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Abstract

Purpose Routine evaluation of basic surgical skills in med-

ical schools requires considerable time and effort from

supervising faculty. For each surgical trainee, a supervisor

has to observe the trainees in person. Alternatively, super-

visors may use training videos, which reduces some of the

logistical overhead. All these approaches however are still

incredibly time consuming and involve human bias. In this

paper, we present an automated system for surgical skills

assessment by analyzing video data of surgical activities.

Method We compare different techniques for video-based

surgical skill evaluation. We use techniques that capture the

motion information at a coarser granularity using symbols or

words, extract motion dynamics using textural patterns in a

frame kernel matrix, and analyze fine-grained motion infor-

mation using frequency analysis.

Results We were successfully able to classify surgeons into

different skill levels with high accuracy. Our results indicate

that fine-grained analysis of motion dynamics via frequency

analysis is most effective in capturing the skill relevant infor-

mation in surgical videos.

Conclusion Our evaluations show that frequency features

perform better than motion texture features, which in-turn

perform better than symbol-/word-based features. Put suc-

cinctly, skill classification accuracy is positively correlated
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with motion granularity as demonstrated by our results on

two challenging video datasets.

Keywords Surgical skill · Classification · Feature modeling

Introduction

Surgical skill development, i.e., the process of gaining exper-

tise in procedures and techniques required for professional

surgery, represents an essential part of medical training.

Acquiring high-quality surgical skills is a time-consuming

process that demands expert supervision and evaluation

throughout all stages of the training procedure. However,

the manual assessment of surgical skills poses a significant

resource problem to medical schools and teaching hospitals

and results in complications in executing and scheduling their

day-to-day activities [1]. In addition to the extensive time

requirements, manual assessments are often subjective and

domain experts do not always agree on the assessment scores.

This is evidenced by studies that show poor correlations

between subjective evaluations and objective evaluations

through standardized written and oral exam [2].

Surgery is a complex task, and even basic surgical skills

such as suturing and knot tying (that involve hand movements

in a repetitive manner) require every surgical resident to go

through training in order to master these basic skills before

moving on to more complicated procedures. Considering the

volume of trainees that need to go through basic surgical

skills training along with the time-consuming and subjective

nature of manual evaluation, automated assessment of these

basic surgical skills can be of tremendous benefit to medical

schools and teaching hospitals.

Medical literature recognizes the need for objective sur-

gical skill assessment in surgical training [4]. Yu et al. [5]
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have suggested evaluations from residents and interns who

frequently supervise the students instead of the consultant

surgeons who do not have the opportunity to directly observe

the medical students. However, the subjectivity and time-

consuming nature of these evaluations still cannot be ruled

out.

Structured grading systems such as the objective struc-

tured assessment of technical skills (OSATS) [3] have been

developed to reduce the subjectivity. Table 1 summarizes the

OSATS scoring system. OSATS consists of seven generic

components of operative skill that are marked on a 5-point

Likert scale. OSATS criteria are diverse and depend on differ-

ent aspects of motion. For instance, qualitative criteria such

as “respect for tissue” depend on overall motion quality while

sequential criteria such as “time and motion” and “knowledge

of procedure” depend on motion execution order.

A major drawback of manual OSATS assessment is the

substantial requirements on time and resources involved in

getting several staff surgeons to observe the performance of

trainees. However, only few research efforts have addressed

automated OSATS assessments for surgical teaching evalua-

tions. For instance, Datta et al. [6] defined surgical efficiency

score as the ratio of OSATS “end product quality score”

and the number of detected hand movements. Their results

indicate significant correlations between the overall OSATS

rating and the surgical efficiency. However, they did not cor-

relate the hand movements to individual OSATS criteria. It

is important to provide automated assessment on individual

OSATS criteria since several studies have demonstrated its

efficacy for objective assessment of surgical skills [7].

In this work, we analyze different features and clas-

sification back-ends that have been used for automated

classification of surgical skills using video data. We note

that most of the features are built upon basic spatiotemporal

motion attributes such as histogram of gradients (HoG) and

histogram of flow (HoF) features. These basic motion fea-

tures in videos can be represented by a time series of symbols

(or words) as in hidden Markov models (HMMs), bag-of-

words (BoW), and augmented BoW (ABoW) techniques.

The motion dynamics can also be represented as textural

variations in a frame kernel matrix representing the similar-

ity between two frames using a kernel function. Furthermore,

since surgical motion for basic surgical skills (suturing and

knot tying) is inherently repetitive, the periodicity of motion

can be captured by frequency-based features such as dis-

crete Fourier transform (DFT) and discrete cosine transform

(DCT).

We note that classification accuracy increases progres-

sively as we move from coarse word-based (symbolic)

features to fine-grained frequency-based features. Our results

on two independently acquired and challenging datasets

demonstrate that frequency-based features are well suited

for automated video-based assessment of surgical skills.
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Contributions (1) Comparison of state-of-the-art techniques

for video-based automated assessments of OSATS; (2)

Analysis of three different types of features (symbolic,

texture based, and frequency based) within an automated

generalized video-based assessment framework; and (3)

Evaluation of the various techniques on two independently

acquired challenging datasets.

Background

Automated analysis of surgical motion has gained atten-

tion in recent years [8–20]. Pioneering works addressed skill

assessment in robotic minimally invasive surgery (RMIS)

and proposed techniques for automatic detection and seg-

mentation of surgical motions assisted by robots [15–20].

However, the techniques described in these works are specif-

ically for RMIS and laparoscopic surgeries and, to the best of

our knowledge, have not addressed the traditional OSATS-

based trainee evaluation.

Automated assessment of basic surgical skills for both

RMIS and conventional medical teaching can be categorized

based on the approaches used for time series analysis. The

local approaches model specific surgical tasks and model

the task as a sequence of manually defined surgical gestures

[15,16]. On the other hand, the global approaches involve the

analysis of the whole motion trajectory without segmentation

into surgical gestures [6,21].

Several RMIS works have used hidden Markov models

(HMMs) to represent the surgical motion flow. The motiva-

tion for HMMs and gesture-based analysis is derived from

speech recognition techniques, and the goal is to develop a

language of surgery where a surgical task can be modeled as

a sequence of predefined gestures (also known as surgemes

analogous to phonemes in speech recognition). Tao et al. [13]

proposed a combined Markov/semi-Markov conditional ran-

dom field (MsM-CRF) model for gesture segmentation and

recognition for RMIS.

With advances in video data acquisition, the attention has

shifted toward video-based analysis in both RMIS and teach-

ing domains. Table 2 summarizes recent work on surgical

video data. Most of these classify different surgemes or sur-

gical phases, and the data from different types of surgeries are

used. Haro et al. [15] and Zapella et al. [16] employed both

kinematic and video data for RMIS surgery. They used lin-

ear dynamical systems (LDS) and bag-of-features (BoF) for

surgical gesture (surgeme) classification in RMIS surgery.

Twinanda et al. [8] proposed a CNN architecture, called

EndoNet, for phase recognition and tool presence detection

in laparoscopic cholecystectomy. Lea et al. [9] developed

a method to capture long-range state transitions between

actions by using higher-order temporal relationships using

a variation of the skip-chain conditional random field. These

works have mainly focused on RMIS and do not address

Table 2 Related works on surgical video analysis

Reference Technique Gesture Analysis goal Data

Twinanda [8] CNN Yes Surgical tool detection and phase

recognition

Laparoscopic cholecystectomy

(endoscopic video), 13 subjects

Lea [9] CRF Yes Surgical action segmentation and

recognition

RMIS (both kinematic and video data

from robotic surgery), 8 subjects

Zia [10] DCT, DFT No OSATS classification General suturing task (only video data),

16 subjects

Sharma [11,12] MT, SMT No OSATS prediction, classification General suturing task (only video data),

16 subjects

Tao [13] CRF Yes Surgical gesture segmentation and

recognition

RMIS (both kinematic and video data

from robotic surgery), 8 subjects

Bettadapura [14] ABoW No OSATS classification General suturing task (only video data),

16 subjects

Haro, Zapella [15,16] BoW, LDS Yes Surgical gesture recognition RMIS (both kinematic and video data

from robotic surgery), 8 subjects

Padoy [17] DTW, HMM Yes Surgical phase recognition Laparoscopic cholecystectomy

(endoscopic video), 4 subjects

Lalys [18] DTW Yes Surgical phase recognition Cataract surgery, 20 videos

Blum [19] CCA, HMM Yes Surgical phase recognition Laparoscopic surgery, 10 videos

Lin [20] HMM Yes Skill classification but not on

individual OSATS criteria

RMIS (both kinematic and video data

from robotic surgery), 6 subjects

CNN convolutional neural network, DCT discrete cosine transform, DFT discrete Fourier transform, MT motion texture, SMT sequential motion

texture, CRF conditional random field, BoW bag-of-words, ABoW augmented bag-of-words, LDS linear dynamical systems, DTW dynamic time

warping, CCA canonical correlation analysis, HMM hidden Markov model
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Fig. 1 Overview of the system used for skill assessment

assessment of OSATS criteria as done in general surgical

training.

Some works based on automated assessment of the

OSATS criteria for general surgical training have also been

proposed recently. In [14], the authors introduced augmented

BoW (ABoW), in which time and motion are modeled

as short sequences of events and the underlying local and

global structural information is automatically discovered and

encoded into BoW models. They classified surgeons into

different skill levels based on the holistic analysis of time

series data. In [11], the authors proposed motion texture (MT)

analysis technique in which each video is represented as a

multi-dimensional sequence of motion class counts to obtain

a frame kernel matrix. The textural features derived from

the frame kernel matrix are used for prediction of OSATS

criteria. Although MT technique provided good OSATS pre-

diction, it is computationally intensive (N × N sized frame

kernel matrix for a video with N frames) and does not account

for the sequential motion aspects in surgical tasks. A variant

of MT, called sequential motion texture (SMT) [12], encoded

both the qualitative and sequential motion aspects.

Some recent skill assessment works in other domains such

as competitive sports [22] have used frequency analysis tech-

niques such as discrete Fourier transform (DFT) and discrete

cosine transform (DCT) to assess the quality of sporting

actions. OSATS skill criteria depend on the different char-

acteristics of the motion performed by the surgeon (Table

1). For instance, an expert surgeon’s movements are smooth

with no unnecessary moves as compared to stiff movements

of a novice surgeon. Thus, we need to analyze the chang-

ing motion characteristics (motion dynamics) in the surgical

video. In addition, suturing and knot tying are inherently

repetitive tasks. Inspired by these advances, a recent work

used DFT and DCT features for automated video-based skill

assessment [10].

Our goal is to develop an automated, portable, and cost

effective assessment system that replicates the traditional

OSATS assessment without any manual intervention. The

RMIS works provide background and motivation for our

work on surgical skill assessment. However, in this work

our focus is on OSATS-based skill assessment in traditional

setting with trainee surgeons practicing basic surgical skills

such as suturing and knot tying. We note that video-based

OSATS assessment techniques mainly use three types of fea-

tures (1) Symbolic: HMM, BoW, and ABoW; (2) Texture:

MT and SMT; and (3) Frequency: DCT and DFT. In this

work, we build upon the work in [10] and provide a compar-

ative analysis of these features in a generalized framework

for video-based skill assessment. We test the different fea-

ture performances on two independently acquired and diverse

datasets collected in a general surgical lab setting. Our results

show that frequency features outperform other feature types

previously reported in the literature indicating its skill assess-

ment potential for medical schools and teaching hospitals.

Methodology

We use video-based processing for evaluating the skill level

of each surgeon. The videos are initially preprocessed and

converted into a multi-dimensional time series which is then

used to extract different types of features which are used for

skill classification. Figure 1 shows the proposed pipeline for

the system. We have divided the flow into three steps: (1)

Motion class time series generation; (2) Feature modeling;

and (3) Feature selection and classification. We will now

discuss these stages in detail.

Motion class time series generation

The first stage in our approach is to encode the motion in the

videos and generating a motion class time series representa-

tion of each video. Many different types of motion features

have been proposed in the literature for extracting relevant

information from video data [23–25]. For our purpose, we

use spatiotemporal interest points (STIPs) [26] proposed by

Laptev in order to encode the motion from the videos. Let

V be the set containing all the videos in our dataset. Then,

for all v ∈ V , a Harris3D detector is used to compute the

spatiotemporal second-moment matrix μ at each video point

given by

μ = g(.; σ 2, τ 2) ×

⎛

⎝

L2
x Lx Lx L t

Lx L y L2
y L y L t

Lx L t L y L t L2
t

⎞

⎠ (1)

where g(.; σ 2, τ 2) is a 3D Gaussian smoothing kernel with

a spatial scale σ and a temporal scale τ . Lx,y,t are gradient

123



Int J CARS

Fig. 2 Clustering STIPs into motion classes

functions along the x, y and t domains. The final position of

the STIPs is then calculated by finding the local maxima of

the Harris corner function given by

H = det(μ) − ω(trace(μ))3 (2)

We use Laptev’s STIP implementation [27] with default

parameters and sparse feature detection mode for differ-

ent spatiotemporal scales with ω set to be 0.005. We then

compute histogram of optical flow (HOF) and histogram of

oriented gradients (HOG) on a three-dimensional video patch

in the neighborhood of each detected STIP. A 4-bin HOG

and a 5-bin HOF descriptor is calculated resulting in 72-

dimensional HOG vector and a 90-dimensional HOF vector.

The final feature vector for each STIP is obtained by concate-

nating HOG and HOF vectors resulting in a 162-dimensional

vector.

Once the STIPs for all videos are extracted, we learn

motion classes by using k-means clustering on STIPs from

two expert videos. Expert STIPs are used since they are

more distinct and uncluttered as compared to non-experts.

Therefore, expert motions provide exemplary templates for

the surgical task to be evaluated. The STIPs from experts

are clustered using k-means for different number of clusters

“c.” Figure 2 shows a sample frame with STIPs extracted

and the cluster assignment of each STIP. The different col-

ors in the right image correspond to different clusters. The

learned clusters can be thought of as representing of the num-

ber of moving parts in the video as evident in Fig. 2 where

you can see different colored STIPS for the different moving

parts such as hands, arms, and instrument. The expert clus-

ters are then used to transform the remaining videos in the

dataset into a multi-dimensional time series. This is done by

assigning each STIP in every frame of the video to one of

the “c” learned clusters using minimum Mahalanobis dis-

tance from the cluster distribution. This results in a time

series T ∈ ℜK×N representing each video, where K rep-

resents the dimension of the time series (equivalent to the

number of clusters used in k-means) and N is the number

of frames of the video. Figure 3 shows some sample motion

class time series for a beginner, intermediate, and an expert

using K = 5.

Feature modeling

The features we use for our analysis are divided into three

categories: (1) symbolic features; (2) texture features; and

(3) frequency features. The different type of features in each

category is described below. Note that for description of each

technique, we will use X ∈ ℜK×N to denote a time series

where K is the dimension of the time series and N being the

number of frames of the video.

Symbolic features

Previous state of the art has mostly focused on words-

based/symbolic methods for describing video and time series

data for a variety of application such as activity recogni-

tion and skill categorization. In this category, we use HMMs

[28,29], bag-of-words (BoW), and augmented bag-of-words

(ABoW) models [14,15].

HMM We implemented HMM using semi-continuous mod-

eling with Gaussian mixture models (GMMs) representing

the feature space [29]. We used k-means clustering using dif-

ferent number of clusters to convert the multi-dimensional

time series data into a set of discrete symbols n. The GMMs

were obtained using an unsupervised density learning proce-

Fig. 3 Motion class time series samples using K = 5 for a novice

(left), an intermediate (center), and an expert (right) surgeon. Note that

the beginner motion is more frequent and exists in almost all frames for

all motion classes as compared to fewer motion for intermediate and

expert surgeons. These sample plots were obtained from dataset-B (see

the “Data Collection” section for description of the dataset), represented

by varied length of the time series
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dure. The HMM was trained using the classical Baum–Welch

training for different number of states s, and classification

was done using Viterbi decoding.

BoW BoW techniques represent the state of the art for

video-based activity recognition. The BoW model is typi-

cally constructed using visual codebooks derived from local

spatiotemporal features. The clusters obtained by clustering

the HOG-HOF STIP feature vectors form the vocabulary

for our BoW codebook [15]. The STIPs are then mapped

to the words in our vocabulary which results in each video

being represented by a histogram of words. With this feature

representation, we then use a k-nearest neighbor (kNN) clas-

sification back-end to categorize the videos into the various

OSATS skill categories.

ABoW While BoW models are better than HMMs, standard

BoW techniques do not capture the underlying structural

information, neither of causal nor of sequential type, that is

inherent by the ordering of the words. To solve this problem,

[14] introduced the augmented bag-of-words (ABoW) model

that represents temporal information by quantizing time and

defining new temporal words in a data-driven manner. Fur-

thermore, the model uses n-grams to augment the BoW with

the discovered temporal events in a way that preserves the

local structural information (relative word positions) of the

activity. In addition, to discover the global patterns in the data,

the ABoW model uses randomly sampled regular expressions

to find patterns across the words within the activities. We

built ABoW models by augmenting our BoW models and,

like before, used a kNN classification back-end to categorize

the skill levels.

Texture features

Textural features have been shown to give good accuracy

for skill classification of surgical skills [12]. We will now

describe the computation of texture features for classifica-

tion.

Motion Texture Motion texture (MT) encodes the motion

dynamics in a frame kernel matrix which is then used to

calculate texture features [12]. The time series X ∈ ℜK×N ,

and the frame kernel matrix M ∈ ℜN×N is calculated using

M = φ(X)′φ(X) (3)

A Gaussian kernel function is used as a kernel function, and

each element in the kernel matrix M , mi, j denotes the sim-

ilarity between the frame number i and j and is given by

mi, j = exp

(

−
||xi − x j ||

2

2σ 2

)

(4)

The matrix M is then used to derive textural statistics

using gray-level co-occurrence matrix (GLCM). GLCM is

obtained by calculating how often a pixel with a certain

intensity level occurs in a specific spatial relationship to a

pixel with different intensity level. The final feature vector

obtained is 20-dimensional.

Sequential Motion Texture Sequential motion texture (SMT)

extends MT by incorporating temporal information into the

features [12]. The time series X ∈ ℜK×N is first divided

into equally sized temporal windows W such that each win-

dow contains equal proportion of the STIPs corresponding to

largest motion class in a given video. Frame kernel matrices

are calculated for each time window using Eq. 3. The final

GLCM features are then calculated for each time window

resulting in a 20W -dimensional feature vector.

Frequency features

Frequency-based features have been widely used in various

applications exploiting the periodic nature of data. Recently,

works of Pirsiavash et al. [22] and Zia et al. [10] have shown

that frequency features work extremely well for assessing

quality of actions like sports and basic surgical tasks. The

two types of frequency features used for our evaluation are

described below.

Discrete Fourier Transform Discrete Fourier transform

(DFT) is used to convert data from time domain into fre-

quency domain and has been extensively used for many

application across several domains. For our time series

X ∈ ℜK×N , we calculate the frequency coefficients for each

dimension independently and concatenate them to form the

frequency matrix Q ∈ ℜK×N [10]. The i th row in the fre-

quency matrix Q, Q(i) is calculated by

Q(i) = θ X (i)′ (5)

where X (i) is the i th dimension of the time series X . θ is an

N × N matrix, and θ(m, n) is given by

θ(m, n) = exp(− j2π
mn

N
), (6)

where {m, n} ∈ [0, 1, . . . , N − 1]. Once the matrix Q is

calculated, the higher frequency terms are removed in order

to eliminate noise. This results in a reduced matrix Q̂ ∈

ℜK×F where F denotes the highest frequency component

used from each dimension of the time series X . This can also

be thought of as low-pass filtering of the time series. The

elements of Q̂ are then concatenated to form a final feature

vector of K F dimensions.

Discrete Cosine Transform Discrete cosine transform (DCT)

is also a transformation of data from time domain to fre-

quency just like DFT. However, DCT only uses cosine

functions instead of both sines and cosines. This results in
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the DCT coefficients being real as opposed to DFT where

the coefficients can be complex. Similar to DFT, the i th row

of the frequency matrix Q ∈ ℜK×N is also calculated using

Eq. 5 [10] but the θ matrix is given by

θ(0, n) =

√

1

N
, (7)

θ(m, n) =

√

2

N
cos(

π(2n + 1)m

2N
), (8)

where {m, n} ∈ [0, 1, . . . , N −1]. Similar to DFT, the matrix

Q is reduced to Q̂ ∈ ℜK×F and a final K F-dimensional

feature vector is obtained.

Feature selection and classification

The final feature vector obtained from the previous step may

contain many elements that may be redundant (provide no

more information) or irrelevant (contain no useful informa-

tion) to the skill level. In order to tackle this, we reduce the

number of elements in the final feature vector by using feature

selection. For our experiments, we use sequential forward

selection (SFS) to have a fair comparison between different

techniques since it has been used before in similar works

[10,12].

Given a feature set � = {φi |i = [1, . . . , Z ]}, SFS aims to

find a subset of features �̂ = {φ̂i |i = [1, . . . , U ]}, with U <

Z by starting with an empty set and sequentially adding the

features that maximize the objective function when combined

with the features that have already been selected. We use a

nearest neighbor (NN) classifier with cosine distance metric

as a wrapper function for SFS.

Experimental evaluation

Data collection

In order to test the performance of the various skill assess-

ment techniques, we collected two datasets in different

settings. We will refer to them as “dataset-A” and “dataset-

B.” In dataset-A, each video was captured for a specified time

and there was minimal involvement of any other human, other

than the participant. In dataset-B, there were large variations

in the length of the video being captured along with delays

in the middle of the tasks and people were moving around

within the participant’s environment adding to the noise in

the motion captured. The suturing type performed by partici-

pants in both datasets was a “running suture” and there were

variations in the number of sutures performed by each par-

ticipant. All the participants in dataset-A were right-handed

except for 2, whereas information regarding dominant hand

Fig. 4 Sample frames from the datasets. The top 4 images are from

dataset-A, and the bottom 2 images are from dataset-B

for dataset-B was not available. More specific details of data

capture for both datasets are given below.

Dataset-A This dataset contains videos captured from 18

recruited participants (surgical residents and nurse practi-

tioners). A standard camera was used for capturing the videos

while the participants performed the surgical tasks wearing

colored finger-less gloves. Each participant performs two

attempts of suturing and knot tying each, resulting in 36

videos for knot tying and 35 videos for suturing (one video

not used due to data corruption). We collected 4000 and 1000

frames for suturing and knot tying, respectively, at a resolu-

tion of 640×480 pixels and 30 frames per second. The camera

was placed at different angles in each attempt, and the data

were captured in multiple rooms in order to make the dataset

invariant to view and illumination changes.

Dataset-B This dataset was collected by recruiting 16 new

participants (medical students). Each participant performed

suturing activity using a needle-holder, forceps, and the tis-

sue suture pads. The session was recorded using a standard

camera with 1280 × 720 pixels and 50 frames per second.

Each session was recorded in a separate video. An expert

surgeon performed three sessions giving a total of 33 videos.

The number of frames for each recording varied largely with

the average duration of the videos being 18 minutes each.

Figure 4 shows some of the sample frames from both

datasets for suturing and knot tying tasks. Ground truth for
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Table 3 No. of samples for different expertise levels for dataset-A and dataset-B for each of the OSATS criteria (RT respect for tissue, TM time

and motion, IH instrument handling, SH suture handling, FO flow of operation, OP overall performance)

Dataset-A (S: Suturing, KT: Knot Tying) Dataset-B (S: Suturing)

RT TM IH SH FO OP RT TM IH SH FO

Beginner S: 5 S: 13 S: 13 S: 14 S:12 S: NA S: 2 S: 9 S: 8 S: 10 S: 3

KT: NA KT: 6 KT: NA KT: 5 KT: 2 KT: 2

Intermediate S: 20 S: 11 S: 10 S: 13 S: 14 S: NA S: 14 S: 15 S: 16 S: 15 S: 16

KT: NA KT: 12 KT: NA KT: 17 KT: 19 KT: 17

Expert S: 10 S: 11 S: 12 S: 8 S: 9 S: NA S: 15 S: 7 S: 7 S: 6 S: 12

KT: NA KT: 18 KT: NA KT: 14 KT: 15 KT: 17

Within each cell, “S” refers to suturing and “KT” refers to knot tying and “NA” corresponds to either samples not available or the respective OSATS

criteria being not applicable for the task

the OSATS score for both datasets was obtained by showing

the videos to an expert. Two independent experts graded the

two datasets, respectively. The training data were grouped

into three skill levels: Beginner (O S AT S ≤ 2) was given a

score of 1, an intermediate (2 ≤ O S AT S ≤ 3.5) was given

a score of 2, and an expert (3.5 ≤ O S AT S ≤ 5) was given a

score of 3. Table 3 gives the distribution of the different skill

levels for each class for the two datasets.

Parameter estimation

The performance of each of the techniques described in

“Methodology” section is dependent on the values of parame-

ters that we need to learn. We select each of these parameters

empirically. The following describes how each parameter

(for the different proposed techniques) was selected. All

the experiments were performed using leave-one-out cross-

validation (LOOCV), where one video was left out for testing

in each experiment. Moreover, we use 5-dimensional time

series (K = 5) for estimating parameters in this section.

The optimum parameters are selected based on average clas-

sification accuracy C K
avg(P), over all OSATS criteria for a

specific parameter set P . This is calculated by C K
avg(P) =

1
O

∑O
o=1 C K

o (P) , where C K
o (P) represents the classification

accuracy for a respective OSATS criteria o and parameter set

P using K -dimensional time series, while O denotes the total

number of applicable OSATS criteria. The parameter set P̂

achieving highest Cavg is then used to run experiments for

all values of K in the next section.

Symbolic features

We described three techniques in “Methodology” section

under symbol-based feature representation. For BoW and

ABoW, the parameters proposed in [14] were used wherein

the BoW model was built using 50 clusters and augmented

using interspersed encoding with 3-g, 5 time bins, and 20

Fig. 5 Plots of average classification accuracy versus number of states

with varying number of discrete observation symbols

random regular expressions. For HMM, we learned the opti-

mum value for the number of symbols n and number of states

s. We evaluate the classification rate for all combinations of

n and s, where n = [3, 4, . . . , 10] and s = [4, 8, 10, 12, 14].

Figure 5 shows a plot showing the variation in the average

classification accuracy with respect to varying n and s. The

average classification accuracy was calculated by taking the

mean of the individual classification percentages achieved.

Each plot for a specific number of symbols was achieved by

averaging the classification accuracies over all the OSATS

criteria for the respective number of states. It can be seen

that using n = 7 and n = 10 seems to work best and equally

good and the classification rate stays constant across varying

s. However, the training time increases significantly using

higher number of states. Therefore, we selected n = 7 and

s = 4 to achieve best possible accuracy while saving com-

putation time.

Texture features

For both MT and SMT, we use the standard gray-level co-

occurrence matrix (GLCM) with 8 gray levels. However, for
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Fig. 6 Plots of classification accuracy versus number of windows

SMT, the performance is dependent on the number of time

windows W . In order to find the optimum value for W , we

calculate the classification rates of varying the number of

windows for W ∈ [6, 8, 10, 12, 14] on both datasets. Fig-

ure 6 shows a graph for classification rate versus number of

windows (W ). Again, we average the classification accuracy

over all the OSATS criteria applicable for each value of W .

As evident from the plots, W = 10 seems to work best for

both datasets. For dataset-A, the accuracy seems to stay con-

stant after further increasing W , whereas for dataset-B, the

accuracy deteriorates after 10 time windows. Therefore, we

select W = 10 for our evaluation and result comparison for

SMT.

Frequency features

As described in “Methodology” section, DCT coefficients

are always real values, whereas DFT can have complex coef-

ficients as well. Therefore, the DCT coefficients are used as it

is, whereas the absolute value of the DFT coefficients is used

to make sure they are real valued. For frequency-based meth-

ods described, the only parameter that needs to be selected

empirically is F which is the highest frequency component

selected from each dimension of the time series (or the cut-

off frequency in the low-pass filter). Therefore, we calculate

the classification accuracy for F ∈ [25, 50, 100, 200, 500].

Figure 7 shows the plots obtained for classification rate ver-

sus number of frequency features used per dimension of the

time series. The accuracies were averaged over all OSATS

criteria for each value of F . The graphs depict a correla-

tion between average accuracy and number of features (F).

We select a value of 500 for both datasets as it embodies a

good tradeoff between accuracy and computational time. We

maintain F = 500 for our evaluation and results comparison.

Results

We evaluate the techniques described above on two diverse

datasets and report the classification accuracy for the dif-

ferent applicable OSATS criteria. For dataset-A, there are

two surgical tasks being assessed: suturing and knot tying.

Therefore, we report the classification results attained from

the techniques described before on both of them. However,

dataset-B only has suturing task so the results are presented

for just that.

Dataset-A Figure 8 shows the heat maps for the applicable

OSATS criteria using the different type of methods described

in “Methodology” section. We implement each method for

K ∈ [2, 3, . . . , 10], where K is the dimension of time series

used. It is evident that there is an improvement in the clas-

sification as we move from words-/symbol-based methods

to texture based to frequency based. SMT, DCT, and DFT

seem to be the top performing features. Figure 9 shows some

more detailed plots of the classification accuracies for a better

comparison between the top three methods. Frequency-based

features perform better than SMT for almost all the OSATS

criteria and for almost all the values of K . This shows that

frequency-based features are more robust across the different

OSATS criteria and do not seem to depend too much on the

dimension of the time series used.

Dataset-B The results from dataset-A clearly show that

words-/symbol-based method do not seem to capture the

Fig. 7 Plots of average classification accuracy versus highest frequency component used from each dimension of the time series. The left two plots

are for dataset-A and the right most for dataset-B
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Fig. 8 Heatmaps showing the classification accuracies for the different OSATS criterion for suturing and knot tying. The columns of each heatmap

show the different methods. We can see a clear improvement in accuracies from left to right (symbolic features to frequency features)

information relevant to the skill level of the surgeons per-

forming the basic surgical tasks. Moreover, texture-based

feature without temporal information perform poorly as well.

Since this dataset seems more tough due to the variation in the

length of the videos and the noisy motion, we only evaluate

and compare the features which perform best on dataset-A,

i.e., SMT, DCT, and DFT. Figure 10 shows the classification

results obtained using these 3 features. It is clearly evident

from the graphs that frequency-based features DCT and DFT

outperform the best performing texture-based feature SMT

by a good margin for almost all OSATS criteria and for all

values of K .

Table 4 gives the average classification rates for the dif-

ferent techniques on both datasets. Each classification is

averaged over all OSATS and over all values of K and is

given by the equation

C ′
avg =

1

9

10
∑

K=2

1

O

O
∑

o=1

C K
o (P̂) (9)

where P̂ was the optimum parameter set found in the previous

section. It is clear from the averaged results that frequency-

based features out perform all other features compared in this

paper. DCT seems to be working slightly better than DFT on

average.

Discussion

The results described above clearly show an increasing trend

in classification accuracies going from using symbolic fea-

tures to frequency features. Symbolic features such as BoW

and ABoW are useful in classifying human activities in

general. Sufficient literature has shown their efficacy in pre-

dicting what is being done in the video. For example, RMIS

works on gesture recognition [15,16] reported good results

for surgical gesture recognition using BoW model. However,

in their work, the goal was to classify what (or which) gesture

is the test sample, whereas, in skill assessment, it is essential

to assess the motion quality, i.e., how competent the sub-
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Fig. 9 Plots showing classification rates for various OSATS criteria for dataset-A. The corresponding task (suturing or knot tying) and the OSATS

criteria for each plot are mentioned in the boxes

ject is in performing the given activity. Therefore, symbolic

features performed poorly on evaluating skill for both the

datasets described in this paper.

A better representation for skill assessment was to encode

motion dynamics of the surgeons using texture features.

However, it is important to note that texture features without

temporal information performed poorly (this is also noted by

[12]). SMT performed quite well for skill classification for

both datasets and is able to capture the sequential information

important for skill differentiation. However, SMT is quite

computationally expensive due to the calculation of frame

kernel matrices and the corresponding textural features.

Moreover, SMT also seems to be prone to noisy movements

in the video as there is a significant decrease in the average

classification accuracy for dataset-B (which had significant

movements of people other than the performing surgeon).

That noted, SMT does give reasonably high accuracy for skill

classification.

The best features to encode the skill level of the surgeons

performing basic surgical tasks were frequency based, i.e.,

DCT and DFT. The datasets used in this paper for evaluations

only had basic surgical tasks of suturing and knot tying. Both

of these activities contain sequential periodic motion of the

hands and arms of the surgeon. Keeping this in mind, one

could expect that frequency-based features might be able to

extract the relevant information for skill classification from

the time series data. And the results presented in this paper

do infact conform with this. Moreover, this frequency-based

skill classification does not require the time series to be

divided into different windows nor does it require any manu-

ally defined surgical gestures. Also, DCT and DFT both are

extremely robust to noisy movements in the videos as evident

from the average classification rates given for both datasets

in Table 4. This is mainly because low-pass filtering of the

time series removes such noise in the data, thus making them

more robust as compared to SMT. Another thing to note here
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Fig. 10 Plots showing classification rates for various OSATS criteria for dataset-B. The corresponding OSATS criteria for each plot are mentioned

in the boxes

Table 4 Classification accuracies for different features on both datasets

HMM BoW ABoW MT SMT DCT DFT

Dataset-A suturing 47.4 63.3 63.1 64.3 84.4 98.4 97.7

Dataset-A knot tying 44.8 71.2 70.5 67.3 86.9 97.4 95.8

Dataset-B – – – – 78.1 98.1 97.6

The classification rates were averaged over all OSATS criteria and over all values of K (different number of dimensions of time series used for the

evaluation) for each technique

is that from Table 4, we see that DCT performs slightly bet-

ter than DFT on average. This can be possible because of

not using DFT coefficients as is (since they are complex).

We used DCT coefficients in its original form while taking

the absolute for DFT. This results in loss of some informa-

tion which can cause a slightly lower average classification

accuracy for DFT.

In order to better understand the difference in the top

performing features quantitatively, we need to visualize the

feature in their spaces. However, since the dimension of the

final feature vector is always much greater than 3, it is very

hard to visualize them as is. Therefore, we used linear dis-

criminant analysis (LDA) to project the higher dimensional

features onto a two-dimensional space. LDA was used for

dimensionality reduction here since it tries to model the dif-

ference between the classes and that would potentially result

in distinct class clusters in projected space if the data in

higher dimension also form separated clusters. Figure 11

shows sample scatter plots for SMT, DCT, and DFT (from

left most column to right most, respectively) features after

projecting them using LDA. It is interesting to see that even

after significant information loss caused by dimensionality

reduction, DCT and DFT form pretty distinct clusters for

each skill class whereas there is significant overlap between

skill classes clusters for SMT. This shows that the selected

frequency features for each class in a higher dimension would

be sufficiently distinct, hence achieving classification accu-

racies up to 100 %.

Our experiments in this paper showcase a promising

method that uses videos for skill assessment for traditional

surgical tasks of suturing and knot tying. We believe that the

proposed technique can be used for motion quality assess-

ment in other types of data that have repetitive motion

patterns. For example, in RMIS, the same pipeline of video

processing could be used for skill assessment involving tasks

such as suturing and knot tying. Furthermore, the proposed

features for time series analysis could be used for skill assess-

ment using kinematic data in RMIS. However, in surgical
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Fig. 11 Sample scatter plots showing the distribution of the 3 skill

classes after projecting the selected features onto a two-dimensional

space using linear discriminant analysis (LDA). Left to right columns

show scatter plots for SMT to DFT, respectively. The top row plots were

obtained using k = 4 for Respect for Tissue OSATS criteria, whereas the

bottom row plots were obtained using k = 7 for Instrument Handling

OSATS criteria. All plots shown here were obtained from dataset-B.

The classification accuracy achieved in each case using all the selected

features is also given in the boxes within each plot

tasks such as cutting and dissection that do not involve repet-

itive motions, frequency-based features would probably be

unable to model the skill level of the surgeons.

Conclusion

In this paper, we presented a system for automated assess-

ment of basic surgical skill using video data. Videos of

surgical residents and nurse practitioners were classified

into different OSATS skill groups. We implemented and

compared three different feature types for skill assessment:

symbolic, texture, and frequency. These feature types were

evaluated on two diverse datasets. The results presented in

this paper clearly show that frequency features (DCT and

DFT) outperform the both symbolic and texture features used

on both datasets with average classification accuracy reach-

ing as high 98.7 %.
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