biichi Automata. CoRR, abs/0910.3766 (2009)

Gava, F., Fortin, J., Guedj, M.: Deductive verification of state-space algorithms. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 124-138. Springer,
Heidelberg (2013)

Holzmann, G.J., Peled, D., Yannakakis, M.: On Nested Depth First Search. In:
The Spin Verification System, pp. 23-32. American Mathematical Society (1996)
Laarman, A.W., Langerak, R., van de Pol, J.C., Weber, M., Wijs, A.: Multi-Core
Nested Depth-First Search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 321-335. Springer, Heidelberg (2011)

Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 325-340. Springer, Heidelberg (2014)

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348-370.
Springer, Heidelberg (2010)

Pottier, F.: Depth-first search and strong connectivity in Coq. Journées Franco-
phones des Langages Applicatifs (JFLA 2015) (January 2015)

Ray, S., Matthews, J., Tuttle, M.: Certifying compositional model checking algo-
rithms in ACL2. In: IW on ACL2 Theorem Prover and its Applications (2003)
Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174-190.
Springer, Heidelberg (2005)

Sprenger, C.: A verified model checker for the modal p-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167-183. Springer, Heidelberg (1998)
Sun, J., Liu, Y., Cheng, B.: Model checking a model checker: A code contract
combined approach. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,
pp. 518-533. Springer, Heidelberg (2010)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332-344. Cambridge (1986)

194 J.C. van de Pol
A Full NDFS Proof in Dafny

This section contains the full specification of the NDFS algorithm and is com-
pletely verified with DAFNY. The verification was run with DAFNY version
1.8.2.10419 on a Macbook 2.7 GHz Intel Core i7 processor with 8GB RAM under
MacOS 10.10.1 and Mono version 3.2.5. The verification time varies around 2
minutes. The code in this section has been typeset with dafny. sty by Rustan
Leino, obtained from https://searchcode.com/codesearch/view/28108731/.

A.1 Basic Definitions

1 datatype Color = white | cyan | blue | pink | red;

2

3 class Node {

4 var next: seq(Node);

5 var accepting: bool;

6 var colorl: Color;

7 var color2: Color;

8}

9

10 ghost var G: set(Node);

11

12 predicate graph(G:set(Node))

13 reads G;

14 {Vm e meG = (m# null AV n e nE€m.next = n € G) }
15

16 predicate types(G:set(Node))

17 reads G; requires graph(G);

18 {Vm e me G =

19 m.colorl € {white,cyan, blue}

20 A m.color2 € {white, pink,red}}

21

22 function Cyan(G:set(Node)): set(Node)

23 reads G; requires graph(G);

24 { set n | n€&€GAn.colorl =cyan e n }

25

26 function Blue(G:set(Node)): set(Node)

27 reads G; requires graph(G);

28 { set n | n € GA n.colorl = blue e n }

29

30 function Pink(G:set(Node)): set(Node)

31 reads G; requires graph(G);

32 { set n | né€GAn.color2 = pink e n }

33

34 function Red(G:set(Node)): set(Node)

35 reads G; requires graph(G);

36 { set n | n€GAn.color2 =red e n }

37

38 predicate Next(G:set(Node) X:set(Node) K Y:set(Node))

39 reads G; requires graph(G);

490 {Vn,i €« n e GAO<L i< |[n.next|] = (né&€X = n.next[i] €Y) }
41

42 function Path(G:set(Node) , x:Node,y:Node,p:seq(Node)):bool
43 reads G; requires graph(G);

aa { |[pl >0 A p[0] =x A p[lpl-1] =y

45 AV i ¢ 0< i< |p|l-1 = p[i] € GAp[i+1l] € p[i].next }
46

47 function Cycle(G:set(Node) ,x:Node,y:Node,p:seq(Node) , q:seq(Node)):bool

'S
o

reads G; requires graph(G);
{ Path(G,x,y,p) A Path(G,y,y.q) A |q] > 1 A y.accepting }

'S
©

https://searchcode.com/codesearch/view/28108731/

Automated Verification of Nested DF'S

A.2 Auxiliary Lemmas on Paths and Cycles

195

function Keylnvariant(G:set(Node)) :bool

reads G; requires graph(G);

{Vs e s e Blue(G) A s.accepting = —3 p e |p| > 1 A Path(G,s,s,p) }

function NoPath(G:set(Node),s:Node, t :Node,p:seq(Node)) : bool

{

reads G; requires graph(G);

requires Next(G,Red(G),Red(G));

requires Next(G,Red(G),G — Cyan(G));

requires s € Red(G);

requires t € Cyan(G);

ensures NoPath(G,s,t,p);

ensures |p| > 1 = —Path(G,s,t,p);

[p| > 1 A p[0] =s A p[1] € p[0].next = NoPath(G,p[1],t,p[1..]) }

function NoCycle (G:set(Node) ,root:Node,s:Node,p:seq(Node) ,q:seq(Node)) :bool

{

reads G; requires graph(G);

requires root € Blue(G);

requires Next (G, Blue(G),Blue(G));

requires Keylnvariant(G);

ensures —Cycle (G, root,s,p,q);

[p| > 1 A p[0] = root A p[1] € p[0].next = NoCycle(G,p[1],s,p[1..],q9) }

lemma NextCyan (G: set(Node) ,s:Node, t :Node)

{

requires graph(G);
requires s € G;
requires t € s.next;

requires V ¢ e ¢ € Cyan(G) = 3 q e Path(G,c,s,q);
ensures YV c e c € Cyan(G) — 3 q e Path(G,c,t,q);
assert V c,p e Path(G,c,s,p) = Path(G,c,t,p+[t]); }

lemma CycleFoundHere (G: set (Node) ,s:Node)

-~

-

requires graph(G);

requires s € G;

requires s.accepting;

requires 3 c,p e c € Cyan(G) A Path(G,s,c,p) A [p|>1;
requires VY ¢ e c € Cyan(G) = 3 q e Path(G,c,s,q);
)s
p

ensures 3 p,q e Cycle(G,s,s,p,q);

assert 3 ¢,p,q e c € Cyan(G) A |p|>1 A Path(G,s,c,p) A Path(G,c,s,q);
assert V c,p,q e Path(G,s,c,p) A Path(G,c,s,q) = Path(G,s,s,p+q[1..]);
assert V.q e |gq| > 1 A Path(G,s,s,q) = Cycle(G,s,s,[s].q);

// this was very hard to prove and rather sensitive..

A.3 Main Method and Correctness Statement

[. NV N O S

method ndfs(root:Node) returns (found:bool)

-~

requires graph(G);

requires root € G;

requires Vs o s € G = s.color1 = s.color2 = white;

modifies G‘color1, G'color2;

ensures found = (3 a,p,q e Cycle(G,root,a,p,q)); // soundness

ensures (3 s,p,q e Cycle(G,root,s,p,q)) = found; // completeness

found := dfsblue(root);

assert -found = V s,p,q e NoCycle(G,root,s,p,q) = —Cycle(G,root,s,p,q);

196 J.C. van de Pol

A.4 Blue Search

1 method dfsblue(s:Node) returns (found:bool)
2 requires s € G;

3 requires graph(G);

4 requires types(G);

5 requires s.colorl = white;

6 requires Next (G, Blue(G),Blue(G) U Cyan(G));
7 requires Next(G,Red(G),Red(G) U Pink(G));
8 requires Pink(G) = {};

9 requires Red(G) C Blue(G);

10 requires Keylnvariant (G);

11 requires V ce c € Cyan(G) = 3 p e Path(G,c,s,p);
12 modifies G'colorl, G'color2;

13 decreases G — Cyan(G);

14 ensures types(G);

15 ensures old(Blue(G)) C Blue(G);

16 ensures Next(G,Blue(G),Blue(G) U Cyan(G))
17 ensures Next(G,Red(G),Red(G) U Pink(G))

18 ensures —found = s € Blue(G);

19 ensures —~found — old(Cyan(G)) Cyan(G);
20 ensures —~found = Pink (G {}:

21 ensures —found = Red(G) C Blue(G);

22 ensures found = (3 a,p,q e Cycle(G,s,a,p,q));
23 ensures Keylnvariant (G);

24

25 { s.colorl := cyan;

26 assert Path(G,s,s,[s]);

27 var i := 0;

28 while (i < |s.next])

29 invariant types(G);

30 invariant Cyan(G) = old(Cyan(G)) U {s};

31 invariant Pink(G) ={}

32 invariant i < |s.next]|;

33 invariant V j e 0 < j < i = s.next[j] € Blue(G) U Cyan(G)
34 invariant old(Blue(G)) C Blue(G)

35 invariant Next (G, Blue(G),Blue(G) U Cyan(G));
36 invariant Next(G,Red(G),Red(G) U Pink(G))
37 invariant Red(G) C Blue(G);

38 invariant Keylnvarlant(G)

39

40 { var t := s.next[i];

41 = i+1;

42 if (t.colorl = white)

43 { NextCyan(G,s,t);

44 found := dfsblue(t);

45 if (found) {

46 assert V a,p,q e Cycle(G,t,a,p,q) = Cycle(G,s,a,[s]+p,q);
47 return;

48 }

49 }

50

51 if (s.accepting)

52 { assert s ¢ Pink(G);

53 found := dfsred(s,s);

54 if (found) {

55 CycleFoundHere(G,s);

56 return;

57 }

58 assert V p e NoPath(G,s,s,p);

59 }

60 s.colorl := blue;

61 return false;

Automated Verification of Nested DF'S

A.5 Red Search

© 0N oA W N

WOW W W W W W WNNNNNNNNNDNRE R e e e
IR DR RO 00T AR WSO O®NOO A BN RO

38

method dfsred(s:Node, ghost root:Node) returns (found:bool)

{

}

requires
requires
requires
requires
requires
requires
requires
requires
requires
requires
modifies
decrease
ensures
ensures
ensures
ensures
ensures
ensures
ensures
ensures

s.color2
var i =
while (i
invarian
invarian
invarian
invarian
invarian

graph(G);

types(G);

s € G;

root € G;

s.color2 = white;

s = root V s.colorl = blue;
Next (G, Blue(G) U {root},Blue

(U Cyan(G));
Next (G, Red (G),Red (G) U Pink (G

G)
)i

Red(G) C Blue(G) U {root};
Next (G, Red(G),G — Cyan(G));
G'color2;

s G — Pink(G);

types(G);

—~found = s € Red(G
—~found = old (Pink(
old (Red(G)) C Red(G);
Next (G, Red (G),Red(G) U Pink(G));
Red(G) C Blue(G) U {root};
Next (G,Red(G),G — Cyan(G));

G)ﬁ) = Pink(G);

found = 3 p,c e |p| > 1 A c € Cyan(G) A Path(G,s,c,p);

= pink;

0;

< |s.next])

t types(G);

t old(Red(G)) C Red(G);

t i < |s.next]|;

tVj e 0<j< i = s.next[j] € Red(G) U Pink(G);
t Next(G,Red(G),Red(G) U Pink(G));

invariant Pink(G) = old(Pink(G)) U {s};
invariant Red(G) C Blue(G) U {root};
invariant Next(G,Red(G),G — Cyan(G));
invariant V j e 0 < j < i = s.next[j] € G— Cyan(G);
{ var t := s.next[i];
= i4+1;
if (t.colorl = cyan) {
assert Path(G,s,t,[s,t]);
return true;
}
if (t.color2 = white)
{ found := dfsred(t,root);
if (found) {
assert V p,c e Path(G,t,c,p) = Path(G,s,c,[s]+p);
return;
}
s.color2 := red;
return false;

197

	Automated Verification of Nested DFS
	1 Introduction
	2 Nested Depth-First Search and Dafny
	2.1 Dafny
	2.2 Nested Depth-First Search
	2.3 Formulation of the NDFS Algorithm in Dafny

	3 Developing the Correctness Proof
	3.1 Absence of Runtime Errors
	3.2 Termination
	3.3 Main Local Invariants on NDFS Colours
	3.4 Completeness
	3.5 Soundness

	4 Conclusion
	A Full NDFS Proof in Dafny
	A.1 Basic Definitions
	A.2 Auxiliary Lemmas on Paths and Cycles
	A.3 Main Method and Correctness Statement
	A.4 Blue Search
	A.5 Red Search

