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Abstract 

 
Face recognition is a focused issue in pattern recognition 
over the past decades. In this paper, we have proposed a 
new scheme for face recognition using 3D information. In 
this scheme, the scattered 3D point cloud is first 
represented with a regular mesh using hierarchical mesh 
fitting. Then the local shape variation information is 
extracted to characterize the individual together with the 
global geometric features. Experimental results on 
3D_RMA, a likely largest 3D face database available 
currently, demonstrate that the local shape variation 
information is very important to improve the recognition 
accuracy and that the proposed algorithm has promising 
performance with a low computational cost. 
Keywords: 3D face recognition, shape variation, mesh 
model, Gaussian-Hermite moments 
 
 
1. Introduction 
 
Nowadays biometric identification has obtained much 
attention due to the urgent need for more reliable personal 
identification. Of all the biometrics features, face is 
among the most common and most reachable so that face 
recognition remains one of the most active research issues 
in pattern recognition. In the past decades, most work 
focuses on the source of 2D intensity or color images. 
Since the accuracy of 2D face recognition is influenced 
by variations of poses, expressions, illumination and 
subordinates, it is still difficult to develop a robust 
automatic 2D face recognition system. 

The 3D facial data can provide a promising way to 
understand the feature of the human face in 3D space and 
has potential possibility to improve the performance of 
the system. There are some distinct advantages in using 
3D information: sufficient geometrical information, 
invariance of measured features relative to transformation 
and capture process by laser scanners being immune to 
illumination variation. 

With the development of 3D acquisition system, 3D 
capture is becoming faster and cheaper, and face 
recognition based on 3D information is attracting more 
and more attention. Some earlier researches on curvature 
analysis [1,2,3] were proposed for face recognition based 
on the high-quality range data acquired from 3D laser 
scanners. Recently, Blanz et al. [4,5] constructed a 3D 
morphable model with a linear combination of the shape 
and texture of multiple exemplars. That model could be 
fitted to a single image to obtain the individual 
parameters, which were used to characterize the personal 
features. Their results seemed very promising except that 
the modeling process incurred a high computational cost. 
Chen et al. [6] treated face recognition as a 3D non-rigid 
surface matching problem and divided the human face 
into rigid and non-rigid regions. The rigid parts are 
represented by point signatures to identify the individual. 
Bronstein et al. [7] represented facial surface based on 
geometric invariants to isometric deformations. They 
realized multi-model recognition by integrating flattened 
textures and canonical images. Their algorithm was 
robust to some expression variations. Beumier et al. [8,9] 
developed a 3D acquisition prototype based on structured 
light and built a 3D face database. They also proposed 
two methods of surface matching and central/lateral 
profiles to compare two instances. Both of them 
constructed some central and lateral profiles to represent 
the individual, and obtained the matching value by 
minimizing the distance of the profiles. It should be noted 
that there are two main difficulties facing 3D face 
recognition: high computational and spatial cost and 
inconvenient 3D capture. The existing methods usually 
have a high computational cost [4,5,8,9] or are tested on a 
small database [1,2,3,6].  

In our previous work [ 10 ], we used the global 
geometric feature to realize the face recognition. Further, 
we observed that the shape variation of the local areas 
(e.g. mouth, nose, etc.) was also crucial for characterizing 
the individual. In this paper, we develop an automatic 
face recognition method combining the global geometric 
features with local shape variation information. 



The main contributions of this paper are as follows: 1) 
A robust method is developed to build the regular mesh 
model based on the scattered point cloud. 2) The local 
shape variation information is extracted to represent the 
face feature together with the global geometric features. 
Here we first define a metric to quantify the local shape 
and then Gaussian-Hermite moments [11,12] are applied 
to describe the shape variation. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce how to obtain the regular mesh 
model from the 3D point cloud. The process of feature 
extraction is described in Section 3. Section 4 illustrates 
the classifiers for face recognition. Section 5 reports the 
experimental results and gives some comparisons with 
existing methods. Finally, Section 6 summarizes this 
paper and future work. 

 
2. Face modeling 
 

In this work, we use the face database 3D_RMA [8], in 
which each sample is represented with one 3D scattered 
point cloud. We intend to build a regular mesh with a 
fixed number of nodes and facets to represent the shape 
of one human face. Moreover, the different meshes have 
the corresponding nodes and the same pose to the average 
model. 

Our modeling process includes three steps: pre- 
modeling, pose acquisition and re-modeling as outlined in 
Fig.1. This process is described in [10], and here we only 
describe it concisely. 

 
2.1. Pre-modeling 

 
Beginning with a simple basic mesh (see Fig.2a), a 

regular and dense mesh model is generated to fit the 3D 
scattered point cloud. We develop a universal fitting 
algorithm for regulating the hierarchical mesh to be 
conformed to the 3D points. This process includes two 

steps: initialization of the basic mesh and fitting of the 
hierarchy meshes.  

Due to the limited quality, the nose seems to be the 
only facial feature providing robust geometrical features 
for preliminary effort. We localize the prominent nose in 
the point cloud and utilize it to initialize the basic mesh. 

After initialization, the basic mesh is aligned with the 
point cloud. Nevertheless, the basic mesh is so coarse that 
the basic contour of the human face cannot be described. 
The non-linear subdivision scheme [13] is utilized to 
refine the basic mesh, and at the same time the refined 
mesh is regulated according to the data at each level. With 
the proceeding of refinement and regulation, the mesh can 
represent the individual well level by level.  

Fig.2 shows the mesh after regulation in different 
refining levels. The coarse mesh does not describe the 
human face well though it attempts to approach the point 
cloud. The mesh of level four is dense enough to 
represent the face surface. Of course, the denser the mesh 
is, the better the face is represented. Obviously, the denser 
mesh costs more time and space. In this paper, we use the 
mesh refined four times.  

 
2.2. Pose acquisition by regulating mesh models 

 
The different point clouds have different position and 

rotation relative to the 3D equipment. This difference is 
usually called as pose variation. The mesh model 
obtained from the previous step has the same pose to its 
corresponding point cloud. Thus we can get the pose 
parameters from the mesh models rather than from the 
point clouds directly, which will save much time.  

First, an average mesh model is obtained by averaging 
the mesh models from pre-modeling process. This 
average model is considered as the ground model and all 
the models are rotated and translated to align with it. 
Finally, we obtain the result that the models have the best 
overlap with the average model, as well as the values of 
pose. 

 
2.3. Re-modeling 

 
We transform the original point clouds using the 

obtained values from previous section so that they have 
the same pose with the average mesh model. The 
transformed point cloud is modeled again in the same 
way as the pre-modeling stage. Thus after this stage, a 

(a) (b) (c) (d) (e) 
Figure 2. The regulated mesh models in different levels. (a) Basic mesh. (b) Level one. (c) Level two. (d) Level
three. (e) Level four. Each mesh is showed in front and profile views. 
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regular mesh model for each point cloud is built. 
Moreover, all these mesh models have the same pose and 
represent the facial geometric shape realistically. Next we 
will use this kind of model to extract the individual 
features. 

 
3. Feature extraction 
 

Our feature vector to characterize the individual 
includes two parts: the global geometric features and 
local shape variation information. In the following, we 
will discuss them respectively. 

 
3.1 Global geometric features 

 
From the analysis of the above modeling process, each 

point cloud is described with a regular mesh. All these 
mesh models have the same pose and the corresponding 
nodes, which have the same position in X-Y plane and 
different values along Z-axis. Thus we can build a feature 
vector, which describes the global geometric features as 
follows 

 )}(,),(),({ 21 ngeometric vZvZvZV L=            (1) 
where )( ivZ  is the Z-coordinate of node iv  of the 
mesh model. We used this normalized vector to 
characterize the individual previously [10] and it has 
limited ability to improve the recognition accuracy. 
 
3.2 Local shape variation information 

 
With our observation, we find that shape variation, 

especially near the areas such as mouth, nose and eyes, is 
the important information to characterize the individual. 
In signal processing, Gaussian-Hermite (G-H) moments 
provide an effective way to quantify the signal variation 
and have wide applications in signal and image 
processing [11,12]. Here we first define a metric to 
describe the shape of the principle areas with a 1-D vector 
and then use the G-H moments to analyze the shape 
variation. 

To reduce redundance, we only consider the areas with 
larger shape variation. We estimate the position of the 
four areas (mouth, nose, left eye, right eye) in the average 
mesh model and mark the same areas in the individual 
mesh model at the same position as shown in the left 
image of Fig.3. Although the marked areas can only label 
the similar corresponding areas in the individual model, it 
is enough for the following process. 

To transfer the 3D shape into 1D vector, we first define 
a metric to describe the shape of one vertex. To each 
vertex ep  in the marked area, its neighboring vertices 

},,,{ 21 enee ppp L can be obtained easily as shown in the 
right image of Fig.3. In our regular mesh model, the 
number of neighboring vertices of the common vertex 

(not the edge vertex) is always six. The shape metric of 
this vertex can be described with a vector whose 
component is the distance from ep  to its neighboring 
vertices counterclockwise from the top left vertex, i.e. 

},,,{ 621 eeee ddds L=            (2) 
where eid  is the distance from ep  to eip . This vector 
describes the shape near this vertex. According to this 
metric, we can describe the shape of the four marked 
areas with the following vectors respectively 
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where is  is the shape vector of one vertex in its 
corresponding marked areas. 

The nth order 1-D G-H moment Mn(x,S(x)) of a signal 
S(x) is defined as [12]: 
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where g(t,σ) is a Gaussian function and Hn(t) is a scaled 
Hermite polynomial function of order n. G-H moments 
have many excellent performances, especially insensitive 
to noise generated during differential operations. The 
parameter σ  and the order of G-H moments need to be 
determined by experiments. Here we use 1st and 2nd 
order G-H moments to analyze the shape variation when 

0.2=σ .  
To each shape vector in Eq.3, we calculate its 1st and 

2nd order G-H moments, thus obtaining eight 1-D vectors, 
i.e. 2,1,2,1,2,1,m,2m,1 ,,,,,,M,M rerelelenn MMMMMM . Each 
vector describes the shape variation of one marked area. 
After being normalized, these vectors are connected 
together to form one 1-D feature vector. 

 },,,M,M{ 2,1,m,2m,1 rere MMM L=       (6) 
We use this feature vector to describe the shape variation 
information of the marked areas. 
 

Figure 3. The marked areas and shape representation of one 
vertex 
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3.3 Feature vector 
 
We connect the geometric vector geometricV and shape 

variation vector M  together to form the feature vector 
},{ MVF geometric=              (7) 

It not only describes the global geometric feature, but also 
contains the local shape variation information. In our case 
that the mesh model has 545 nodes, the geometric vector 

geometricV  contains 545 components as well. The shape 
variation vector M contains 156*6*2 components since 
the four marked areas have 156 vertices. Thus the total 
number of components in the feature vector F  is 2417. 
 
4. Matching 
 

The point cloud is represented with a regular mesh 
model in Section 2 and then the mesh model is 
characterized by a 1-D feature vector F  as described in 
Section 3. To reduce the computational cost and improve 
the recognition performance, we use the principal 
component analysis (PCA) to obtain a lower-dimension 
vector and then nearest neighbor classifier (NN) is used 
for classification.  

There exist two popular methods for linear 
dimensionality reduction, i.e. PCA [14] and Fisher linear 
discriminant (FLD) [15]. As discussed in [15], the FLD 
method usually needs more training samples to obtain the 
better result. In our case, we have limited samples so that 
we adopt the PCA to transform the higher-dimension 
vector F  into the lower-dimension vector G . 

We use the nearest neighbor classifier (NN) to solve 
the classification problem in the lower-dimension space. 
The similarity between two feature vectors is measured 
with Euclidean distance T

iii GGGGd ))(( −−= . Here our 
focus is to validate the separability of the proposed 
features and only use the simple classifiers. More 
sophisticated classifiers can be used to improve the 
recognition accuracy. 

 
5. Experiments 
 

To demonstrate the performance of our proposed 
method, we implement it on the 3D database 3D_RMA 
[8,9]. All these tests are finished under the hardware 
environment of P  1.Ⅳ 3G CPU and 128M DRAM. The 
modeling experiments are done with C++ and OpenGL 
and the others are finished with Matlab (6.1 platform). 

 
5.1. 3D face databases 

 
Our proposed method is tested on the 3D face database 

3D_RMA [8,9], where each face is described with a 
scattered 3D point cloud obtained by structured light. 

Compared with the data obtained from the laser scanner 
(one example showed in Fig.4b), these point clouds are of 
limited quality (Fig.4a). 

The database includes 120 persons and two sessions: 
Nov. 97(session1) and Jan. 98 (session2). In each session, 
each person is sampled three shots, corresponding to 
central, limited left/right and up/down poses. People 
sometimes wear their spectacles, and beards and 
moustaches are also represented. Some people smile in 
some shots. From these sessions, two databases are built: 
Automatic Database (ADB, 120 persons) and Manual 
Database (MDB, 30 persons). The data in MDB has better 
quality than that in ADB. In this paper, we test our 
proposed method on the data set of session1, session2 and 
session1-2 (blending two sessions) in ADB and MDB.  

 
5.2. Experimental results 

 
During our processing, the dimensionality of the 

original feature vector F  is reduced using PCA. The 
dimensionality of the reduced feature vector affects the 
recognition rate strongly. Fig.5 describes variations of the 
recognition rate with the increasing dimensionality of the 
reduced feature vector based on the session2 set of MDB. 
From it, we can find that with the increase of 
dimensionality of the reduced feature vector, the 
recognition rate also rapidly increases. But when the 
dimensionality is up to 50 or much higher, the recognition 
rate nearly stabilizes at a very certain level (about 94.4%). 
Thus, we use only 50 features in the following 
experiments.  

Identification accuracy is evaluated with the different 
sets in 3D_RMA. Considering the limited quantity of the 
samples, we use the strategy of Leave-one-out Cross 
Validation. Each time we leave one sample out as a test 
sample and train on the remainder. After computing the 
similarity differences between the test sample and the 
training data using Euclidean distance, the nearest 
neighbor (NN) is then applied to classification. To 
validate the effectiveness of the shape variation 
information, we estimate the recognition rate using the 
feature vector geometricV  only including global geometric 
features (GGF) and the feature vector F containing GGF 
and the shape variation information (GGF+SVI). Table 1 

Figure 4. 3D data. (a) From 3D_RMA; (b) From laser
scanners. 

(a) (b) 



summarizes the Correct Classification Rate (CCR) with 
these two different manners. 

In addition, we use one more familiar method, 
Cumulative Match Score (CMS) [16], to evaluate the 
identification performance of GGF+SVI. Fig.6 shows the 
CMS curves using the NN classifier on three data sets of 
MDB. In fact, the CCR is equal to the case that Rank=1. 

We test the verification performance using 
leave-one-out scheme as well. On each test, one is the 
probe sample and the remaining samples are trained. The 
probe sample is classified with the training set. In each 
iteration, there is only one true test since we know the 
classification of the probe sample. Fig. 7 shows the ROC 
curves for different data sets in MDB. 

From an overall view of Table 1, Fig.6-7, we can draw 
the following conclusions:  

a) The highest recognition is up to 96.1% (30 persons) 
and 72.4% (120 persons). Although the testing 
database is not big enough, this result is obtained in 
the fully automatic way, which is fairly encouraging. 

b) Shape variation is the important information to 
characterize the individual. The feature vector 
containing the shape variation information improves 
the CCR distinctly (see Table 1). 

c) The increase of the training samples can improve the 
verification and identification performance (see 
Table 1 and Fig.6-7). The sets blending two sessions 
always have better performance. 

d) Noise and volume of the tested database affect the 
CCR strongly. In Table 1, the CCR in ADB is lower 

than that in MDB.  
 

5.3. Comparisons and discussions 
 
We make detailed comparisons with some existing 

methods for 3D face recognition to show the performance 
of the proposed algorithm. 

(1) Our method has a lower computational cost. Our 
modeling process costs more time (about 2s for each) and 
the feature extraction costs about 0.2s. However, the 
matching process costs little time due to only calculating 
the Euclidean distance between two points in a lower- 
dimensional space. Beumier et al. [8] built the database 
3D_RMA and developed surface matching (SURF) and 
central/lateral profiles (CLP) to realize face 
authentication. Their reported verification performances 
of automatic matching algorithms were close to ours as 
shown in Table 2. However, their matching process was 
an optimization process, which incurred a high 
computational cost (at least 0.5s for each matching). The 
less matching cost means that it takes less time to search 
for the corresponding object in a big database. 

Blanz et al. [4,5] developed an excellent method to fit 
a 3D deformable model to the image and used the 
obtained shape and texture coefficients for face 
recognition.  Due to the largely different background, it 
is no sense to compare our recognition performances 
directly. But it should be noted that their fitting procedure 
is slow and requires some manual interaction. 

 (2) Our algorithm is tested on a bigger and more 

Figure 5. Recognition performance under different
dimensionality of features 

Table 1. CCR in 3D_RMA (%) 
Database GGF GGF+SVI

Manual DB, session1 
(30 persons, 3 instances for each) 92.2 95.6 
Manual DB, session2 
(30 persons, 3 instances for each) 84.4 94.4 
Manual DB, session1-2 
(30 persons, 6 instances for each) 93.9 96.1 
Automatic DB, session1 
(120 persons,3 instances for each) 59.2 66.9 
Automatic DB, session2 
(120 persons,3 instances for each) 59.2 66.7 
Automatic DB, session1-2 
(120 persons,6 instances for each) 69.4 72.4 

Figure 6. CMS curves for identification performance

Figure 7. ROC curves for verification performance. 



complex database. Gordon [2] obtained the higher 
recognition rate (100%) using depth and curvature 
features since they adopted a small database (only 8 

persons) with high-quality range data (similar to Fig.4b) 
and without eyeglasses, beards or pose variations.  

Chua et al. [6] used the rigid region to characterize the 
individual in order to conquer the influence of the 
expressions. They tested their algorithm with only six 
objects (four expressions for each, without pose 
variations) and obtained promising results. Our algorithm 
is performed on 3D_RMA, which contains 120 persons 
with different quality and limited pose and expression 
variations. 

(3) From the analysis in Section 2, our modeling 
scheme can overcome the pose variation effectively. 
However, the feature extraction is strongly influenced by 
expressions. Chua et al. [6] had done some work to deal 
with the expression variation on a small database. This is 
also our focused direction to further improve the 
recognition accuracy in the future work. In addition, some 
mesh models cannot describe the correct shape of the real 
person due to noise, thus resulting in the false feature 
vector. So increasing the precision of mesh model is 
another avenue to improve the recognition performance. 

In Eq.7, we connect the geometric vector geometricV  
and shape variation vector M  directly. Intuitively, it is 
not the best way to fuse them since they have different 
properties. In the future, we can carry out a deep research 
on this topic and obtain a better fusing algorithm. 

 
6. Conclusions 

 
In this paper, we have proposed a new scheme for 3D 

face recognition. In this scheme, the 3D point cloud is 
first represented with a regular mesh using hierarchical 
mesh fitting. Based on the observation that local shape 
variation is the important information to characterize the 
individual, our feature vector is constructed by combining 
the global geometric features and the local shape 
variation information together. We test the proposed 
algorithm on 3D_RMA and the encouraging results show 
the importance of the shape variation to characterize the 
individual. Compared with previous works, our algorithm 
demonstrates its outstanding performance. In the future, 
we will focus on searching for some invariant features to 
expressions and build larger 3D database for estimating 
the performance of the 3D recognition algorithm. 
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