
 

 

    UWA Research Publication 

 

 

Mian, A., Bennamoun, M., & Owens, R. (2006). Automatic 3D Face Detection, 

Normalization and Recognition. In M. Pollefeys, & K. Daniilidis (Eds.), Proceedings 2006 

Third International Symposium on 3D Data Processing, Visualization and Transmission 

3DPVT 2006. (pp. 735-742). California, USA: IEEE. 10.1109/3DPVT.2006.32 

 

© 2006 IEEE 

 

This is pre-copy-editing, author-produced version of an article accepted for publication, 

following peer review. The definitive published version is located at 

http://dx.doi.org/10.1109/3DPVT.2006.32 

 

This version was made available in the UWA Research Repository on 4 March 2015, in 

compliance with the publisher’s policies on archiving in institutional repositories.  

Use of the article is subject to copyright law.   

 

http://dx.doi.org/10.1109/3DPVT.2006.32
http://www.uwa.edu.au/


Automatic 3D Face Detection, Normalization and Recognition

Ajmal Mian, Mohammed Bennamoun and Robyn Owens
School of Computer Science and Software Engineering

The University of Western Australia
35 Stirling Highway, Crawley, WA 6009, Australia
{ajmal, bennamou, robyn.owens}@csse.uwa.edu.au

Abstract
A fully automatic 3D face recognition algorithm is pre-

sented. Several novelties are introduced to make the recog-
nition robust to facial expressions and efficient. These nov-
elties include: (1) Automatic 3D face detection by detecting
the nose; (2) Automatic pose correction and normalization
of the 3D face as well as its corresponding 2D face using
the Hotelling Transform; (3) A Spherical Face Representa-
tion and its use as a rejection classifier to quickly reject a
large number of candidate faces for efficient recognition;
and (4) Robustness to facial expressions by automatically
segmenting the face into expression sensitive and insensi-
tive regions. Experiments performed on the FRGC Ver 2.0
dataset (9,500 2D/3D faces) show that our algorithm out-
performs existing 3D recognition algorithms. We achieved
verification rates of 99.47% and 94.09% at 0.001 FAR and
identification rates of 98.03% and 89.25% for probes with
neutral and non-neutral expression respectively.

1. Introduction

Face recognition is a challenging problem because of
the ethnic diversity of faces and variations caused by ex-
pressions, gender, pose, illumination and makeup. Appear-
ance based (2D) face recognition algorithms were the first
to be investigated due to the wide spread availability of cam-
eras. One of the classic face recognition algorithms uses the
eigenface representation of Turk and Pentland [15] which
is based on the Principal Component Analysis (PCA). Lin-
ear Discriminate Analysis (LDA) [16], Independent Com-
ponent Analysis (ICA) [3], Bayesian methods [11] and Sup-
port Vector Machines (SVM) [14] have also been success-
fully used for appearance based face recognition. Zhao et
al. [17] give a detailed survey of 2D face recognition algo-
rithms and conclude that existing algorithms are sensitive
to illumination and pose. Therefore, researchers are now
investigating other data acquisition modalities of the face
to overcome these limitations. One of the most promis-
ing modalities is the 3D shape of the face. A 3D face is

a three dimensional vector [xi, yi, zi]� of the x, y and z co-
ordinates of the pointcloud of a face (i = 1 . . . n, where n is
the number of points). A 2D face on the other hand is a five
dimensional vector [ui, vi, Ri, Gi, Bi]� where u, v are the
pixel coordinates and R,G and B are their corresponding
red, green and blue components. When the 3D face and the
2D face are registered, the pixel coordinates u, v of the 2D
face can be replaced with the absolute coordinates x, y of
its corresponding 3D face.

Bowyer et al. [6] present a comparative survey of
3D face recognition algorithms and conclude that 3D face
recognition has the potential to overcome the limitations of
its 2D counterpart. Especially, the 3D shape of a face can be
used to correct the pose of its corresponding 2D facial im-
age which is one of the major contributions of our paper. We
present a fully automatic algorithm for pose correction of a
3D face and its corresponding 2D colored image. Existing
techniques perform pose correction by manually identify-
ing landmarks on the faces (e.g. [7]). Our approach is to
automatically detect the nose tip and correct the pose using
the Hotelling transform [8]. The pose correction measured
from the 3D face is also used to correct the 3D pose of its
corresponding 2D face. Since 2D face recognition is a well
studied area [17], we will only demonstrate the pose cor-
rection of the 2D faces (along with the 3D faces) and then
focus on 3D face recognition alone.

Another major contribution of our paper is an efficient
3D Spherical Face Representation (SFR) based rejection
classifier which quickly eliminates a large number of ineli-
gible candidate faces from the gallery. The remaining faces
are then verified using a novel recognition algorithm which
is robust to facial expressions. Robustness to facial expres-
sions is achieved by automatically segmenting the face into
expression sensitive and insensitive regions and using the
latter for recognition.

2. Three-Dimensional Face Normalization

Blanz et al. [5] used morphable models to deal with
pose variations in 2D facial images. We use 3D face data
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Figure 1. Face normalization block diagram.

acquired with a range scanner to automatically correct the
facial pose. A block diagram of our algorithm is given in
Fig. 1) and its different components are explained below.

2.1. Face Detection and Denoising

We performed our experiments on the Face Recognition
Grand Challenge (FRGC) version 2.0 [13] dataset which
comprises 9,500 2D and 3D frontal views of faces mostly
acquired from the shoulder level up. Therefore, an impor-
tant preprocessing step was to detect the face. Moreover,
the 3D faces are noisy and contain spikes (see Fig. 3). Since
processing 3D data is computationally expensive, we detect
the nose tip in the first step in order to crop out the required
facial area from the 3D face for further processing. The
nose tip is detected using a coarse to fine approach as fol-
lows. Each 3D face is horizontally sliced at multiple steps
dv . Initially a large value is selected for dv to improve speed
and once the nose is coarsely located the search is repeated
in the neighboring region with a smaller value of dv . The
data points of each slice are interpolated at uniform intervals
to fill in any holes. Next, circles centered at multiple hori-
zontal intervals dh on the slice are used to select a segment
from the slice and a triangle is inscribed using the center of
the circle and the points of intersection of the slice with the
circle as shown in Fig. 2. Once again a coarse to fine ap-
proach is used for selecting the value of dh for performance
reasons. The point which has the maximum altitude trian-
gle associated with it is considered to be a potential nose
tip on the slice and is assigned a confidence value equal to
the altitude. This process is repeated for all slices resulting
in one candidate point per slice along with its confidence
value. These candidate points form the nose ridge. Points
that do not correspond to the nose ridge are outliers and are
removed using RANSAC. Out of the remaining points, the
one which has the maximum confidence is taken as the nose
tip and the above process is repeated at smaller values of dv

and dh in the neighboring region of the nose tip for a more
accurate localization.

A sphere of radius r centered at the nose tip (see Fig.
2) is then used to crop the 3D face and its corresponding
registered 2D face. A constant value of r = 80 mm was
selected in our experiments. This process crops an ellip-

Figure 2. Left: Nose tip detection. Right: A
sphere centered at the nose tip of a 3D face
is used to crop the face.

Figure 3. Left: A pointcloud of a face with
spikes. Center: Shaded view of the same
face after removing the spikes shows that it
is noisy. Right: Shaded view of the face after
complete preprocessing (i.e. cropping, hole
filling, denoising and resampling).

tical region (when viewed in the xy plane) from the face
with vertical major axis and horizontal minor axis. The el-
lipse varies with the curvature of the face. For example, the
more narrow a face is, the greater is the major axis to minor
axis ratio. Once the face is cropped, outlier points causing
spikes (see Fig. 3) in the 3D face are removed. We defined
outlier points as the ones whose distance is greater than a
threshold dt from any one of its 8-connected neighbors. dt

is automatically calculated using dt = µ + 0.6σ (where µ
is the mean distance between neighboring points and σ is
its standard deviation). After removing spikes the 3D face
and its corresponding 2D face are resampled on a uniform
square grid at 1 mm resolution. Removal of spikes may
result in holes in the 3D face which are filled using cubic
interpolation. Resampling the 2D face on a similar grid as
the 3D face ensures a one-to-one correspondence is main-
tained between the two. Since noise in 3D data generally
occurs along the viewing direction (z-axis) of the sensor,
the z-component of the 3D face (range image) is denoised
using median filtering (see Fig. 3).

2.2. Pose Correction and Resampling

Once the face is cropped and denoised, its pose is cor-
rected using the Hotelling transform [8]. Let P be a 3 × n



Figure 4. A 3D face and its corresponding 2D
face (colored) before and after pose correc-
tion and normalization.

matrix of the x, y and z coordinates of the pointcloud of a
face (Eqn. 1).

P =


 x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn


 (1)

The mean vector and covariance matrix of P are given
by Eqn. 2 and Eqn. 3 respectively.

m =
1
n

n∑
k=1

Pk (2)

C =
1
n

n∑
k=1

PkP
T
k − mmT (3)

Where Pk is the kth column of P. The matrix of eigen-
vectors V of the covariance matrix C are given by Eqn. 4.

CV = DV (4)

Where D is the matrix of the eigenvalues of C. P can
be aligned with its principal axes using Eqn. 5 known as the
Hotelling transform [8].

P′ = V(P − m) (5)

Pose correction may expose some regions of the face (es-
pecially around the nose) which are not visible to the 3D
scanner. These regions have holes which are interpolated

Figure 5. Sample 3D faces and their corre-
sponding 2D (colored) faces after pose cor-
rection and normalization.

using cubic interpolation. The face is resampled once again
on a uniform square grid at 1 mm resolution and the above
process of pose correction and resampling is repeated until
V converges to an identity matrix (see Fig. 1).

V is also used to correct the 3D pose of the 2D face
corresponding to the 3D face. The R, G and B pixels are
mapped onto the pointcloud of the 3D face and rotated us-
ing V. This may also result in missing pixels which are
interpolated using cubic interpolation. To maintain a one-
to-one correspondence with the 3D face as well as for scale
normalization, the 2D colored image of the face is also re-
sampled in exactly the same manner as the 3D face. It is im-
portant to note that this scale normalization of the 2D face is
different from the one found in existing literature. Previous
methods (e.g. [7]) are based on manually identifying two
points on the face (generally the corners of the eyes) and
normalizing their distance to a prespecified number of pix-
els. As a result, the distance (measured in pixels) between
the eyes of all individuals ends up the same irrespective of
the absolute distance. This brings the faces closer in the
feature space hence making classification more challeng-
ing. On the other hand, with our 3D based normalization
algorithm, the distance between the eyes of each individual
may be different as it is a function of their absolute distance.
Thus the faces remain comparatively far in the feature space
which results in a more accurate classification.

2.3. Pose Correction Results

Fig. 4 shows some sample 3D and their corresponding
2D faces from the FRGC v2.0 dataset after pose correction.
A qualitative analysis of these results show that our algo-
rithm is robust to facial expressions and hair that covers the
face. For quantitative analysis, the pose of each face must be
compared with some ground truth. Since ground truth was
not available, we pairwise registered the 3D faces belonging
to the same identities with each other (all possible combi-
nations Cn

2 where n is the number of 3D faces belonging



Figure 6. Translation errors between the 3D
faces of the same identities after automatic
pose correction.

Figure 7. Rotation errors between the 3D
faces of the same identities after automatic
pose correction.

to the same identity) using the Iterative Closest Point (ICP)
[4] algorithm. The translation and rotation errors between
these faces are presented in Fig. 6 and Fig. 7 respectively.
The maximum absolute mean translation and rotation errors
between the faces were 0.48 mm and 0.99o respectively.

3. SFR: A Low Cost Rejection Classifier

A rejection classifier is defined as the one which quickly
eliminates a large percentage of the candidate classes with
high probability [2]. A rejection classifier is “an algorithm
ψ that given an input, xεS, returns a set of class labels,
ψ(x), such that xεWi ⇒ iεψ(x)” [2]. Where x is a mea-
surement vector, S = �d is a classification space of d mea-
surements and Wi is the ith class such that Wi ⊆ S. The
effectiveness Eff(ψ) of a rejection classifier is the expected
cardinality of the rejector output ExεS(| ψ(x) |) divided by
the total number of classes M (Eqn. 6) [2].

Eff(ψ) =
ExεS(| ψ(x) |)

M
(6)

In our case, M is the size of the gallery. The smaller the
value of Eff(ψ), the better is the rejection classifier. The use
of a rejection classifier was unavoidable in our experiments
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Figure 8. Block diagram of our recognition al-
gorithm. The probe is segmented (shaded
block) only in the case of uniform face seg-
mentation.

as the data set was enormous. There were 4393 probes and
557 faces in the gallery. A brute force matching approach
would have required 557 x 4393 = 2446901 comparisons.
A rejection classifier of Eff(ψ) = 0.25 would reduce this to
only 611725 comparisons.

We present a rejection classifier based on a novel Spheri-
cal Face Representation (SFR) and intuitively compare it to
the spin image representation [9]. Fig. 8 shows the block
diagram of our complete 3D face recognition algorithm in-
cluding the rejection classifier. Intuitively, an SFR can be
imagined as the quantization of the pointcloud of a face into
spherical bins centered at the nose tip. Fig. 9-a graphically
illustrates an SFR of three bins. A spin image is generated
by spinning an image (e.g. of size 6x6 in Fig. 9-b) around
the normal of a point (the nose tip in our case) and sum-
ming the face points as they pass through the bins of the
image. Intuitively, the spin image representation appears to
be more descriptive compared to the SFR. The recognition
performance of a representation is directly related to its de-
scriptiveness. However, the more descriptive the represen-
tation, the more sensitive it becomes to facial expressions.
Moreover, in terms of computational complexity the spin
image representation is more complex than the SFR. There-
fore, for use as a rejector, the SFR should be a better choice.

We quantitatively compared the performance of the SFR
(15 bins) to the spin images (size 15 × 15) [9] when used
as rejection classifiers. The SFRs were matched using Eu-
clidean distance whereas the spin images were matched us-
ing a linear correlation coefficient as described in [9]. Fig.
10 shows the ROC curves of the SFR and the spin images.
For probes with neutral expression, the spin images perform
slightly better whereas for probes with non-neutral expres-
sion the SFR performs slightly better. This supports our
argument that representations with higher descriptiveness



Figure 9. Illustration of the (a) SFR and (b)
spin image representation.

Figure 10. Rejection classification results.

are more sensitive to facial expressions. However, the SFR
based classifier is computationally much more efficient than
the spin image classifier. Using a Matlab implementation on
a 2.3 GHz Pentium IV machine, takes 6.8msec to construct
a SFR of a probe, match it with the 557 SFRs in the gallery
and reject a subset of the gallery, whereas the spin images
take 2, 863msec for the same purpose. At 98% verification
rate, the effectiveness of the SFR based rejection classifier
as per Eqn. 6 is 0.21 and 0.48 for probes with neutral and
non-neutral expressions respectively.

4. Face Segmentation and Recognition

Fig. 8 shows the block diagram of our complete 3D
face recognition algorithm including the rejection classifier
and the final recognition process. During offline process-
ing the gallery is constructed from raw 3D faces. A sin-
gle 3D face per individual is used. Each input 3D face is
normalized as described in Section 2 and its SFR is com-
puted. Although 3D face recognition has the potential to
achieve higher recognition rates, it is more sensitive to fa-
cial expressions compared to 2D face recognition [12]. To
overcome this limitation, we segment the 3D faces into ex-
pression sensitive and insensitive regions. Two different ap-
proaches are used for this purpose. Both approaches are
fully automatic, however the first approach segments faces
non-uniformly based on the properties of individual faces
whereas the second approach performs a uniform segmen-
tation i.e. the same features are segmented from all faces.

Figure 11. Top: Sample 3D faces. Center:
Variance of the 3D faces with expressions.
Bottom: The expression insensitive mask of
the 3D faces.

4.1. Non-uniform Face Segmentation

The probes with non-neutral expressions were divided
into training and test sets. The training set was used during
offline processing to automatically determine the regions of
the face which are the least affected by expressions. A max-
imum of three training faces per gallery face were used. The
variance of all training faces (with non-neutral expression)
from their corresponding gallery faces (with neutral expres-
sion) was measured. The regions of the gallery faces whose
variance was less than a threshold were then segmented for
use in the recognition process. The threshold was dynam-
ically selected in each case as the median variance of the
face pixels. Fig. 11 shows some sample 3D faces (first
row), their variance due to facial expressions (second row)
and the derived mask (third row) for expression insensitive
regions. In Fig. 11 second row, bright pixels correspond to
greater facial expressions. It is noticeable that generally the
forehead, the region around the eyes and the nose are the
least affected by expressions (in 3D) whereas the cheeks
and the mouth are the most affected.

During online recognition, a probe from the test set is
first preprocessed as described in Section 2. Next, its SFR
is computed and matched with those of the gallery to reject
unlikely faces. The matching process results in a vector
of similarity scores of size M (where M is the size of the
gallery). The scores are normalized to a scale of 0 to 1 (0
being the best similarity) using Eqn. 7.

s =
s −min(s)

max(s −min(s)) −min(s −min(s))
(7)

Gallery faces whose similarity is above a threshold are
rejected. Selecting a threshold is a trade off between accu-
racy and efficiency (or Eff(ψ)). In our experiments we used



Figure 12. Identification and verification re-
sults using the SFR rejection classifier and
a non-uniform expression mask (Fig. 11).

a threshold so that Eff(ψ) = 0.33. The expected verifica-
tion rate of the rejection classifier at this threshold was 99%
and 98% for probes with neutral and non-neutral expression
respectively.

The remaining gallery faces are then matched with the
probe using a variant of the Iterative Closest Point (ICP) [4]
algorithm (see Section 4.3 for details). Only the expression
insensitive regions of the gallery faces are used for match-
ing to avoid the effects of expressions. The probe however
is not required to be segmented. The mean registration er-
ror between the probe and a gallery face is used as their
similarity score (a lower score means a better match). The
similarity scores are normalized to a scale of 0 to 1 using
Eqn. 7. Fig. 12 shows our identification and verification re-
sults using this approach. We achieved a rank one recogni-
tion rate of 76.5% and a verification rate of 77.8% at 0.001
FAR (the FRGC benchmark) for probes with non-neutral
expression. One possible reason why these results are not
impressive is that many of the faces in the gallery did not
have enough training images with facial expressions. In
fact some of them had no training images, in which case
the gallery face was not segmented at all. Another reason
is that the training images did not adequately represent all
facial expressions. Careful analysis of the probes that were
incorrectly identified or verified revealed that their corre-
sponding gallery faces were segmented using fewer than
three training images. We believe that this approach will
produce good results provided that sufficient training im-
ages representing all possible facial expressions are avail-
able for all the gallery faces.

4.2. Uniform Face Segmentation

This approach is an extension of our earlier work [10]
and does not require any training images since features are
consistently segmented from all faces including the gallery
and the probes. Given that the nose, the forehead and the
region around the eyes are the least sensitive to facial ex-
pressions in 3D faces (see Fig. 11), we segmented these

Figure 13. Inflection points detected in a hor-
izontal (left) and a vertical (right) slice of a
face.

features and used them during the recognition process. The
features were automatically segmented by detecting the in-
flection points (see Fig. 13) around the nose tip. These
inflection points are used to define a mask which segments
the nose, eyes and forehead region from the face as shown
in Fig. 14. Note that in this case no training images with fa-
cial expressions are required and therefore the probe is also
segmented before matching.

The gallery faces were segmented during offline process-
ing. During online recognition, a part of the gallery is re-
jected using the SFR based rejection classifier as discussed
in Section 4.1. Next, the expression insensitive regions of
the probe are segmented and matched with those of the
gallery faces using our modified ICP [4] algorithm. Fig.
15 and Fig. 16 show our identification and verification re-
sults. We achieved a verification rate of 97.44% and 91.65%
at 0.001 FAR for probes with neutral and non-neutral ex-
pression respectively. Moreover, the identification rates for
the same were 97.5% and 88.7% respectively. Note that
our verification rate of 91.65% at 0.001 FAR for faces with
non-neutral expressions is far better than the best verifica-
tion rate of 80% reported by FRGC for the same dataset
[12].

Fig. 16 shows our identification and verification results
without using a rejection classifier. In this case the verifi-
cation rates at 0.001 FAR are 99.47% and 94.09% whereas
the identification rates are 98.03% and 89.25% for probes
with neutral and non-neutral expression respectively. This
amounts to an average improvement of 2.24% in verifica-
tion and 0.54% in identification rates. On the down side,
the recognition time without using the rejection classifier is
three times greater than when the rejection classifier is used.

4.3. Matching

Matching is performed using a variant of the Iterative
Closest Point algorithm [4]. ICP establishes correspon-
dences between the closest points of two sets of 3D point-
clouds and minimizes the distance error between them by
applying a rigid transformation to one of the sets. This pro-
cess is repeated iteratively until the distance error reaches
a minimum saturation value. It also requires a prior coarse



Figure 14. Left: A 3D face. Center: A mask
derived from the inflection points around the
nose tip. Right: The 3D face after masking.

Figure 15. Identification and verification re-
sults when using the SFR rejection classifier
and a uniform expression mask (Fig. 14).

registration of the two pointclouds in order to avoid local
minima. We use our automatic pose correction algorithm
(Section 2.2) for this purpose. Our modified version of the
ICP algorithm follows the same routine except that the cor-
respondences are established along the z-axis only. The
two pointclouds are mapped onto the xy plane before corre-
spondences are established between them. This way, points
which are close in the xy but far in the z-axis are still con-
sidered corresponding points. The distance error between
such points provide useful information about the dissimi-
larity between two faces. However, points whose 2D dis-
tance in the xy plane is more than the resolution of the
faces (1 mm) are not considered as corresponding points.
Once the correspondences are established, the pointclouds
are mapped back to their 3D coordinates and the 3D dis-
tance error between them is minimized. This process is re-
peated until the error reaches a minimum saturation value.

Let P = [xk, yk, zk]� (where k = 1 . . . nP ) and G =
[xk, yk, zk]� (where k = 1 . . . nG) be the pointcloud of a
probe and a gallery face respectively. The projections of P
and G on the xy plane are given by P̂ = [xk, yk]� and
Ĝ = [xk, yk]� respectively. Let � be a function that finds
the nearest point in P̂ to every point in Ĝ.

(c,d) = �(P̂, Ĝ) (8)

Where c and d are vectors of size nG each such that ck

Figure 16. Identification and verification re-
sults using a uniform expression mask and
without using any rejection classifier.

and dk contain respectively the index number and distance
of the nearest point of P̂ to the kth point of Ĝ. ∀ k find gk ∈
G and pck

∈ P | dk < dr (where dr is the resolution of
the 3D faces equal to 1 mm in our case). The resulting gi

correspond to pi ∀ i = 1 . . . N (where N is the number of
correspondences between P and G). The distance error e
to be minimized is given by Eqn. 9. Note that e is the 3D
distance error between the probe and the gallery as opposed
to 2D distance. This error e is iteratively minimized and its
final value is used as the similarity score between the probe
and gallery face.

e =
1
N

N∑
i=1

‖Rgi + t − pi‖ (9)

The rotation matrix R and the translation vector t in Eqn.
9 can be calculated using a number of approaches includ-
ing Quaternions and SVD (Singular Value Decomposition)
method [1]. An advantage of the SVD method is that it can
easily be generalized to any number of dimensions and is
presented here for completeness. The cross correlation ma-
trix K between pi and gi is given by Eqn. 12.

µp =
1
N

N∑
i=1

pi (10)

µg =
1
N

N∑
i=1

gi (11)

K =
1
N

N∑
i=1

(gi − µg)(pi − µp)� (12)

UAV� = K (13)

In Eqn. 13, U,V are orthogonal and A is diagonal. The
rotation matrix R and the translation vector t are given by
Eqn. 14 and Eqn. 15 respectively.

R = VU� (14)



t = µp − Rµg (15)

R is a polar projection of K. If det(R) = −1, this im-
plies a reflection in which case R is calculated as

R = V


 1 0 0

0 1 0
0 0 det(UV�)


 U� (16)

5. Limitations and Future Work

Our nose detection and pose correction algorithms as-
sume that the input data contain a front view of a single
face with small pose variations (±15o) along the x-axis and
the y-axis. However, pose variation along the z-axis can be
between ±90o. The accuracy of our nose detection algo-
rithm is 98.3% (only 85 failures out of 4950). The failures
were mainly due to hair covering a part of the face and in a
few cases due to exaggerated expressions (e.g. widely open
mouth and inflated cheeks). The pose correction algorithm
failed to correct the pose of 0.16% of the faces (only 8 out of
4,950) along the z-axis. Hair also caused problems in cal-
culating the SFR and during the final verification process.
A skin detection algorithm could be useful to overcome the
limitation due to hair. However, applying it before pose cor-
rection will result in missing regions from the face (because
they were covered by hair) leading to an incorrect pose. In
our future work, we intend to use skin detection in our algo-
rithm and fill the missing regions by using morphable mod-
els and facial symmetry. Moreover, we will also combine
2D facial features with 3D features for further refining the
performances of our algorithms. Finally, we aim to extend
our algorithms to be able to automatically determine profile
views and perform fully automatic face recognition.

6. Conclusion

We presented a fully automatic 3D face recognition al-
gorithm and introduced several novelties including (1) a 3D
nose detection algorithm, (2) an automatic pose correction
and normalization algorithm for 3D and their corresponding
2D colored faces, (3) a low cost rejection classifier based on
our novel Spherical Face Representation, (4) two different
schemes for the automatic segmentation of 3D faces into
expression sensitive and insensitive regions and (5) a 3D
face recognition algorithm robust to facial expressions. The
performance of each algorithm was tested on the FRGC ver-
sion 2.0 dataset and analyzed. Note that this is the largest
available database of its kind. Our 3D face recognition al-
gorithm significantly outperforms existing algorithms [12]
particularly for large databases. Our 3D face representation,
3D/2D face normalization and face recognition algorithms

make a significant contribution to the face recognition liter-
ature and have promising applications.
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