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1. 

1. Introduction. 

AUTOMATH is a language intended for expressing detailed mathematical 

thoughts. It is ~ a programming language, although it has several features 

in common with existingl programming languages. It is defined by ~ grammar, and 

every text written according to its rules, is claimed to corre~pond to correct mathe-

matic~! It can be used to express a large part (see 1.6) of mathematics, and 

admits many ways for laying the foundations. The rules are such that a com-

puter can be instructed to check whether texts written in the language are 

correct. These texts are not restricted to proofs of Single theorems; they 

,can contain entire mathematical theories, including the rules of inference 

used in such theories. 

AUTOMATH was developed in 1967-1968 at the Technological University, 

Eindhoven, The Netherlands. The author is indebted to Mr. L .S. van Benthem 

Jutting for very valuable help in trying out the language in several parts 

of mathematics, and both to him and to Mr. L.G.F.e. van Bree for the1r assis

tance with the programming (in ALGOL) of procel;lsors by means of which books 

written in AUTOMATH can be checked. 

1.1 Texts written in AUTOMATH can be step - by - step translations of ordinary 

mathematics. In order to obtain this translation, the organization of a given 

piece of mathematics can be left intact, but the details have to be presented 

meticuously; "after that, the coding into AUTOMATH is a matter of routine. One 

of the features of the language is that the coding does not require more effort 

if we proceed further into mathematics. This is achieved by means of an abbre= 

viating system Which is essentially taken from existing mathematical habits. 

1.2 Properly speaking, the rules of AUTOMATH involve little more than the art 

of substitution. A text written in AUTOMATa consists of a sequence of lines. 



1.2.1 

2. 

In each line a new name is introduced, and (if it is not declared to indicate 

a primitive notion or a new variable) is expressed in terms of names intro

duced previously (this expression is called the "definitionll of the name). The 

names can correspond to various things in ordinary mathematical presentation: 

they can correspond to mathematical objects (and can be considered to be the 

name of the object), to variables, to propositions, to assertions, axioms, 

assumptions, definitions, theorems, formula numbers, etc. 

In every line there is also an indication as to the nature of the thing 

denoted by the name. This we shall call the ''categoryll. This category is usual

ly a previously introduced name or an expression in terms of previously intro

duced names, but it can also be the symbol "~If" In the latter case the name 

introduced in the line is the name of a catego~, and can be used later as ~e

gory-of new names. 

1.3 The grammar of AUTOMATH contains facilities for expressing functional 

relation. If two categories are available, it admits to build a third category 

consisting of the mappings of the one category into the other. It also contains 

rules for the art of substitution concerning these mappings, and for expressing 

mappings by means of bound variables. 

One thing seems to be unusual but neverthel ess useful: the grammar con

iains the possibility to speak of a mapping that attaches, to every object x 

of a given category a, an object of a category ~(x), that is, a categor,y de

pending on the object x. 

1.4 The language can be used in different ways, especially since it is not 

tied to any particular logical system. Not even notions like "theorem", "proof", 

II proposition" , "definitionlt occur in the gra.rnma.r of the language; they can be 

introduced by the user of the language in the way he prefers.- , 



1.4.1 Quoting an out - of - the - way example, we have the possibility to talk 

about points in a plane, to fix a number of points as llgivenll
, and to talk 

about other points as 'bonstructible by ruler and compass, using the given 

points to start fromlt
• To this end we can introduce, for any point P, a ca te

gory "CONSTR(P)", which we may visualize as the class of all constructions 

3. 

for P, if any. Now if we have a construction for P, we can state that fact in 

a single line. The new name introduced can be used later as a reference to the 

fact that P is constructible; its definition in terms of previous names indi

cates a particular contruction; and finally, the category isC ONSTR( p). 

In complete analogy to this, we have the possibility to talk about propo

sitions instead of points, and proofs instead of constructions. If we call the 

corresponding category TRUE(P), then any line having TRUE(P) as its category 

states that we have a proof for P. That is to say, it asserts P if the name 

of that line has a proper definition, If, on the other hand, the name indicates 

a new variable, then the line expresses the assumption that P is true, and if 

the name 1s a new primitive notion, then the line expresses the axiom that P 

is true. We refer to 2.4 for an example. 

1.5 For every line it is vital to know the context in which the line has its 

meaning. This context is exposed by stating the name of the last introduced 

variable relevant for that line. This name is called the "indicatorl1 of the 

line. The way how this is done, opens the possibility to write, in some chap

ter, lines belonging to the context of a previous chapter, in spite of the 

fact that the line contains material deve~pedin the later chapter. , 

1.6 As to the question what part of mathematics can be written in AUTO~£TH, 

it should first be remarked that we do not possess a workable definition of 

the word "mathematics". Quite often a mathematician jumps from his mathematic

al language into a kind of metalanguage, obtains results there, and uses these 

resul ts in his original context. It seems to be very ham to create a single 



language in which such things can be done without any restriction_ Of course 

it is possible to have a language in which discussions about the language it

self can be e~ressed, but that is not the difficulty. The problem is to extend 

a given text T1 by means of a metalingual discussion T2 (T2 talks about T
1

), 

and to put T2 in the context of T
1

, instead of creating a new context where 

both T1 and T2 can take place. For, if T1 is placed in a new context, it is 

not the same text any more; anyway, it is not available at the places where 

the old T1 was available. 

In AUTOMATH it is not strictly impossible to mix language and metalangu

age, but it seeI9~ that such possibilities have to be "frozen" somehow .. It seems 

impossible to write one big book containing all mathematics such that we never 

regret the way how we began. If at a later stage we divise, and want to legi

timate, new ways to inject metalingual results into the existing text, we may 

have to rewrite the book or even to redefine the language. 

1 .. 7 The author feels that very little is essentially new in AUTOMATH, and 

that it just expresses the way how mathematicians have always been writing 

and talking, at least as long as they were presenting things step-by-step. 

Mathematical inventive thinking, however, usually does not proceed in the 

same fashion, driven as it is by things like intuition, inspiration, insight, 

wishful thinking,tradition, taste, ambition. 

1.8 In one respect AUTOMATH may seem to deviate from existing mathematical 

habits. To every name it attaches a single category. So if we say that "5 is 

an integer" and that "5 is a rational number" the words iiinteger", "rational 

number" carmot both refer to a category to which 5 belongs. We can escape by 

saying that 115 is an integer", that "5* is a rational number", and that there 

is an embedding of the integers into the rational numbers that sends 5 into 5*. 

This is safe but troublesome. An entirely different way is to translate "5 is 



1.8.1 

1.8.2 

an integer" into a line expressing that we have a proof for the proposition 

5E Z, where Z stands for the set of integers. If we take this point of view 

we can translate both· 11 5 is an integerll and II 5 is a rational number" that way, for 
~. ~ \ 

the word "is" does no longer refer to inclusion of something in a given cate-

gory. The categories involved here are, for example, "element" (for "5"), ''setll 

(for "Zit), "proposition" (for "E"), "TRUE" (for the proof of 5E z). Note that 

the set-theoretical interpretation of things like "let n be an integer" requires 

two lines instead of one, viz. the two lines describing the sentences "let n be 

an element", ''let p be a proof for nE Z". 

Present-day mathematicians seem to prefer set-theoretical terminology, 

in the conviction that everything is a set. That is, they claim that almost 

eVerything in . mathematics belongs to one and the same category, viz. the cate-

gory !lset". In spite of the simplicity of this point of view it must be said 

that it of'ten gives a quite unnatural presentation. I:tj.s certainly very un-

:na tural to cons:ider things like propositions, classes, cOJ\lstructions and. proofs 

-.----.-~--

, 

as sets. AUTOWJATH leaves its users free to introduce the categories they prefer. 

As we remarked in the beginning of 1.8, categories are unique. Actually 

there is an algorithm that derives, by repeated substitution, the category 

of any expression occurring in the text. There seems to be little use in 

trying to say in AUTOMATH that an expression E is not of category a, since 

whenever we talk about E there is not any doubt as to its category. 



2. Infonnal introduction into AUTOMATH. 

2.1 Before we give a formal description we shall sketch some of the aspects 

of AUTOMATH in an informal way_ 

Assume that, in the text prior to the lines we are going to discuss 

presently, the categor,y "nat" (for natural number) was introduced. We now 

want to introduce the notion of product, although we do not bother about the 

properties of the product. We write 

o a 

a b 

:= 

:= 

b prod := PH 

nat 

nat 

nat 

The indicators are O,a,b; the names a,b,prod, the categories are nat,nat,nat. 

The indicator 0 s~s that nothing is assumed, no variables are valid at that 

point. In the second line, the variable a is considered a known quantity, in 

the third line both a and b are known. The structure is indicated by the ver

tical bars, describing the validity interval for a and b, respectively. These 

bars are drawn in order to make it easier to get a quick survey of the text. 

They do BQi belong to the language. 

6. 

The name prod is not defined in this text; it is introduced as a primitive 

notion (PH). It would not make a difference for our present discussion if it 

were defined somehow. 

We now want to define the square of a number. We w:ri te 

o 

c 

c := 

square := prod(c,c) 

nat 

nat 

Since we ~ent back to indicator 0, the word prod has lost its meaning. But i£ 



we have two valid expressions for na. turaJ.. numbers, u and v, say, then prod (u, v) 

is a legitimate expression, and its category is nat. Hence prod(c,c) is legi-

timate if c is legitimate. Note that square stands for the square of c as long 

as c is "alive" as a variable. We proceed by writing 

c I cube :- prod(c,square) nat 

c Id :- square(square) nat 

0 e :- nat 

e f : ... d(cube(square(e))) nat 

In the definition of cube we do not have to say that square is the square 

of c. In the definition of f, however, it would have been unacceptable to write 

cube(square), since square itself has no meaning at that point. Note that d in-

dicates the square of the square of c, and that f indicates the 24-th power of e. 

2.2 Let us be a little bit more precise about our abbreviation habits. Suppose 

that P1, ••• ,Pn have been introduced consecutively as variables, that is, P2 has 

P1 as indicator, ••• , p has p 1 as indicator. Moreover let q be introduced by 
n n .. 

some expression l: (which might be PN) at indicator p • If at a later stage we 
n 

use q, we can only do this by providing n expressions, l:1, ••• ,l:n' say, for 

P1 , ••• ,P
n

, which have to be of the right category. But quite often it happens 

that a number of the p. are still valid variables, and that some of the first 
l. 

l:ls are just the corresponding piS, like 

In that case we may omit a number of pIS on the front. That is, we may write 

q(P2,···,Pk '~+1,···,l:n) or q(P3,.··,Pk ' ~+1,···,l:n)'···' or q(l:k+1,···,l:n) 

Accordingly, if P1, ••• ,Pn are all valid, we may abbreviate q(P1, ••• ,Pn) as 

q(P2' ••• 'P ), ••• ,q(p ), or even as q. There cannot be any confusion, for q needs 
n n 

n arguments, and if some are lacking, we supply extra p's, starting with P1'P2, •• 

at the front. 



8. 

2.3 Although our description is far from complete, and calls for a feeling 

for existing habits in mathematical notation, the reader may see from it how 

functional relationship can be handled. That is, as long as a functional rela-

tionship is explicitly exhibited. If we want to assume the existence of a funct-

ional relationship, or if we want to prove someth:ing about all mappings of a 

given type, then we have a metalingual problem: "assuming we have a piece of 

text looking like this, can we add a line looking like tha t?" • 

At this stage we decide to build extra facilities to describe functional 

relationship. We introduce the right to oreate bound variables, and we agree 

to write the mapping c .... c
2 

as 

[x, nat ] square(x) 

which indicates, in this order, the variable's name, the domain, the value. We 

prefe:r-_th:is no-tation over Church f s lambda sybolism since we have to lay so much 

stress on the categories. The category of the above expression will be written as 

[x,nat ] nat. 

The x here seems superfluous, but the notation is divised for situations where 

the range depends on the variable. 

Let us call the mapping "squaringlt andwri te 

o squaring := [x, nat ] square(x) [x,nat] nat. 

-We can use the category [x,nat]nat in order to introduce new mappings. For 

e:xample, we can write things like 

o g :- nat 

g Ih := [x,nat] nat 

in order to express: let g be a natural number, and let h be a mapping of the 



natural numbers into the natural numers .. We now want to express the effect that 

h has on g, i. e. what is customarily written as h(g). For reasons to be explain

ed just now, this is an ambiguous notation, and we agree to write {g}h instead. 

So we may write 

h i := {g}h nat 

h j := nat 

j k := [x,nat] prod(square(x),prod(i,j)) [x,nat]nat 

j 1 := {ilk nat 

h m : .. k(i) [x,nat]nat 

We elaborate this to this extent in order to display the difference between {ilk 

and. k(i). The first one means the product of j and the third power of the image 

of g under h, the second one is the mapping that sends each x into the produot 

of the square of x and the square of the image of g under the mapping h. 

2.4 As an example we describe how the axiom of induct,ion can be presented in 

AUTOMATH. For simplicity, it is detached from the other axioms for the natural 

numbers. 

We open our book by saying that we shall speak about oertain things oalled 

"propositions" or "booleans": 

o bool := PN 

Next we say that to any boolean there belongs a olass of proofs for that boolean, 

possibly empty. If b is a boolean, then this class is oalledTRUE(b). It seems 

slightly mystical what TRUE(b) represents, but we can take a pragmatic point of 

view: our way of asserting a boolean b is saying that there is a something in 

its truth class TRUE(b). So we write 



o b la bool 

b TRUE := PN 

Next we introduce the category of natural numbers, and the number 1 as a nat-

ural number. Both are primitive notions: 

o 

o 

nat 

1 

:= PN 

:... PN 

_tYJ?e 

nat 

We need, for any natural number, the successor of that number. This can be done 

in two ways which are entirely equivalent. We can define SUCC as a primitive 

notion of category [x, nat ]nat, but we may also write 

o n nat 

n succ := PN nat 

We can denote the successor of m by succ(m); in terms of SUCC it would be 

{m}SUCC. 

-We want to talk about a predicate, that is a mapping of the natural numbers 

10. 

into the booleans. So we write "let P be a predicate", and assume that it is true 

for the natural number 1 : 

o IP h: 

P lif:m 

[x, nat ]bool 

TRUE( {1 }p) 

Note that the predicate attaches to 1 the boolean {1 }p, and "if II denotes the 

assumption that this boolean is true. 'We next want to say that if P is true 

for m then it is true for its successor. We first abbreviate: 

if m := nat 

m := [u,TRUE( {m }p) ] TRUE({ succ(m)J p) 
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This says that once the number m has been fixed, DIffP is the category of mappings 

which attach, to any proof of {m} P,1 a proof of {succ(m)} P. Indicating something 

of category IMP amounts to the same thing as asserting the implication ({m} p) q 

=> ({succ(I!l)} )p" 

Let us now assume that this implication is true for all m. That is, we 

assume to have a mapping of the natural numbers into the corresponding impli

ca tion category. Going back to level 11 if" we write 

if assume := 

assume induction := PN 

[x,nat] JMP(x) 

[x,nat] TRUE({x}P) 

The last line contains the induction axiom. It says that assuming P is a pre

dicate, assuming {1}P is true, and assuming the truth of {m}P q {succ(m)}P 

for all m, then {x}p is true for all x. 

Let us now consider an application of this axiom. Assume we have, some

where fUrther on in the book, a piece of text like the one below. It is not 

written in full; if we WTite ...... we mean that the text contains some legiti

mate expression which we do not wish to discuss: 

0 h := nat 

h Q :::;:: · ... ., bool 

h when := TRUE(Q) 

when then := • •• ., e TRUE(Q(succ(h») 

0 also := • ••• II 
TRUE (Q(1 » 

0 r := ~ .... nat 

Under these circumstances we can prove that Q(r) is true. We can write it in 

a single line (which might be simplified by devoting other lines to definition 

of abbreviations): 

o now := {r} induction([x,nat] Q(x),also, 

[x,nat] [y,TRUE(Q(x)] then (x,y») TRUE (Q(r) 



The fact that the definition of "no~' is so complicated does not disturb 

us seriously, since we do not eA~ect to use it. It only matters that we do 
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have something in TRUE(Q,(r)). This amounts to saying that it is the result that 

counts, not the method. That iS9 when quoting aitheorem we do not have to quote 

the proof. Actually this is what theorems are for: short statements have to be 

remembered, long arguments can be forgotten. 



3. Formal description of AUTOMATH. 

3.1 In this chapter we shall describe four languages, to be called LONGPAL, 

PAL, LONGAL and AUTQYATH. The discussion of the first three is intended to 

be a preparation for the discussion of AUTOMATH. PAL (short for "primitive 

Automath language") is a 8ublanguage of AUTOMATH, in the sense that every 

book written in the first language can be read as if it were a book written 

in the second one. Similarly, LONGPAL is a sublanguage of PAL, LONGAL is a 

sublanguage of AUTOMA.TH, and LONGPAL is a sublanguage of LONGAL. 

PAL is an abbreviated form of LONGPAL. The latter has the simpler rules, 

but has the disadvantage of very long expressions. Similarly, LONGAL has sim-

pIer rules th~n AUTOlVIA.TH, bu.t LONGAL is very inpractical. 

The description in sections 3.2 and ).3 will apply to all four languages 

simul taneously. 

).2 Notation concerning stringS. 

The nomenclature and notation of this section do not appear in the books 

written in our languages, but in the discussions about the rules of these lan-

guages. 

A string is any finite sequence of things, possibly empty. 'Vve can talk 

about a string of letters, a string of words, etc. If the string is not empty, 

and if it contains, in this orqer, the objects a
1

, ••• ,a
n

, then we denote it by 

as long as we do not prefer to abbreviate it by a single greek letter. In par-

ticular, if the string consists of the single element a1 , then it can be denot-

ed by < a1 >. ~ 
If a. stands for the string < a

1 
'/ + ••• + <an) and if ~ stands for the 

string < b
1 
> + ••• 1:- < b

m 
> i then a. +~ stands for the juxtaposition of a. and 

~ , viz. 



< a1 ') + ••• + <a > + < b" :> + ••• + < b'- • n. m/ 

If ex stands for the string <. a1 > + ••• + < an)' then length (a.) is de

fined to be n; moreover, if 1 ~ k~ n, we write eltk(a.) in order to indicate 

the element ~. The empty string is denoted by ¢ and is said to have length 

zero. 

We use the notation frontk(a.) in order to indicate the initial segment 

of length k: 

frontk( < a
1 
> + ••• 

frontO( < a
1 

) + ••• 

+ (an 1 ) == < a1 / + ••• + (ak > 
+ <' a '» == ¢. 

n 

(1 ~ k ~ n), 

We write a. c ~ if a. is an initial segment of ~, i. e. if there is a num-

bark with 0 ~ k ~ length(~) and a. = frontk(~)' 

A ~ . is a string of lines. A ~ consists of four parts: an indicator, 

an identifier, a definition and a category. 

3.3.1 The symbols of which the parts of a line are composed, are 

(i) The seven separation marks, listed here: 

, ( ) { } [ ] 

The last four of these do not occur in PAL or LONGPAL. 

(ii) Four other basic symbols, listed here: 

(iii) 

o PN 

Arbitxarily many other symbols to be called identifiers, mutually 

distinct, and distinct from the 11 symbols listed under (i) and (11). 



3.3.3 

The identifier part of a line consists of a single identifier. It has 

to be di££erent from the identifier part of any previous line. There would 

be no objection against systematic use of positive integers in such a way 

that the number n is the identifier part of the n-th line. However, in order 

to make books easier to read, and easier to compare with existing ways to ex

press mathematics, one may prefer to choose more suggestive symbols like words, 

or words with numbers added to them. Note that an identi£ier is to be consider

ed as a single symbol. It has already been stipulated that identifiers have to 

be distinct from the other basic symbols. In a printed text an identifier may 

be represented by a string of letters, digits or other signs, containing no 

separation marks. 

The definition ~ of a line can be one of the folowing things: 

(i) The symbol - (Short for "variable"). 

(ii) The symbol PN (short for "primitive notionll
). 

(iii) An expression. This is a certain string of symbols~ consisting of 

separation marks and identifiers. We shall explain later how expres

sions should be built. 

3.3.4 The category ~ of a line can be one of the following. things: 

(i) The symbol ~. 

(ii) An expression (see 3.3.3). 

A block heading is a line whose definition part is --. The identifier 

. part of such a line is called a block opener. 

The indicator ~ o£ a line is either the symbol 0 or an identifier. 
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In a book we always require that whenever the indicator part of a line is an 

identifier, it is the identifier of a block heading occurring earlier in the 

book. 

Our discussions will be made easier by the introduction of the notion 

indicator string of a line in a book. We define it recursively. If the indi

cator is 0, then the indicator string is empty. If the indicator of line A 

is « , if a is the identifier of line~, and if 0 is the indicator string of 

~, then 0 + <a,> is the indicator string of line A. Thus the indicator strings 

are strings of blockopeners. 

Notation. We shall use indic(A) for the indicator of line A, indstr(A) for 

the indicator string, ident(A) for the identifier of A, def(A) for the defi

nition of A, cat (A ) for the category of A. 

Description of LONGPAL. 

Parentheses expressions. The expressions mentioned in 3.3.3 and 3.3.4 

are, as far as PAL and LONGPAL are concerned, parentheses expressions, to be 

defined presently. 

A parentheses expression is a non-empty string of symbols; the symbols 

consists of are either identifiers, or comma's, or opening parentheses "(", 

or closing parentheses ")". They have to be built in a certain way, which we 

describe by recursion: 

(i) If ~ is an identifier, then the string < ~ > is a parentheses ex

pression. 

(ii) If ~ is an identifier, if n is a positive integer, and if e1, ••• ,en 

are parentheses expressions, then the string 

( ~ > + < ( > + e1 + ( , > + e2 + ( , > +... + <, > + en + <) > " 

is again a parentheses expression. 



In examples we usually omit the <"'s, the )IS, and the +'s~ 

Example: if a,b,c,d,e are identifiers, then 

a(b(c,d), aCe), e(a(a,b))) 

is a parentheses expression. 

Well-formed LONGPAL books. 

This notion is defined recursively: 

(i) 

(ii) 

The empty book is well-formed. 

Let A be a well-formed LONGPAL book, and let').. be a line. Then 

the book A + <').. > is called well-formed if the following condi

tions are satisfied simultaneoulsy: 

1. The identifier of').. is different from the identifiers of the 

lines of A. 

2. The idica tor of ').. is either 0 or one of the block openers of A. 

3. The definition of ').. is either - or PN or a parentheses expressic 

4. The category of ').. is ei ther ~ or a parentheses expression. 

A well-formed book is not necessarily correct. "Well-formedtt is an inter

mediate notion that we need in order to formulate the further conditions for 

correctness. 

The set 8(11.). 

Let A be a well-formed LONGPAL book. Then S(A) is a set of strings of 

block 9peners of 4, defined recursively as follows: 



(i) The empty string belongs to SeA). 

(ii) If ~ is a block opener of A, the one-element string < ~ ') belongs 

to SeA). 

18. 

(iii) If < ~1"> + ••• -I'- < f3 > belongs to SeA), and if f3 1 is the identi-
n n+ 

fier of a block heading whose indicator is f3 n' then < ~ 1 ) + ••• + 

+ (~n) + < ~n+1) belongs to SeA). 

In other words, if the elements of SeA) are not indicator strings of 

lines of A then they still have the form ex + < f3 ), where ex is the indicator 

of a line of A whose identifier is f3. 

It is easy to see that if A +<A ') is well-formed (see 3.4.2), then the 

indicator string of the last line of A +(A) lies in SeA). 

A substitution operator. 

Let A be a well-formed LONGPAL book, and let O'f SeA). Assume that 0' is 

non-empty, and put length(O') = k, 0' = < ~1 I + ••• + < lik '> (so f31'.·"~ 

are block openers of A). Let ~1'.'.'~ denote parentheses expressions. We shall 
it. 

define an operator QO'( ~, ••• '~k) on a sub-class of the class of all parentheses 

expressions. 

This sub-class is denoted by C(A). It consists of all parentheses expres-

sions that do not contain any block opener of A followed by an opening paren-

theses. For example, if a,b are alock openers of A, and c,d are no block open-

ers of A, then c(a,d(b,d(a)) belongs to C( A), but d( c,a(b)) does not. 

(i) 

On C(A) we define the operator recursively. 

If t is one of the f3's, t = f3., say, then the effect of the operator 
J 

on the expression < t) iadescribed by 



= E •• 
J 

(ii) If t is any other identifier, then 

(iii) Moreover, if t is an identifier, if ~1, ••• prm are elements of C(A), 

and if e is the expression < t '! + < ( ) + r 1 + < , ) +. •• + (,) + 

+ r m +. () >, then (Q cr (E
1 

, ••• ,Ek))e is the expression 

Another way to describe the effect of the operator on some r€C(A), is 

the following one: for each j (1 =s;;; j ~ n), replace, in the expression r, 

each ~. by the corresponding symbol E .• Next replace each E. by the expression 
J J . J 

it denotes. 

Note that E
1

, ••• ,E
k 

themselves may contain ~ 1' ••• ,~ n' and that the seem

ingly simpler formulation: "replace ~ 1 by E1 everywhere, replace ~ 2 by I: 2 

everywhere, ••• '1 would be quite ambiguous. 

We also define the effect of the operator on the symbol ~,. by 

Completed expressions. 

Let A be a well-formed LONGPAL book. Let A be a line of A, t be the iden-

tifier of A, and let't' be the indicator string of A. We build an expression 

compl (t) as follows. 

If 't' = ¢ then compl(t) = (; ,. 

If def(A) = - then comp~(;) = < t >. 
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comp(!;) = < ; > + «) + (~1 'l + <, > + ••• + <, '> + 

For example, in the book of 3.4.9, the identifier b produces as completed ex

pression b(x,y,u,z,v). 

Admissible triples. 

Let A be a well-formed LONGPAL book. We consider all triples (~e ,II), 

where aES(A) (see 3.4.3), e is a parentheses expression (see 3.4.1), II is 

either a parentheses expression or the symbol~. Some of these triples 

will be called admissible. We define admissibility recursively by means of 

(i), (ii), (iii): 

(i) If aES(A), if A is a line of A, if ident(A) is one of the elements 

of the string a, then 

(a, (ident (A '»,ca t(A) ) 

is an admissible triple (for notation see 3.3.7). 

(ii) If aE SeA), if A is a line of A, if det(A) = PN, and if indstr(A) e a 

(for definition of-lieil see 3.2), then 

(a, compl(ident(A)), cat(A)) 

is an admissible triple. 

(iii) Let aE SeA), -rE SeA). Assume n = length(-r) > O. Let A1, ••• ,A
n 

be 

the lines otA with the property that ident(A.) = elt.(-r) (j = 1, ••• ,n), 
. J J 
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. Let e ,II~ 2:1 ' ••• ,2: n be such that 

are admissible triples, and where r
1

, ••• ,r
n 

are defined by 

r. = (Q (2:
1

, ••• ,2: » cat(A.). 
J 't n J 

Then the triple 

is admissible. 

Note that it follows from the definition that there are no admissible 

triples if A is empty. Another consequence is that, if ('t,e,II) is admissible, 

and if aE Sea), 1:' co, then (o,e,II) is admissible. 

Acceptable lines. 

We consider a well-formed LONGPAL book A and a line ~ (not necessarily 

one of the lines of A). We say that ~ is acceptable with respect to A if the 

following conditions (i),(ii),(iii) hold simultaneously. 

(i) Either indic(~) = 0 or there is a AE A with indic(~) = ident(A). 

Eefore phrasing the other conditions we define the string 0 as follows: 

o = yf if indic(~) = 0, and 0= indstr(A) + <indic(~) > if indic(~) = 

III ident (A) ,AE A. 

(ii) If def(~) = - or def(~) = PN then either cat(~) = ~ or 

(cr,cat(~),~) is an admissible triple (with respect to A). 
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(iii) . If PN ~ def(~) ~--, then (afdef(~),cat(~)) is an admissible triple 

( wi th respect to A). 

Note that, if A is the e~pty boOk, then the only acceptable lines are 

the lines ~ with indic(~) = ¢, def(~) = - or PN, cat(~) =~. 

We also remark that it follows from ;.4.7 and from ;.4.2 that, if the 

line ~ is acceptable with respect to the well-formed LONGPAL book . .A, then 

A +<~ > is a well-formed LONGPAL book. 

Correct LONG PAL book. 

A correct LONGPAL book is a well-formed LONGPAL book A satisfying the 

followir~ condition: for each n (1 ~n ~length(A)) the line eltn(A) is accep

table with respect to the book front 1(A) (i.e. the book consisting of the 
n-

first n-1 lines of A). Note that it follows from ;.4.2 that front
n

_1(A) is 

well-formed. 

According to the above definition, the empty book is correct. 

By virtue of the remark made in section ;.4.7.1 we may also give a re ... · 

cursive definition: The empty book is correct, and if the line ~ is acceptable 

with respect to the correct book A , then A +( '" ) is correct. 

Example of a correct LONGPAL book_ 

The example is printed on the top of page 2;. 

The columns "line" and "indstr" do not belong to the lines themselves. 

We have added them in order to facilitate the discussion. 

The question whether a book like this corresponds to a piece of mathe-

matics is not under discussion at the moment. Nevertheless the reader may be 

interested to know that it does have. a certain s1gnificartce. It tells the 

following story: if we axiomatize equality by saying that (i) x = x and (i1) 

x = y and z = y imply z = x, then we also have that x = y implies y = x and 

that x = y and y = z imply x = z. We' can ;represent the argume:p.t 



line ind indstr ident def cat 

""1 
0 elt PN ~ 

""2 
0 x - elii 

""3 
x x y - elt 

""4 
y x,y is PN ~ 

""5 
x x a PN is(x,x) 

""6 
y x,y u - is (x,y) 

""7 
u x,y,u z - elt 

""S 
z x,y,u,z v - is( z,y) 

""9 
v x,y,u,z,v b PN is (z,x) 

""10 
u x,y,u, c b(x,y,u~y,a(y» is(y,x) 

""11 
z x,y, u, z w - is(y, z) 

""12 
w x,y,u,z,w d b(y,z,w,z,a(z» is(z,y) 

""13 
w X,y,u,z,w e b(x,y,u,z,b(y,z,w,z,a(z») is(z,x) 

""14 
w x,y,u,z,w f b(z,x,b(x,y,u,z,b(y,z,w,z,a(z),x,a(x)) is(x,z) 

in steps (1) - (14) which can be considered as translations of ""1 - ""14 into 

common language. 

(1) Assume there is a category of things called elements. 

(2) If x is an element, and 

(3) if y is an element, 

(4) then there is a sort of things called l1is(x,y)l1. 

(This is a bit strange.: we use this categor,y "is(x,y)1I in 

order to assert equality. Instead of asserting a = b we say 

tr.a. t the re is something of the category II is ( a, b ) II ). 

(5) For all x we assume x = x (without proof; it is an axiom: we do 

not specify a particular defined object in the class is(x,x), 

but introduce it as a primitive notion). 



(6) Again consider x,y as elements. Assume x = y 

(7) Let z be the third element. 

(8) Assume z = y 

(9) We assume (without proof; it is an axiom) that under these 

circumstances z = x 

(10) Let x and y be elements, and assume x = y. Since y = y (by 

virtue of (5)) we ma~ replace, in (9), z by y, and we infer 

that y == x. 

(1!1) Still x and yare elements with x = y. Again introduce the 

element z, Assume y = z. 

(12) If in (9) we replace x by y, y by z (which is allowed because 

of y = z (see ~1)) and z = z (see (5)), then we infer z = y. 

(13) We may now apply (9) (by (12) we have satisfied (8)). It results 

that z = x. 

(14) Apply (10), replacing x by z, z by x (by (13) we have satisfied 

the assumption of (10) for that case). It results that x = z. 

The reader will notice awkward ~epetitions towards the end of the book 

(lines 1\.10' ~ 2' ~ 3' 1\.14)' and this makes it pratically impossible to proceed 

in this way. This difficulty is overcome in the abbreviated version of LONG-

PAL, to be treated in 3.5. 

Without proof we mention a number of properties of a correct LONGPAL book 

For each j (1 ~ j ~ n) the expressions def(i\..) (if this is not -
J 

or PN) and cat(i\..) (if this is not~) are entirely composed of . 
J 

identifiers taken from the sequence ident(i\.1), ••• ,ident(i\.j_1) (apart 

from parentheses and comma's). 



(ii) In such expressions, the following is true. Those identifiers 

which are followed by an opening parenthesis are identifiers of 

lines il.E: A satisfying both indstr(iI.) ~ 0 and def(iI.) =PN. Those 

identifiers which are not followed by an opening parentheSis are 

either block openers or indicators of linesil.E: A satisfying both 

indstr(iI.) = 0 and def(iI.) = PN. 

For example, in def(il.
10

) of 3.4.8, viz. the expression b(x,y,u,a(y)), 

the letters x,y,u are block openers (since def(A
2

) = def(A
3
) m def(A

6
) =--, 

whereas a and b are the identifiers of lines (1..
5 

and 1..
9
) with definition PN 

and indicator ~ O. 

(iii) 

(iv) 

(v) 

If (o,Q,II) is an admissible triple with respect to A, and ifII~ 

~~, then (o,II,jze.~) is admissible. 

If (o,Q,II) and (O,Q,IIi) are admissible with respect toAt then II = II'. 

There exists an algorithm that achieves the following: If we start 

from a correct LONGPAL book and if we erase the category of each 

line apart from those whose definition is -- or PN, then the algo-

rithm enables us to reconstruct the erased entries with the aid of 

the non-erased ones. 

3.5 Description of PAL. 

Having described LONGPAL completely, it is quite easy to say what PAL is. 

The difference lies only in the fact that the PAL-expressions are abbreviated 

notations for the LONGPAL-expressions. Actually a correct book written in PAL 

can be translated into a correct book in LONGPAL by the simple procedure of 

replacing every definition and every category (if they are not --, PN or ~) 

by the LONGPAL-expressions they are abbreviations for. On the other hand, every 



3.5.1 

3 .. 5.2 

3 .. 5.4 

correct book ,vritten in LONGPAL is also a correct book in PAL. Vfuen we pass 

from a correct LONGPAL book to a PAL book, we may abbreviate several of its 

expressions, often in several ways, but is is by no means an obligation to 

do so. 

We start with an example of a correct PAL book, that abbreviates the 

LONGPAL book of 3.4.9. This new book consists of the lines "" •• ";\.9 of the 

one of 3.4.9, followed by Ai 1 0'''·'' ;\"14: 

line ind ' indstr ident def cat 

Ai 10 u x,y,u c b(y,a(y» is(y,x) 

A'11 u x,y,u,z w - is(y, z) 

;\. i 12 w x,y,u,z,w d c(y,z,w) is( z,y) 

;\.'13 w x,y,u,z,w e bed) is( z, x) 

;\. r 14 w x,y,u,z,w f c(z,x,e) is(x, z) 

Our present description of PAL is given by means of LONGPAL. However, 

part of the practical value of PAL lies in the fact that it is possible to 

manipulate with the abbreviated expressions themselves, rather then trans-

lating into LONGPAL at;every stage. 

The expressions occurring in PAL are still of the form described in 

3.4.1, and a book written in PAL still satisfies (i) of 3.4.10, but it does 

not necessarily satisfy (ii) of 3.4.10. 

Tr8.J."1.slation u operator. 

Let A be a correct LONGPAL boo1\: and let oE SeA). Vie shall define, by 

recursive definition, a class Z of parentheses expressions, and an operator 
.0 

26. 



T , mapping Z into another class of parentheses evnressions. o 0 ~'J:' 

Let", be one of the lines of A, and put indstr(",) = 't'. Assume that the 

integer h has the property that 

° ~ h ~ length('t'), ° ~ h ~ length(o). 

Put k = length('t') - h. We shall build an expression ~ as follows. Let 

81""'~ be expressions for which T
cr
(8

1
), ••• ,T

o
(8

k
) have already been defi

neC4 i. e. 8
1 

E Z , ••• ,8 E Z • Wie then take as a new element of Zcr: 
cr_ k cr 

(If k = 0 we just take ~ =(ident(",) > ). Putting't'=\~1 > + ••. +<~h+k/' 

we define the effect of T on the expression ~ as 
o 

if PN 1= daf(",) /: -, and by 

if def(",) = PN or - (for the definition of "compllt see 3.4.5). 

In the above notation, the operator should, of course, be written as 

Q(~"""'~h) if k = 0, h >0, as Q (T (8
1
), ••• ,T (8

k
)) if h = 0, k >0, and 

't" I 't" cr cr 

it is just the identity operator if h = k = 0. 

In particular it follows from the above definition that if ; is one of 

the elements of the string cr, then Tcr « ; > ) = < t 1. 

Example. Consider the LONGPAL book of 3.4.9. We take cr= < xl + (y/ +<u) + 
:." 

+ < z) + (w>, and show that Tcr applied to the expression bed) 
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produces b(x,y,u,z,b(y,z,w,z,a(z))). We start from bed). We notice that b is 

the identifier of line ""9' with indicator string ~ = ( x') + (y) + (u/ + <z>+ 

+ <v>. So we may take h = 4, k = 1, 6
1 

= d. ~ssuming it has already been 

shown that T (d) is defined, we infer that T (b(d}) = b(x,y,u,z,T (d)) (since 
a a a 

comPl(ident(""9)) = b(x,y,u,z,v)). 

Next we apply our definition in order to find Ta(d). We now have to con

sider line ""12' and ~ = <x> +(y) +(u> +<z> +<w>. So we can take h = 5, 

k = 0, and we get 

Ta(d) = (Q~(x,y,u,z,w)) :b(y,z,w,z,a(z)) = b(y,z,w,z,a(z))). 

Hence T (b(d)) = b(x,y,u,z,b(y,z,w,z,a(z))). 
a 

Correct PAL book. 

A book is called a correct PAL book if it can be obtained from a LONGPAL 

book A in the following way: For every line ')..EA we consider def(')..) and cat(')..). 

If def(A) is an expression, and if we can find an expression hfor which 

T ( )(h) is defined and equal to def(')..) then we replace def(')..) by h. We 
indstr ').. 

carry out the same procedure with cat(')..). The procedure is not always unique: 

a given LONGPAL book can give rise to several correct PAL books. 

A correct PAL book can be translated into a correct LONGPAL book line 

by line (in order to carry out the translations we only need the initial seg-

ment of the book that has already been translated). This reverse translation 

is unique. 

Definitional equality. 

Let At be a correct PAL book, and let A be its translation into LONGPAL. 

If a E SeA), if h is an expression for which T (h) is defined, then we say that 
a 

h is a valid expression at a. If both L:1 and L:2 are valid at a, and if T a(L:
1

) .,. 

= T
a

(L:
2
), we say that h1 and L:2 are definitionally equal at a. 



3.5.7 Every expression valid at cr has a category which is either ~ or an 

expression valid at cr. Here we mean by "categor,y of ~Il a II such that (a,T (~),:rr)) 
a 

is an acceptable triple with respect to ~ 

As we remarked before, the expressions occurring in a correct PAL book 

do not always satisfy (ii) of 3.4. 10.One thing remains true: a block opener 

occurring in' an.expression in a PAL book is never followed by an opening 

parenthesis. 

3.§.. Description of LONGAL. 

3.6.1 

As said in 3.1, LONGPAL is a sublanguage of LONGAL. In LONGAL we have 

'a more complicated kind of expressions, using the full set of separation 

marks 3.3.1 (i), and using bound variables. 

Although it is not strictly necessary, we shall take it as a prinCiple 

not to use one and the same letter as a bound variable in different sub-

expressions of an expression. 

Expressions and bound variables. 

The expressions to be considered are certain strings of symbols; the < 

symbols admitted in these strings are identifiers, and the seven separation 

marks listed in 3.3.1 (i). The parentheses expressions of 3.4. 1 are special 

cases of the expression to be defined here. To each expression we shall attach 

a set of identifiers as well as a subset of that set. If an expression is de-

noted by ~ , then the sets attached to it are denoted by U~ and V~ • The ele

ments of V~ are called the bound variables of ~. We define these notions by 

recursion: 

(i) If P is an identifier, then < ~ > is an expression, and 

= {p}, 



· (ii) If n ~1, if ~ is an identifier, and if ~1' ••• '~n are expressions, 

such that, for i,j (1 ~ i ~ n,·1 E> j ~ n, i f. j) 

then ~, defined as 

~1 + < ,) + ••• +<,) +~ + (» 
n 

is an expression, and 

u~ ... U~ U ••• U u~ U {~}, 
1 n 

V~ ... V~ U ••• U V~ • 
1 n 

(iii) If ~1'~2 are expressions, and if 

u~ n V~ co ¢, 
1 2 

then ~, defined as 

< {'> + ~1 + <} > + ~2 

is an expression, and 

(iv) If 1:1 and 1:: 2 are expressions, if ~ is an identifier, and if 

u~ n V ~ ... ¢, U~ n V}":. = ¢, ~ ¢ U~ , ~ ¢ V ~ , 
1 2 2 -, 1 2 

then ~, defined as 

< [) + < ~ > + <,) + ~1 + < ] > + ~2 

is an expression, and 



U l; = ~ U U l; U {~}, 
1 2 

3.6.1.1 Examples. 

In the examples a,b,c,x,y,z are identifiers. 

(2) 

(3) Every parentheses expression l; is an expression with Vl; = rI. 

3.6.1.2 . It is easy to see that for any given expression l; the sets U
E 

and V
E 

3.6.2 

3.6.2.1 

are uniquely determined, and that Vl; c Ul;. 

Congruent expressions. 

Let I!1,l; 2 be two expressions (in the sense of 3.6.1) and let ~1' Vl:1' 

UlQ' Vl;2 be the sets attached to them. We say that E1 and E2 are congruent 

if there is a one-to-one mapping cp of V l; onto V l; such that 
1 2 ' 

(i) the string l;1 transforms into l;2 if we replace those identifiers 

{3 'of E1 that are elements of Vl; by the corresponding cp~) 's, 
1 

and if, moreover, 

(ii) no cp(~) belongs to tt \ Vl; • 
1 2 

Examples. 

(1) [x,y] a(x) and [z,y] a(z) are congruent. 

(2) [x,y]w(x,z) and [z,y]w(z,z) are not congruent, since they do not 

satisfy (ii). Vrhat amounts to the same thing is that they do not 

satisfy (i) if we interchange the expressions. 

.,/' . 
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The notion of congruence is reflexive, symmetric and associative. The 

equivalence classes induced by it will be called congruence classes. If E 

belongs to the congruence class ~, we shall also say that E is a representa~ve 

of E. 

Well-formed LONGAL books. 

The notion is identical to the one of 3.4.2 apart from two modifications; 

both in 3.6.2 (ii) 3 and 3.6.2 (ii) 4 we replace "parentheses expression',', by 

'~xpression~ 

The set S (A). 

If A is a well-formed LONGAL book, we define SeA) exactly as in 3.4.3. 

Substitution operator. 

Let k be a positive number, and let a be a string of k different identi-

fiers: a = < ~1 > + ••• '+ < ~k > . We ~o not require that at SeA). Let 

E:
j
:, ••• ,E

k 
be expressions. We shall define an operator Qa(E

1
, ••• ,E

k
). Its do

main is the set I(A) of all those expressions which have the property that 

an opening parentheses "(" is never preceded by one of the symbols f3 1,··· ,f3 k• 

The range of the operator does not consist of expressions, but of congruence 

classes. We define the effect of the operator by recursion. 

(i) If ; is an identifier, not occurring in the string a, then the ex

pression < t > is transformed into the congruence class containing 

the express ion (; ); if however, ; is an el ement of, a, ; = P j , say, 

the~ the expression<t~is transformed into the congXuence.class con-

taining the expression E .• 
J 



(ii) If; is an identifier, if r 1' ••• ;:' m are expressions, belonging to 

CI(A), and if e is the expression 

(iii) 

(iv) 

< ; )' + < (>' + r 1 + <, ~ +... + <, '/ + rm. + <);> , 

< ;)' + « > + ~ + (,:> + ••• + (,> + I:J.
m

. + ();> • 

Here we have chos en I:J.., for each j (1 E;; j E;; m), from the congruence 
J 

class (Oa(L:1, ••• ,~))rj' in such a way that for all i,j (1 E;; i<; m, 

1 E;; j E;; m, i 1= j), 

(since we have infinitely many identifiers available, we can always 

replace the bound variables by letters that are not used for any 

other, purpose). 

If r
1 

and r 2 are expressions belonging to C I (A), and if e is the 

expression ({ '> +.r
1 

+ <}:> + r
2

, then (Oa(L:
1

, ••• ,L:
k
))e is the 

congruence class containing (. { :> + 1:J.
1 

+ < } > + 1:J.
2

, where the 

1:J.
1

,1:J.
2 

are chosen as described under (ii) ~n this case m = 2). 

If ; is an identifier, not belonging to the string a, and 

t ¢ UL:
1
'.'.'; ¢ U~, if r

1
, r 2 are expressions belonging to C r (A), 

wi th ; ¢ Ur ' ; ¢ V r and if e is the expression 
1 2 

< [ ) + < ; I + < , :> + r1 + ( ] '1 + r 2' 

then (Oa(~'."'~))® is the congruence class containing 
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3.6.7 

where A1 and A2 are chosen as under (ii) (aga:in with n = 2) with 
I 

the extra precaution that ; ~ V 1:: ' ; f: V 1:: • 
1 2 

variable. 

We also define 0o.c1::
1 

, ••• ,1::
k

) ~ = ~}, i.e. the set consisting of 

the symbol ~ only. In order to unify our terminology, we shall also say 

that ~ is a representative of the congruence class {~. 

Completed expressions. 

Are defined as :in 3.4.5. 

Admissible quadruples. 

We shall give something similar to the recursive definition of admissible 

triples in 3.4.6. The present situation is more complicated. Along with the re-

cursive definition of triple (o,e,n) we wish to give a recursive definition of 

definitional equality. Roughly speaking, by admitting (0 ,e
1 

,e 2,n) we say that, 

(in the context 02 e
1 

and e
2 

are definitionally equivalent expressions of cate

gory II. 

Another complication is that the recursion does not deal with a fixed book. 

In some cases the question whether a quadruple is admissible is reduced to the 

question whether a simpler quadruple is admissible with respect to a slightly 

longer book. 

Shorter notation. 

From now on we shall use an abbreviated notation. We shall quite often omit 

the<'s, )'s and +'s of the string notation, and simply write things like 

Furthermore we shall be a bit careless"about congruence classes, simply 



(but incorrectly) saying "the expression E" instead of "the congruence class 

containing the expression E". And we shall notalways repeat the condition that 

in building new expressions, the bound variables of the constituents have to 

be replaced by new ones in order to avoid that a bound variable occurs at any 

other part of the expression in a different sense. We shall writel: i Q if we 
I 

want to indicate that Ul: n YO = UQ n Yl: = ". 

Recursive definition of admissible quadrUples. J 

Let A be a well-formed LONGAL book. We consider all quadruples (a,6 1,6
2
,IT), 

where a€S(A), 6
1

,6
2 

are expressions, II is either an expression or the symbol 

~. Some quadruples are called admissible, according to the following condi-

tions. 

(i) If (a,6
1

,6
2

,IT) is admissible, then (a,6
2
,6

1
,IT) is admissible. 

(ii) If (a,6
1

,6
2

,IT) and (a,6
2
,6

3
,IT) are admissible, then (a,61,6

3
,IT) is 

admis si.. ble. 

is admissible. 

(iv) (cf. 3.4.6 (i)). If a€S(A), if A is a line of.A, and if ident(A) is 

one of the elements of the string a, then 

(a, < ident(A) >, < ident(A) ~, oat (A) ) 

is admissible. 

(v) (cf. 3,4.6 (ii). If a€S(A), if A is a line of A, if def(A) = PN, and 

if indstr(A) c a, then 

(a, compl(ident(A)), compl(ident(A)), cat(A)) 

is admissible. 

(vi) (cf. 3.4.6 (iii)). Let a€S(A), -r€S(A). Assume n = length(",) > O. 
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Let A
1
,. • "fAn be the lines of A with the property that ident(A'j) = 

el t . ('" ) (j = 1, ••• ,n). 
J 

Let e ,€P ,IT,I:
1 

, ••• ;:n' I:~, ••• ;: ri be such that the following quadruples 

are admissible: 

(""e, sr,IT), 

(o,I:.,I:~,(o (I:
1 
•••• ,I: )) cat(A..)) 

J J ~ n J 
(j = 1, ••• ,n), 

then 

(0, (0 (I:
1

, ••• ,I: ))e, (0 (I:
1
1, ••• ,I:'))e I, 

"C n '" n 
(0 (I: , ••• ,I: ) )IT) 

'" 1 k 

is admissible. Note that IT and the cat (A.)ts are not necessarily ex
J 

pressions; they can be the symbol ~. 

(vii) Let a E SeA), let I:1,I:2,I:~,I:2 be expressions, let ~ be an identifier 

different from ident(~) for all ~ E A. Assume (cf. 3.6.1 (iv)) that 

Vffl shall extend the book A Qy an extra line A. Its indicator string 

is a, its identifier is ~, its definition is --, its categor.y is I:1• 

The extended book is AI = A + < A ') , and we also consider an extended 

string a' ." a + < ~ ) (thus a' E S (At)). Wle assume that 

is admissible with respect to .A, and that 



is admissible with respect to A'. Then 

is admissible with respect to A. 

(viii) be expressions; let ~ be an 
-

identifier different from ident(l!) for all I! € A. Assume that 

We define A' and a' as under (vii). Assume that 

is admissible with respect to A, and that 

is admissible with respect to A'. Then 

is admissible with respect to A. 

(ix) Let a€ SeA), let l::1,l:'1' l::3,l::'3,e,e' be expressions; let ~ be an 

iden tifier different from (I!) for all I! € A Let 

37. 



Assume that 

(a'~1,E'1' ~) 

(cr, [p,E1] E
3
, [P,E!1]E3, ~) 

((7,9,e I ,E
1 

) 

are admissible with respect to .A. Then 
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is admissible with respect to .A. Note that the effect of Q < p> (e) is 

that ever,y occurrenoe of p is replaced bye. 

(x) Let crE: SeA), let E
1

,E
3
,s,S',e,e t be expressions; let p be an idenifier 

differen t from ident (jl) for all jl E:.A • 

Assume that both 

are admissible with respect to .A. Then 



is admissible with respect to A. 

(xi) Let a€ SeA), let ~1 '~2'~3,e be expressions; let ~ be an identifier 

different from ident(p.O for all p.€ A. Let 

Assume that both 

are admissible with respect to ~ Then 

is admissible with respect to A. 
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(xii) Let o€S(A), let ~1'~3'~4 be expressions, and let ~ be an identifier 

different from ident(p.) for all p. E A. Let 

be admissible with respect to A (so in comparison with (Viii) we have 



3.6.8 

3.6.10 

replaced ~2 by {~} ~4' where ~ 4 does not contain ~). Then 

is admissible with respect to A. 

Admissible triples. 

We say that (o,e,IT) is an admissible triple whenever (o,e,a,IT) is an ad

missible quadruple. 

Acceptable lines. 

Let A be a well-formed LONGAL book, and let ~ be a line, not necessarily 

one of the lines of A. The definition of acceptability of ~ with respect to 

A is verbally the same as the one for the LONGPAL case in 3.4.7. 

Correct LONGAL book. 

The definition of correctness of a well-formed LONGAL book is exactly the 

same as in the LONGPAL case of 3.4.8. 

Further properties of a correct L ONGAL book. 

Without proof we mention a number of properties of a correct LONGAL book. 

Partly «i) - (v) they are ver.y close to the corresponding properties of LONGPAL 

books (see 3.4.10). The second part of (iv) is merely a conjecture, and so is (v). 

(i) As 3.4.10(i), with the modification that the expressions do not ex

clusively contain ident(~ ), ••• ,ident(A
j
_
1
), but;possibly also bound 

variables. 
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(ii) As 3.40 10 (ii), with the modification that identifiers which are not 

(iii) 

(iv) 

followed by an opening parenthesis can also be bound variables. 

As 3. 4. 1 0 (iii). 

If (a,Q,II) and (a,Q,II') are both admissible, then we have: 

If II ==~, then II' == type. 

Probably we have moreover: 

If II /::~, then (a ,II,II', ~) is an admissible quadruple. 

(v) ']here probably exist~ ~an 13.~~orithm that does the following. If: we start 

from a correct LONGPAL book, and if we erase the category of each 

column apart from those whose definition is -- or PN, then the al-

gorithm enables us to construct the missing categories. Although 

the new oategories are not necessarily the same expressions as the 

old ones, they are interohangable with the old ones in the following 

sense: if a is the indicator string of a line, and if II is the old 

category and if II' is the new one, then (a,II,II', ~) is an admis

sible quadruple. 

(vi) If (a,~, ~) is admissible, then ~ has the form 

where ~1' ••• '~k' are bound variables, 81, ••• ,8
n 

are expressions, and 

~ is the identifier of a line with definition PN and category ~. 

(If k = 0, m > 0 we of course mean ~(81'." p~), if k > 0, m =0 we 

mean [~1,'~~ ••• [~k,~J~; if k == m = ° 'we just mean ~). 

3.6.12 Conjecture on normal forms. 
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We say that an expression is normal if it does not contain any } followed 

by a [. This means that it has the form 

where Z1, ••• ,Zk' r1, ••• ,r
h

, e1, ••• ,e
m 

are normal expressions, and ~ is an iden

tifier (if one or more of the integers k,h,m are 0, the corresponding parts of 

the formula have to be omitted). 

The following statements about a correct LONGAL book are conjectured. 

Conjecture 1. 

If (o,e,n) is an admissible triple (where either n is an expression or 

n =~), then there is a normal expression et such that (o,e,er,n) is an 

admissible quadruple. 

If e t is such that there is no shorter normal expression et for which 

(o,e' ,e" ,n) is admissible, then 8,1. is said to have minimal normal form. 

Conjecture 2 .. 

If (o,e,n) is an admissible triple, then there is a e' in minimal normal 

form for which (o,e,e',n) is admissible. This et is unique up to congruence. 

There is an algorithm enabling us to compute Sf (assuming that A is correct, 

a E: S (A), (0', S, n) admissible). 

If the above conjectures are true, then the rules for admissibility (see 

3.6.7) can be replaced by a much simpler, equivalent set of rules. In particu-

lar we might restrict ourselves to expressions in minimal normal form, and we 

might reduce the discussion to triples instead of quadruples. Note that if the 

conjectures are true, and if (0,e
1
,e

2
,n) is admissible, then e1 and e

2 
have the 

same minimal normal form. 
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3.1 Description of AUTOIVIA.TH. 

AUTOMATH can be considered as an abbreviated form of LONGAL, just 

like PAL is an abbreviated form of LONGPAL. 

An AUTOMATH book can be obtained from a LONGAL book A by abbreviating 

the expressions def(A) and cat(A) (for each A EA). The translation from 

abbreviated expressions into the full expression, i.e. the translation from 

AUTOMATH into LONGAL, is obtained by a translation operator S • We remark 
a 

that every correct PAL book is also a correct AUTOMATH book, and that the effect 

of S on the PAL book is the smae as the one described in 3.5.4. Thus, in the 
a 

terminology of 3.5.4 and 3.1.1, T is the restriction of S to Z • 
a a a 

Actually, thelextension of T to S hardly involves new ideas. 
, a a 

Translation operator. 

Let A be a correct LONGAL book and let aE SeA). We shall define a class 

Y of expressions, and an operator S mapping the elements of Y into expressions 
a a a 

not necessarily in Y • , a 

The class Y and the operator S are defined recursively by means of (i), 
a a 

( ii), (iii): 

(i) This is what has been said in 3.5.4 (only replace Za by Yo' ,Ta by Sa). 

(ii) If 1::1 E Y
a

, 1::2 E Y
a 

and if ~ is an identifier not occurring as a def(J.I.) 

with I.!. E A, and if 

then 

and 



(iii) 

and 

Correct AUTOMATH book. 

The definition of a correct AUTO~~TH book can be copied from the one 

of a correct PAL book in 3.5.5. Throughout that section 3.5.5 replace "PAL" 

by "AUTOMATH", "LONGPAL" by II LONGAL" , T by S. 

The AUTOMATH book obtained from a correct PAL book need not be in normal 

form. 

3.7.3 Direct definition of AUTOMATH. 

We have defined AUTa~TH by means of LONGAL; in this definition LONGPAL 

and PAL served a heuristic purpose only. 

Needless to say, it is possible to define the rules for correctness of 

an AUTa~TH book without discussing LONGPAL first. 

-
We shall not attempt a comple~e description of such rules in this report. 

Actually any mathematician will apply them more or less intuitively, sinoe it 

is so close to the way he uses to handle mathematical material. 

Processors for AUTOMA.TH. 

A processor is a computer program enabling a computer to check line by 

line whether a certain amount of input repressnts a correct AUTOMATH book. 
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I£ the conjectures of 3.6.12 are true then there exists, in theory, an 

ideal processor. The normal forms o£ the expressions in mathematics are, how

ever, very long. If w.e translate ever,ything into normal forms then the amount 

of work can be expected to depend exponentially on the length of the book, and 

that is, of course, prohibitive. 

The practical problem is to train a computer to do his work in the relati

vely simple cases the human author deals with, taking only a small number of 

steps at a time. If the computer does not see in a reasonable amount of time 

that a line is correct, ·he asks for help. In cases where the line was correct 

but the poor processor was unable to grasp, the human author might assist the 

computer with a hint, or make it easier for him by writing an extra line. There

fore, the man-machine cooperation will be close to a teacher-pupil relation. 

Needless to say, the computer should never believe an incorrect line! 

The processor in operation at the time this report was written (november 

1968) seems to be reasonably e£fective, in the sense that it did not do much 

superfluous work, and did not need any hints. 

But is must be said that experiece has been very limited thus far. 

Thus far we have hardly tackled the problem of storing the large amounts 

of material necessary to read an AUTOMATH text of an ordinary mathematical book l 

or of a research paper. It seems reasonable that we have to devise systematic 

rules £or forgetting things, and certainly for forgetting names of identifiers 

so that we can use them agian. There-is not too much reason for pessimism; the 

. development and use of languages like AUTOMATH will take place in a period wherE 

computer memories will grow tremendously; at the same time the,r can be expected 

to become cheaper and cheaper. 



acceptable lines 
" II 

admissible triples 
11 II 

.. quadruples 

AUTOMATH 

block heading 
block opener 

book 

bound variables 

category 
category part of a line 

completed expression 

congruence classes 
congruent 
correct LONGPAL book 
correct LONGAL book 
correct PAL book 

definition 
definition part of a line 
defini tional equal i ty 

expression 

identifier 
identifier part of a line 

indicator 
indicator string 
indicator part of a line 

juxtaposi tion 

length of a string 
line 
LONGAL 
LONGPAL 

minimal normaJ. form 

normal forms 

PAL 
parentheses expression 
primitive notion 
processors 

string 
sUbstitution operator 

INDEX. 

(LONGPAL) 
(LONGAL) 

~
LONGPAL) 
LONGAL) 
LONGAL) 

translation operator (PA1~LONGPAL) 
translation operator (AUTOMATH~ONGAL) 

well-formed LONGAL book 
well-formed LONGPAL book 

3.4.7 
3.6.9 

3.4.6 
3.6.8 
3.6.7; 3.6.7.2 

1; 3.1; 3.7 

3.3.5 
3.3.5 

3.3 

3.6.1 

1.2.1; 3.3 
3.3.4 

3.4.5; 3.6.6 

3.6.2 
3.6.2.2 
3.4.7 
3.6.9 
3.5.5 

3.3 
3.3.3 
3.5.6 

3.3.3; 3.6.1 

3.3.1 
3.3.2 

1.5; 3.3 
3.3.6 
3.3.6 

3.2 

3.2 
3.3 
3. 1 ; 3.6 
3.1; 3.4 

3.6.12 

3.6.12 

3.1; 3.5 
3.4. 1 

2.1 
3.7.4 

3.2 
3.4.4; 3.6 .. 5 

3.5.4 
3.7.1 

3.6.3 
3.4. 2 
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Lingual symbols 

, [J(){)- 0 

PN 

~ 

Metalingual symbols 

cat (A) 

def(A) 

elt
k 

front
k 

ident(A) 

indic(A) 

indstr(A) 

SeA) 

s 
C1 

T 
C1 

UI: 

VI: 

Y 
C1 

Z 
C1 

Q Ci (I:1 ' • • • , I1~) 

c 

< > 
+ 

.- 3.3.1 

2.1; 3.3.1 

1 • 2. 1; 3. 3. 1 

3.3.7 

3.3.7 

3.2 

3.2 

3.3.7 

3.3.7 

3~ 3~ 7 

3.4.3; 

3.7. 1 

3.5.4 

3.6.1 

3.6.1 

3.7.1 

3.5.4 

3.4.4 

3.2 

3.2 

3.2 

3.2 

3.6.7. 1 

3.6.4 
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