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Background

Defect detection is highly important to fabric quality control. Traditionally, defects are 

detected by human eyes. �e efficiency of this manual method is low and the missed 

rate is high because of eye fatigue. In the best case, a quality control person cannot 

detect more than 60–70 % of the present defects (Çelik et al. 2014b). Hence, an auto-

matic inspection system is necessary for textile industry. In the literature, fabric defect 

detection methods were categorized into six groups: statistical, spectral, model based, 

learning, structural, and motif-based (Ngan et al. 2011). Spectral and structural meth-

ods, as well as defect classification by neural networks, are still popular topics in this 

field. Spectral methods include Fourier transform, wavelet transform, Gabor transform, 

and so on. �e Fourier transform is the classic method for fabric analysis. However, 

Fourier transform was usually used with other approaches in the latest works (Schnei-

der and Merh 2015; Hu et al. 2015; Mohamed et al. 2014; As et al. 2013). Schneider pre-

sented an automatic method for plain and twill fabric detection by combining Fourier 

analysis, template matching and fuzzy clustering (Schneider and Merh 2015). �e sys-

tem proved to be robust and versatile as a 97 % detection accuracy could be achieved. 

An unsupervised approach for the inspection of periodic pattern fabric by applying 
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Fourier analysis and wavelet shrinkage was proposed (Hu et al. 2015). �e advantage 

of this method is that no reference image is needed. Wavelet transforms elicited much 

attention in the fabric detection field because of its good local time–frequency char-

acteristics (Zhu et  al. 2015; Li et  al. 2015; Hu et  al. 2014; Wen et  al. 2014). Wavelet 

methods perform well in defects with outstanding edges, but poorly in flat defects with 

smooth grayscale differences. Gabor filters are suitable for emulating the biological fea-

tures of human eyes and were employed in fabric detection (Ibrahim et  al. 2015; Hu 

2015; Bissi et al. 2013; Jing et al. 2014). However, given that Gabor filters perform fil-

tering of multi-scale and multi-orientation, which results in high computational com-

plexity, real-time requirements are difficult to meet. To decrease the computational 

complexity, the optimal Gabor filter is built via genetic algorithm, in which the filter 

is only performed at one scale and one direction (Hu 2015; Jing et al. 2014). In recent 

years, neural networks have also been utilized for fabric defect detection and classifica-

tion (Çelik et  al. 2014a, b; Furferi and Governi 2008). Furferi and Governi proposed 

an ANN-based method to detect and classify defects, according to 23 parameters 

extracted from each acquired image (Furferi and Governi 2008). �e advantage of this 

method is that no experimental thresholds are needed. In addition to the classic back-

propagation (BP) networks, an emerging neural network, namely, Pulse Coupled Neu-

ral Network, is also applied to identify the defect area on plain fabric (Song et al. 2008; 

Zhu and Hao 2013).

�ere may exist many types of defects in raw fabrics, such as loom fly, thin bar, broken 

end, etc. Furferi and Governi grouped these defects into three categories: dark and light 

area or point defects, dark and light localized defects and other defects (Furferi and 

Governi 2008). �e most common defects of warp-knitting fabrics are linear defects of 

vertical orientation caused by the broken end of warp yarns (Du et al. 2012), which are 

shown as Fig. 1. �e defects will become larger and larger if the warp-knitting machine 

is not stopped. So the target of an online vision inspection system is to detect defects 

and stop the warp-knitting machine as early as possible once defects appear on fabrics.

�ough many researchers have focused on fabric defect detection in past years, it is 

still difficult to inspect defects of warp-knitted fabrics in practice due to the following 

Fig. 1 Common defects in warp-knitting fabrics
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reasons: (1) �e quality of images captured by smart cameras in a factory is not as good 

as that in the laboratory because it is affected by lighting variation, machine vibration, 

dust, electromagnetic interference and other factors. Generally, the illumination device 

is very essential for image acquisition quality in machine vision system. However, to save 

cost and installation space, there are no specific lightening units in our system except 

fluorescent lamps installed along the web. (2) �e typical defect caused by a broken 

yarn is not obvious, especially with the very thin yarn. All the above factors make defect 

detection is challenging in practice.

To deal with the difficulties, two issues are addressed in our study. First, Gabor filtering 

is performed on the images with specific parameters to enhance the image contrast. Sec-

ond, a parameter adaptive PCNN is employed to segment the images with high precisions.

�e other parts of this paper are structured as follows. �e first section presents the 

system architecture. �e second section proposes the fabric inspection algorithm. �e 

third section focuses on the experimental results and discussions. �e fourth section 

describes the actual operations. �e final section concludes the research.

System architecture

�e inspection system consists of smart cameras and an HMI controller. Smart cameras 

are powered by POE, and can be accessed from the HMI controller through local area 

network. Alarm messages will be sent to HMI once a camera has detected a defect, and 

then HMI will trigger AC contactor to stop the main motor of warp-knitting machine. 

�e system diagram is shown in Fig. 2.

In the past years, some machine vision systems have been developed to detect fab-

ric defects automatically (Çelik et  al. 2014b; Dorian et  al. 2012, 2014). �ese systems 

have similar architectures, which consist of industrial cameras, frame grabber, lighting 

unit and a computer. In contrast to the existing PC-based methods, the advantages of 

the embedded system are obvious, which include small size, easy to install, low power 
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Fig. 2 Automatic inspection system diagram



Page 4 of 12Li and Zhang  SpringerPlus  (2016) 5:765 

consumption, low cost, etc. In practice, multiple cameras are installed on the beam of 

warp-knitting machine. Each smart camera covers about 900 mm width of the web.

�e smart camera consists of a SOC processor, FPGA-based Image Processing (ISP) 

module, DDR memories, FLASH memories and GigE Ethernet interface. Figure 3 shows 

the hardware diagram of the smart camera.

  • ISP module: A low cost CMOS image sensor with 1920  ×  1080 resolutions is 

employed, and then the raw data output from CMOS sensor are processed by an 

FPGA processor. After processing, image data are transferred into the memory of 

SOC in YUV422 format.

  • SOC processor: TMS320DM6467 is chosen as host processor, which has an ARM9 

core and a DSP core of 1 GHz. �e detection algorithm is running on the DSP core 

and other tasks are implemented on the ARM9 core.

  • GigE port: �e Ethernet port is included for information interaction between smart 

cameras and HMI controller.

  • Memory: �ere are128  MB DDR memories and 64  MB FLASH memories on the 

board.

Hybrid method for fabric defect inspection

Fabric inspection algorithm is the key component of the smart camera software. �e 

algorithm consists of two phases: image enhancement and image segmentation. Image 

enhancement is implemented by Gabor filtering with optimal parameters, which makes 

the defects more obvious. In this paper, a parameter adaptive PCNN is utilized to seg-

ment defects layer by layer.

Gabor �lters

A group of multi-scale and multi-orientation Gabor filters are suitable to characterize 

the texture features of the fabrics. So Gabor filters are widely used in the field of fabric 

defect inspection. �e real part of the 2-D Gabor function is defined as:
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Fig. 3 Hardware diagram of smart cameras
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where f is the sinusoidal wave frequency, θ is the rotated orientation, σx and σy are vari-

ances along the x-axis and y-axis respectively.

�e traditional Gabor filters perform filtering at multi-scale and multi-orientation, 

which result in high computational complexity. �e real-time requirements are difficult 

to meet with our system. To simplify the Gabor filter operation, we only perform filter-

ing at a specific orientation and scale. In fact, the outputs of Gabor filters are greatly 

affected by the parameter θ when applying Gabor filters to warp-knitted fabrics. Figure 4 

gives a group results corresponding to different orientations. Figure 4a is the raw fab-

ric image. �e orientations of (b), (c), (d), (e), (f ) and (g) are 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ 

respectively. To demonstrate the effect of Gabor filter, three “handcrafted defects”, i.e., 

horizontal defect, vertical defect and diagonal defect, were added into the raw fabric 

image manually. It is clearly seen that the vertical texture defect is enhanced significantly 

by Gabor filtering with 90◦ orientation, which is shown as Fig. 4e. In contrast, the hori-

zontal defect is enhanced by Gabor filtering with 0◦ orientation and greatly suppressed 

by Gabor filtering with 90◦ orientation. Since the defects of warp-knitting fabrics are 

usually of the vertical linear shape, so the Gabor filtering is only performed at the 90◦ 

orientation in our scheme.

We also found that the scale parameter doesn’t have much affection on texture fea-

tures of warp-knitted fabrics. So only one scale is used in our method. In contrast to 

multi-scale and multi-orientation methods, our scheme can decrease the computation 

complexity, meanwhile remain the advantage of Gabor filters.

Pulse coupled neural network

PCNN model, inspired by synchronous dynamics of neuronal activity in cat visual cor-

tex, was developed by Johnson et al. on the basis of Echorn’s cortical model (Eckhorn 

et al. 1990; Johnson and Padgett 1999). Nowadays PCNN becomes the most potential 

method in image processing (Chen et al. 2011). In this study, we use a simplified version 

of PCNN (Zhu and Hao 2013) to decrease the computational complexity while remain-

ing the advantages of cortical model. �e simplified PCNN model is shown in Fig. 5.

PCNN is 2-D networks with a single layer. Each neuron of PCNN is corresponding to 

a pixel when applying PCNN to image processing. Suppose the image to be processed is 

Sij, n is the iteration number, PCNN in Fig. 4 can be described as follows:

(2)
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Fig. 4 Results of Gabor filtering at different orientations. a The raw fabric image, b Gabor filtering with 0◦,  
c Gabor filtering with 30◦, d Gabor filtering with 60◦, e Gabor filtering with 90◦, f Gabor filtering with 120◦,  
g Gabor filtering with 150◦
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where F(n) is the feeding input, W is the link weights which represents the impact of the 

around pixels, Y(n) is the binary state of each neuron, L is the linking input which is a 

convolution of W and Y(n). �e internal activity term U(n) is the image pixel value mod-

ulated by the linking input. E(n) is the dynamic threshold of neurons. Once the internal 

activity U(n) is larger than the E(n), the neurons will fire and the sates in Y(n) will update 

to ‘1’. After firing, the dynamic threshold E(n) will increase suddenly, which makes the 

neurons couldn’t fire in a period.

�ere are four parameters in the simplified PCNN model: W, β, �t and Ve. W is the 

link weights which represent the impact of the around pixels. Usually W is defined as the 

inverse of Euclidean distance. β at the linking strength in the linking input. A larger value 

of β means a neuron is affected strongly by its neighboring neurons. �t is the decay step 

inverse to segmentation precision. A small value of �t could get a better segmentation 

precision. Ve is the amplitude of dynamic threshold E(n). Parameter setting is crucial to 

PCNN. Song proposed a learning method to determine optimal parameters from defec-

tiveless reference images (Song et  al. 2008). Chen et  al. attempted to build a relation-

ship between dynamic behaviors of neurons and the static properties of the image, and 

proposed an automatic parameter setting method based the relationship (Chen et  al. 

2011). Zhou proposed an automatic setting method based on the relationship between 

the dynamic threshold and the average of the firing area (Zhou et al. 2014). Herein, we 

present an adaptive setting method described as follows:

(4)
Lij(n) =

∑

k ,l

wijklYi+k ,j+l(n − 1)

(5)Uij(n) = Fij(n)(1 + βLij(n))
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Fig. 5 A simplified PCNN model
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where N is the total iteration number. In addition to these parameters, the iteration 

number Nbest with optimal segmentation should also be considered when using PCNN 

in defect detection. Researchers have developed some criterions to determine the opti-

mal iteration number, such as Maximum Entropy, Minimum Cross Entropy, Maximum 

Variance of Inter-class and Minimum Variance of Intra-class. However, these criterions 

couldn’t obtain satisfied segmentation results. We propose a novel criterion based on 

firing time sequences, which is successfully used in defect detection of warp-knitted fab-

rics. �e firing time sequences T (n) is defined as the number of fired neurons of itera-

tions. �e best iteration number is determined when T(n) increases suddenly, and the 

criterion is defined as:

�e defects can be segmented out from the fabric images accurately by PCNN itera-

tions. After iterations we can get N frames of intermediate binary images. At last, the 

Nbest-th frame image is chosen as the final segmentation result. Suppose S is the input 

image, the iteration procedures are described as follows:

Initialize Y(0), E(0), W, β, ∆t and Ve
for i = 1 to N do

   F(i) ← S
   L(i) ← W * Y(i − 1)
   U(i) ← F(i)(1 + βL(i))
   Y(i) ← U(i) ≥ E(i − 1)
   E(i) ← E(i − 1) − ∆t + Ve Y(i)
   T(i) ← sum(Y(i))

end for

Determine Nbest according to formula (11)

Hybrid inspection method

In this section, a hybrid detection method combing Gabor filters and PCNN is pre-

sented. �e flowchart of the method is shown in Fig. 6.

First, images captured by smart cameras are enhanced by Gabor filtering with 90◦ ori-

entation. Second, defect areas are segmented by PCNN with adaptive parameter setting. 

Finally the optimal segmentation is determined according to firing time sequences, and 

noises are removed by morphology filtering.

(10)�t =

Ve − Vaver

N

(11)Nbest = n, T (n + 1) − T (n) ≥ 2T (n)

Test 
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Fig. 6 Flowchart of hybrid detection algorithm
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Experimental results and discusses

To evaluate the performance of the proposed hybrid method, we compared it with 

Gabor and wavelet methods. �e testing code was implemented under MATLAB ver-

sion R2012B. �e testing computer was configured with an AMD Athlon processor with 

3.01 GHz frequency and 3.25 GB memories.

�e available detection area of web on the warp-knitting machine is limited to a nar-

row rectangle. In the experiment, two images (labeled as Image  1 and 2) captured by 

smart cameras are used as test pictures, which are shown as Fig. 7a. �e vertical linear 

defect is very unsharp. As mentioned before, the defect area is enhanced by Gabor filter-

ing at specific orientation and scale. In this experiment, the parameters of Gabor filter 

are set as follows: σx = 1.0, σy = 1.7, θ = π/2, f = 5.5. �e filtering results of Gabor are 

shown as Fig. 7b. From Fig. 7, we can see that the defects are really enhanced.

Next, the processed image is segmented by PCNN. Ve and �t are determined accord-

ing to (8)–(10). �e total iteration number N  =  20, W =





0.5 1 0.5

1 0 1

0.5 1 0.5



, β = 0.1. �e 

image in Fig.  7b is segmented layer by layer, so we can obtain 20 frames of binary 

sequences. Figure 8 shows part of the intermediate segmentation results of Image 1.

How to choose the best result among the 20 iterations? Herein we propose an opti-

mal criterion based on the firing time sequences of PCNN. Firing time sequences are 

the numbers of fired neurons of iterations, which include the temporal information of 

the image segmentation. �e firing time sequence of Image 1 is shown as Fig. 9a. We 

can determine the best iteration number of Image 1 as 11 according to the formula (11). 

Figure 8 shows the segmentation results of the 10-th, 11-th, 12-th and 13-th iterations 

respectively. We can see that the 10-th segmentation is incomplete, while the 12-th and 

13-th results include too many noises. So the 11-th segmentation is the best result. �e 

firing time sequence of Image  2 is shown as Fig.  9b, and the best iteration number is 

determined as 17. However the intermediate binary results of Image 2 are omitted here 

to save space.

Figure  10 is the comparisons between the wavelet method, Gabor method and the 

proposed hybrid method. DB4 wavelets are employed to perform 2-level decomposition 

of the fabric images. Because the broken end defects are vertical linear, so the vertical 

sub-image at composition level 2 is used for defect detection. Figure 10c are the binary 

thresholding and morphology filtering results of the wavelet sub-image. To demonstrate 

the significance of the proposed hybrid method, Gabor only method is used for com-

parisons. Figure  10d are the binary thresholding and morphology filtering results of 

a                             b 

Image 1: 

Image 2: 

Fig. 7 The effect of Gabor filtering. a Test images, b results of Gabor filtering
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the Gabor filtering image. Figure 10e are the binary images segmented by the proposed 

hybrid method. Comparing to the ground-truths of Fig. 10b, we can see that the detec-

tion results of hybrid method are more accurate than other methods.

Further, a group of metrics, including accuracy (ACC), true positive rate (TPR) and 

positive predictive value (PPV), is employed to quantify the detection accuracy (Li et al. 

2016). �e definition of ACC, TPR, PPV are described as (12)–(14)

a 

b 

c 

d 

Fig. 8 Intermediate segmentations of Image 1 by PCNN. a Result of the 10-th iteration, b result of the 11-th 
iteration, c result of the 12-th iteration, d result of the 13-th iteration

Fig. 9 Firing time sequences. a Results of Image 1, b results of Image 2
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where true positive (TP), true negative (TN), false positive (FP), false negative (FN) are 

labeled in Fig. 11.

�e ACC, TPR and PPV metrics of the three methods are listed as Table 1, and the 

best results are marked in italics. We can see that the hybrid method is significantly bet-

ter than the wavelet and Gabor methods, and get the highest scores of all testing items. 

Actual operations

�e proposed hybrid method is suitable to run on an embedded system because of the 

low computation. �ere are no complex operations in the simplified PCNN model. We 

have developed a prototype system installed on a 210 in. warp-knitting machine. �e 

system consists of six smart cameras and an HMI controller. �e processing speed is 

about 5 frames per second, which can meet the real-time detection demands of warp-

knitting machine. �e actual operations proved the system is effective with a detection 

accuracy of 98.6 %.

(12)ACC = (TP + TN )/(TP + TN + FP + FN )

(13)TPR = TP/(TP + FN )

(14)PPV = TP/(TP + FP)

a 

b

c

d

e 

Image 1 Image 2 

Fig. 10 Detection results comparisons of wavelet (wavelet + binary thresholding + morphology filtering), 
Gabor (Gabor + binary thresholding + morphology filtering) and the hybrid (Gabor + PCNN + morphology 
filtering) methods. a The original images, b the ground-truths labeled by manual, c segmentation results of 
wavelet method, d segmentation results of Gabor method, e segmentation results of hybrid method
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Fig. 11 Definitions of TN, FN, TP and FP
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Conclusions

�is paper presents an automatic fabric inspection system that consists of smart cameras 

and an HMI controller. �e system can be applied to defect inspection for warp-knitting 

machine. �e key part of the system is the hybrid inspection algorithm combining Gabor 

filters and PCNN with adaptive parameter setting. �e performance of the system was 

verified on a warp knitting machine successfully. Future work will investigate the effec-

tiveness of the proposed method for defect inspection of more complex fabrics.
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