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Abstract 
 

This paper describes an automated visual surveill ance 
system that detects suspicious human activity in a scene.  
The system is designed to: 1) detect and track people in the 
scene, 2) recognize the “ normal” activities in the scene, 
and 3) detect anomalous activity by finding sufficiently 
large deviations from the normal activity patterns.  The 
stochastic time-sequence recognition framework of the 
Hidden Markov Model (HMM) forms the basis of activity 
recognition and anomaly detection.  We have implemented 
the system to monitor an office corr idor in real-time using 
a Pentium III machine running Windows 2000.  The results 
show that the system correctly classifies examples of 
normal activities in the corr idor and identifies a mock 
break-in attempt as suspicious activity. 
 
 
1. Introduction 
 
Automated visual surveill ance is becoming an increasingly 
important area of research in computer vision.  CMU’s 
Video Surveill ance and Monitoring (VSAM) project [2] 
and MIT AI Lab’s Forest of Sensors project [7] are 
examples of recent research efforts in the field.  Interest 
has been motivated by commercial applications such as 
surveill ance of airports and off ice buildings, as well as 
military ones, such as monitoring the battlefield to 
automaticall y collect strategic information.  Conventional 
visual surveill ance systems have limitations that make 
them less than ideal for many applications.  For instance, 
recording the surveill ance video on tapes can provide 
evidence only after a security breach has occurred.  The 
alternative of dedicating a security worker to watch the li ve 
video is expensive and prone to human error.  Automated 
visual surveill ance overcomes these limitations by 
detecting suspicious activity as it happens, without human 
effort. 
 
     Our approach to automated visual surveill ance is to 
classify the normal activities using a set of discrete Hidden 
Markov Models (HMMs), each trained to recognize one 
activity, and label the unrecognized activities as unusual.  

In recent years, HMMs have become popular in computer 
vision as an activity recognition algorithm.  They have 
been used to recognize hand gestures in sign language [6], 
facial expressions [4], and different tennis strokes [8].  
They have also been used in visual surveill ance systems 
for classifying activities in an off ice room [1], and in a 
parking lot [1, 3].  A common feature of these applications 
is the use of HMMs to generate high-level inferences with 
only relatively coarse, low-level sensory data, such as blob 
features.  This ill ustrates an important advantage of HMMs 
– combining coarse, low-level sensory data with the prior 
knowledge of the data’s statistical characteristics learned 
by HMMs, avoids the need to compute high-level 
representations of the data using expensive image 
processing algorithms. 
 
     The paper is organized as follows: section 2 describes 
the architecture of the surveill ance system.  Section 3 gives 
the results of the system’s performance, and section 4 
presents the conclusions of the paper. 
 
2. System’s Architecture 
 
2.1. Hardware Component 
 
The surveill ance system uses an ordinary netcam to obtain 
video of the off ice corridor under surveill ance.  The 
netcam has a built -in HTTP server from which the video 
can be downloaded as hardware-compressed JPEG frames 
via the internet, as shown in figure 1.  The use of netcams 
makes the system simple and inexpensive, and allows great  
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The netcam transmits JPEG frames to the surveill ance system 
via the internet. 
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flexibility for adding or removing cameras from the 
system.  More cameras can be added to the system by 
simply connecting them to the internet.  The physical 
distance between the camera and the computer running the 
system can be very large, since they can be connected at 
any two arbitrary points on the network.  In addition, it is 
possible to distribute the computer vision processing 
performed by the system over multiple, cooperating 
computers communicating through the internet.  The 
principal drawback of a netcam is its low frame rate, which 
is limited to a maximum of about 2 frames per second due 
to the delay in compressing and uncompressing JPEG 
frames, and the latency of the internet. 
 
2.2. Detecting and Tracking People 
 
The first step in recognizing human activities is to detect 
the people in the scene.  Since the background of the office 
corridor is relatively constant in time, background 
subtraction is used for detecting people.  The background 
model Bn(x,y) is manually initialized to the average of five 
consecutive video frames taken without anyone present in 
the corridor.  The threshold function Tn(x,y) is initialized to 
50 at all pixel locations.  Then, a pixel in the frame In(x,y) 
is labelled as foreground if it satisfies the condition 
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The background model and the threshold function are 
updated every frame using temporal averaging: 
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where α is a constant that determines how fast Bn(x,y) and 
Tn(x,y) adapt to changes in the scene.  The output of the 
background subtraction is represented as a binary mask 
that labels background pixels as black and foreground 
pixels as white.  Morphological dilation is applied on the 
mask to connect together fragmented foreground regions.  
The foreground pixels are then clustered together using a 
connected components algorithm to generate a list of blobs 
detected in the current frame.  Blobs that are either too 
small or do not have approximately the same aspect ratio 
as the human body are ignored. 
 
     The coordinates of the blob’s center of mass, average 
colour, and height are the features used for blob 
correspondence across frames.  At every frame, the match 
score is computed between all possible pairs of existing 

blob tracks and newly detected blobs.  Blobs are assigned 
to the tracks in increasing order of match score (a lower 
score means a better match), with a maximum score 
constraint enforced to avoid making arbitrarily bad 
matches.  Newly detected blobs that are not matched with 
any existing track are assigned new tracks.  Existing tracks 
that remain unmatched with any blob for a fixed number of 
seconds are deleted. 
 
2.3. Activity Recognition Using HMMs 
 
The detection and tracking modules provide time sequence 
data on the blob features as the blobs are tracked in the 
scene.  The recognition module then uses this data to 
classify each blob’s  activity with discrete HMMs.  The 
blob feature vector consists of the center of mass 
coordinates of the blob, its direction of motion (i.e. moving 
towards the camera, away from the camera or stationary), 
and height.  Since the HMMs require a discrete, symbolic 
representation of the feature vector data, each feature 
vector is converted into a discrete symbol using vector 
quantization.  Codebook vectors of the quantizer are 
computed from a set of training vectors using a k-means 
algorithm.  Once trained, the quantizer maps a vector to the 
index of the nearest (in a Euclidean distance sense) 
codebook vector. 
 
     HMMs model discrete-time sequences as the output of a 
process involving stochastic transitions among hidden 
states at discrete time steps (figure 2).  The probability of 
transiting to any state depends only on the preceding state.  
In the case of a discrete HMM, an observable discrete 
symbol is stochastically output by the current hidden state 
at each time step, forming a time series of symbols.  
Suppose a discrete HMM has N states { }NqqqQ ,,, 21 �=  

and M output symbols { }MvvvV ,,, 21
�= .  Denote the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. An example of a full y-connected 3-state, 2-output discrete 
Hidden Markov Model. 
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state at time step t as st.  Then the parameters of the HMM 
are fully specified by the triplet { }πλ ,, BA= , where  
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is the N x N state transition probability matrix, 
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is the M x N state output probability matrix, and  
 

)}(|{ 1 iii qsP ==≡ πππ                                    (6) 
 
is the initial state probability vector. 
 
     To recognize an observed symbol sequence 

TOOOO �21=  of length T time steps, the probability of 

the sequence for a given HMM λ is computed using Bayes’ 
rule as P(O|λ).  This probability is evaluated using the 
forward algorithm [5], given as  
 

                                
 
where the forward variable αt(i) is defined as 
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     To train a HMM to recognize the observation sequence 
O, the parameter set λ that maximizes P(O|λ) must be 
estimated from the training data.  The Baum-Welch 
algorithm [5] is used to iteratively obtain an estimate of λ 
that is guaranteed to locally maximize P(O|λ).  Define the 
backward variable βt(i) as 
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Then, given an estimate of λ, a better estimate λ′ can be 
obtained as follows: 

      
 
Learning converges to a local maximum of P(O|λ) when λ′ 
= λ. 
 
     The activities in the office corridor are recognized using 
a set of HMMs, each trained to recognize one activity.  The 
probability of the observation sequence is computed for 
each HMM, and the activity is recognized as the one 
represented by the HMM with the highest log likelihood.  
However, if the log likelihood is below a minimum 
threshold for all the HMMs, then the activity is classified 
as suspicious. 
 
3. Results 
 
3.1. Detection and Tracking Results 
 
Figure 5 shows an example of the surveillance system 
detecting and tracking a person in the office corridor.  
Background subtraction properly segments the people in 
the scene most of the time.  However, strong shadows are 
often misclassified as foreground, creating erroneous blobs 
and distorting the appearance of legitimate blobs.  The 
histogram in figure 3(a) shows the number of people 
tracked in the corridor at various times during one day.  
The paths taken by the people are shown in figure 3(b).   

 
(a) 

 
(b) 

Figure 3. (a) Histogram of the number of people in the corridor during 
various times of the day, (b) the paths taken by the people. 
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These results suggest that the activities in the scene have 
spatial and temporal patterns that can be characterized 
statistically, and qualitatively justify the use of a statistical 
pattern recognition technique such as the HMM to learn 
those patterns. 
 
3.2 Activity Recognition Results 
 
The most common activities in the corridor are entering 
and exiting a room.  Therefore, we trained two HMMs to 
recognize people entering and exiting one of the rooms in 
the corridor (the procedure could be repeated for the other 
rooms also, although it was not done here).  The training 
was done offline using the Baum-Welch algorithm with 15 
training sequences for each activity.    10 states were used 
for each HMM, and a quantizer with 7 codebook vectors 
was computed from the training data.  The learning curves 
for the two HMMs (figure 4) show how the log likelihood 
of each activity improves for the corresponding HMM as 
training progresses.  In both cases, the Baum-Welch 
algorithm reaches near convergence within about 10 
iterations, and then slowly approaches the final 
convergence point. 

 
(a) 

 
(b) 

Figure 4. Learning curves show how the log likelihood of a sequence for 
(a) entering the room and (b) exiting the room improves as the 
corresponding HMM’s training progresses.  

     After training, the surveillance system was used to 
recognize real-life examples of a person entering and 
exiting a room, as well as a mock break-in attempt.  
Sequences showing a person entering and exiting the room, 
and the break-in attempt are given in figures 6-8.  Table 1 
shows the likelihood of each sequence for the two HMMs. 

 

Table 1. Log likelihood results for entry, exit and break-in sequences 

Sequence Log likelihood 
for entry HMM 

Log likelihood 
for exit HMM 

Entering room -63.05 -∞ 
Exiting room -∞ -763.96 

Break-in -∞ -∞ 
 

In all three cases, the system correctly classified the 
observed activity.  For the sequences showing a person 
entering and exiting the room, the HMM corresponding to 
the activity produced a finite likelihood value while the 
other one gave zero likelihood.  For the break-in sequence, 
both HMMs produced zero likelihood, thus indicating that 
the activity is unrecognizable and possibly suspicious.  As 
a result, a security alert was displayed on the screen of the 
computer running the surveillance system (see figure 8). 
 
4. Conclusions 
 
This paper has described an automated visual surveillance 
system that classifies human activities and detects 
suspicious events in a scene.  We have implemented the 
system to monitor the activities in an office corridor in 
real-time.  The system detects people in the corridor using 
background subtraction, and tracks them to obtain time-
sequence data on each person’s motion, which is then used 
for activity recognition.  Normal activities are classified 
using a set of discrete HMMs, each trained to recognize 
one of the activities.  Outlier activities with low likelihoods 
for all the HMMs are classified as anomalous. 
 
     The results demonstrate that the HMM-based approach 
to activity recognition can be effective.  Our system 
correctly classified normal activities such as a person 
entering a room and exiting a room, and identified a mock 
break-in attempt as suspicious.  However, the system’s 
false alarm rate is high since it can recognize only two of 
the many possible normal activities.  This problem can be 
solved partially by expanding the set of recognized 
activities.  As our future direction of work, we are 
considering the use of unsupervised learning techniques to 
automatically discover the normal activities. 
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Figure 5. A sequence showing the detection and tracking of a person in the corridor. 
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Figure 6. The surveill ance system recognizes a person entering a room. 
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Figure 7. The surveill ance system recognizes a person exiti ng a room. 
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Figure 8. A mock break-in attempt results in a security alert message. 


