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ABSTRACT

We describe a method to completely automatically recover

3D scene structure together with 3D camera positions from a

sequence of images acquired by an unknown camera under-

going unknown movement. Unlike “tuned” systems which

use calibration objects or markers to recover this informa-

tion, and are therefore often limited to a particular scale, the

approach of this paper is more general and can be applied to a

large class of scenes. It is demonstrated here for interior and

exterior sequences using both controlled-motion and hand-

held cameras.

The paper reviews Computer Vision research into structure

and motion recovery, providing a tutorial introduction to the

geometry of multiple views, estimation and correspondence

in video streams. The core method, which simultaneously

extracts the 3D scene structure and camera positions, is ap-

plied to the automated recovery of VRML 3D textured mod-

els from a video sequence.

1 INTRODUCTION

As virtual worlds demand ever more realistic 3D models, at-

tention is being focussed on systems that can acquire graph-

ical models from real objects. This paper describes a method

for processing a sequence of images acquired by an unknown

camera undergoing unknown movement to completely auto-

matically recover 3D scene structure together with 3D cam-

era positions. We employ Structure and Motion recovery res-

ults from the photogrammetry and computer vision literature,

where it has been shown that there is sufficient information

in perspective projections of a static cloud of 3D points and

lines to determine the 3D structure as well as the camera po-

sitions from image measurements alone.

The core system is an automatic process which can be

thought of, at its simplest, as converting a camcorder to a

sparse range sensor. Together with more standard graph-

ical post-processing such as triangulation of sparse 3D point

and line sets, and texture mapping from images, the system

becomes a “VHS to VRML” converter — to acquire a real-

istic model of a 3D scene, a user must simply video it. The

primary application is as a simple, automatic, accurate, and

quick means of model acquisition to populate virtual worlds.

Figure 1 shows a schematic overview of the system.
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Figure 1: Overview of the system. Four frames from the 32-

frame input video sequence are shown at the top; views of

the automatically acquired VRML model are shown at the

bottom.



The key advantage of the approach we adopt is that no in-

formation other than the images themselves is required a pri-

ori: the camera pose is computed automatically from texture

in the viewed 3D scene, so that neither calibration patterns

nor 3D control points are required.

1.1 Background

Although the general framework for uncalibrated structure

from motion has been in place for some time [6, 14, 17] only

recently have general acquisition systems come near to be-

coming a reality. This is because a combination of image pro-

cessing, projective geometry for multiple views [13, 23, 25],

and robust statistical estimation [28, 29] has been required

in order to succeed at automating structure and motion al-

gorithms [1, 16].

Tomasi and Kanade’s acquisition system [26] has much

in common with ours, taking uncalibrated views and con-

verting them to 3D structure. However there are several

important differences: first, a simplified projection model

is used, in our case the most general projection model ap-

plies. Significant perspective effects in the Kanade system

(giving rise to vanishing points etc) will degrade the res-

ults. Second, their system uses a simple point tracker to find

matches and does not employ robust statistics and rigid geo-

metry for tracking—this severely limits camera motions and

the type of acquisition scenes.

1.2 The scope of the approach

The limitations of the approach of this paper can essentially

be summarized by saying that the images must be sufficiently

“interesting”—if the scene has no significant texture (to be

defined more precisely later), then the feature based methods

we use will have too few 2D measurements to work with;

and second, that the camera motion between images needs

to be relatively small, in particular rotation about the optical

axis should be limited—otherwise the cross-correlation tech-

niques used to match the features between images will fail.

Happily, this restricted motion is the typical motion between

frames of a video sequence, and the system is tuned for such

data. We also require that the 3D scene be largely static,

although smaller independently moving objects—shadows,

highlights, passing cars and the like—are tolerated because

of the use of robust statistics.

The advantage of a video sequence, where the distance

between camera centres (the baseline) for successive frames

is small, is that correspondence between successive images is

simplified because the images are similar in appearance. The

disadvantage is that the 3D structure is estimated poorly due

to the small baseline. However, this disadvantage is amelior-

ated by tracking over many views in the sequence so that the

effective baseline is large. The accurate position of the 3D

point or line is then computed by a bundle adjustment [24]

over all views in which it appears.

2 THE CORE METHOD: CAMERAS FOR EACH
FRAME, AND 3D POINTS AND LINES

The core method is now described—the uncalibrated struc-

ture and motion algorithm. The core method is automatic,

requiring no manual intervention at any stage. The house

sequence of figure 1 will be used to illustrate the method

throughout this paper.

The key ideas are that the images of 3D entities (points,

lines) satisfy relationships which are induced by the geo-

metry of cameras viewing a rigid scene [7, 15]. These re-

lationships are represented by tensors; in the two-view case

the tensor is the fundamental matrix. These tensors can be

computed from the image coordinates of a sufficient number

of corresponding entities alone. The camera positions are

then determined from the tensors, and given the cameras and

correspondences the 3D structure can be recovered.

Sections 3 to 5 describe the core system: the 2D feature ex-

traction process, the geometry of multiple-view tensors, and

the statistical estimation of the tensors from the 2D features.

3 FEATURE EXTRACTION

In order to recover the 3D entities, their 2D images must

be extracted from the input sequence. Two types of im-

age primitives are used—interest points (“corners”) and line

segments—extracted independently in each frame of the se-

quence using standard computer vision algorithms. These

algorithms have the desirable property that the features they

produce are generally the images of real 3D point and line

features in the scene.

Corners are detected to sub-pixel accuracy using the Har-

ris corner detector [12]. Line segments are detected by:

Canny edge detection at sub-pixel accuracy[4]; edge link-

ing; segmentation of the chain at high curvature points; and

finally, straight line fitting to the resulting chain segments.

The straight line fitting is by orthogonal regression, with a

tight tolerance to ensure that only actual line segments are

extracted, i.e. that curves are not piecewise linear approxim-

ated. Further implementation details are given in [1], and

examples are shown in figure 2b.

4 THE GEOMETRY OF MULTIPLE VIEWS: RE-
VIEW

We work in projective 2- and 3- space, representing geo-

metric objects in homogeneous coordinates. In general

bold uppercase is used for homogeneous 4-vectors ✠ ✡☛✌☞✎✍✑✏✒✍✔✓✕✍✗✖✙✘✑✚
and bold lowercase for image 3-vectors ✛✜✡☛✣✢✤✍✑✥✦✍★✧✗✘✑✚

. Note that equations involving homogeneous

primitives are defined only up to scale. This review is based

on the following papers and books [2, 6, 9, 13, 14, 15, 18].

Perspective Projection A camera maps a point in 3D to

a 2D image plane. The mapping is perspective (or central)

projection, and is represented by a ☎✩✆✪✞ projection matrix,

P, which projects a 3D point ✠ to its 2D image ✛ :

✛✫✡ P ✠ (1)
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Figure 2: Image triplet processing: The workhorse of the

system, converting a passive, uncalibrated, camera into a

sparse range sensor. (a) The first three images of a 32-image

sequence where the camera circumnavigates a toy house. (b)

Point (white) and line (grey) features extracted from the se-

quence. (c) features matched across these three views. (d)

Visualization of the recovered 3D structure and cameras.

The ☎✮✆✯✞ projection matrix has 12 elements but is only

defined up to an overall scale (because it appears in homo-

geneous equations), and so has only 11 degrees of freedom.

It may be computed from the correspondence of 6 or more

3D points and their images. The null-space of P, i.e. ✰ such

that P ✰✱✡✳✲ , is the centre of projection of the camera.

Multiple-View Geometry Suppose there are ✴ views, with

the cameras represented by projection matrices ✵ P ✶✸✷✺✹✶✼✻✾✽ . A

3D point ✠ will project to a (different) 2D point ✛ ✶ ✡ P ✶ ✠
in each view. These 2D points are corresponding features—

they are images of the same 3D feature. It is assumed al-

ways that the scene is rigid, that is the world does not deform

between views. Then the motion of the camera induces mul-

tiple view relations which are satisfied by any corresponding

image points. Corresponding lines are defined in an analog-

ous manner, again with rigidity inducing multiple view rela-

tions for lines. The multiple view relations for two and three

views are described in the following subsections.

4.1 Two-View Geometry: The Fundamental Matrix
Triangulation Suppose the projection matrices, P and P ✿
say, are known for two views, then the 3D point ✠ can be

computed from its images ✛ and ✛ ✿ . Each image point places

two constraints on ✠ as

✛✫✡ P ✠ ✛ ✿ ✡ P ✿ ✠

Reconstructed 3D point

Know these rays in 3D

Figure 3: The principle of triangulation. The known pro-

jection matrices P and P ✿ back project image points to 3D

rays on which the 3D point lies. The 3D point position is

recovered by intersecting the rays.

1. See this
point

2. Know it must
be on this ray

be on this line

3. So it must

Figure 4: The epipolar line of a point (in the first view) is

the image (in the second view) of the ray passing through the

point in the first. The two images from the example sequence

show a point ✛ selected in the first generating the line F ✛ in

the second. The epipolar line of the 2D point in the first view

passes through the image of the 3D point in the second view.

The F matrix for these two views was computed automatic-

ally by the algorithm described in section 5.1.

and these four constraints (over-) determine ✠ . This is trian-

gulation, and is illustrated in Figure 3. It is the basis for all

algorithms which recover 3D structure from 2D images.

Epipolar Geometry and the Fundamental Matrix The

images of a 3D point in two views obey a simple linear rela-

tionship. As shown in figure 4, corresponding points must lie

on each other’s epipolar lines. This constraint is represented

in homogeneous coordinates using the fundamental matrix:

✛ ✿ ✚ F ✛✫✡❁❀ (2)

where F is a ☎❂✆❃☎ matrix of rank two. This is the bilinear re-

lation in the homogeneous coordinates of the corresponding

points in two images. The projective geometry of this 2-view

relation is shown in figure 4.

The fundamental matrix is independent of the scene struc-

ture ✠ , depending only on the camera motion and internal

parameters. Moreover, because the fundamental matrix dir-

ectly relates image points, it can be computed from image

correspondences alone: 7 point correspondences determine

F (there are one or three solutions). In turn, from F, the pro-

jection matrices may be determined subject to the choice of

an arbitrary basis for projective 3-space.

4.2 Three-view Geometry: The Trifocal Tensor
For a triplet of images, let the image of a 3D point ✠ be ✛ ✽ ,✛❅❄ and ✛❅❆ in the first, second and third images respectively,

and similarly the images of a line are ❇ ✽ , ❇ ❄ and ❇ ❆ .
Corresponding points in three images, and corresponding

lines in three images, satisfy trilinear relations which are en-

capsulated in the trifocal tensor ❈ , a ☎❉✆❊☎❉✆❊☎ homogeneous
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Figure 5: Trifocal geometry. Rays backprojected from cor-

responding image points in the first and second view inter-

sect, and thus determine, the 3D point. The position of the

corresponding point in the third view is computed by pro-

jecting this 3D point onto the image. Similarly lines back-

projected from the first and second image intersect in the 3D

line, the projection of this line in 3-space to the third image

determines its image position.

Figure 6: Trifocal line transfer. Corresponding lines in the

first two images (the roof edge marked in black) predict the

infinite line in the third.

tensor. Using the tensor a point can be transferred to a third

image from correspondences in the first and second:

✢ ❆❋ ✡ ✢ ❄✶
● ✻ ❆❍
● ✻✾✽

✢ ✽ ● ❈ ●✑■❏❋▲❑ ✢ ❄■
● ✻ ❆❍
● ✻✾✽

✢ ✽ ● ❈ ● ✶ ❋ ✍

for all ▼ ✍❖◆ ✡ ✧◗P❘P★P ☎ . Similarly, a line can be transferred as

❙ ✽✶ ✡
■ ✻ ❆❍
■ ✻✾✽

● ✻ ❆❍
● ✻✾✽

❙ ❄■ ❙ ❆● ❈ ✶ ■❚●
i.e. the same tensor can be used to transfer both points and

lines. The geometry of these 3-view relations is shown in

figures 5 and 6.

The trifocal tensor can be computed from 6 correspond-

ing image points over 3 views (there are one or three solu-

tions). Given the image relation ❈ , the projection matrices

P ✽ ✍ P ❄ ✍ P ❆ for the three views can be extracted, again subject

to the choice of basis in projective 3-space.

4.3 Recovering the 3D structure and cameras
Given a set of image correspondences ✵✗✛❅✶✸✷✟❯❱✵❘✛ ✿✶ ✷ , suffi-

cient to determine the fundamental matrix, the corresponding

object space coordinates ✵✺✠❲✶❏✷ may be computed up to a ho-

mography of 3-space.

In more detail suppose the Euclidean coordinates of the

actual (i.e. true) set of points are ✠✩❳✶ , then from the image

correspondences between two views alone, a projective re-

construction ✠ ✶ can be obtained which is related to ✠ ❳ ✶ as

✠❲✶✾✡❩❨✕✠ ❳✶
where ❨ is a ✞❬✆❭✞ homography matrix which is unknown but

the same for all points. The camera matrices of the recon-

struction are also determined up to the same ambiguity:❪ ✡ ❪ ❳ ❨❴❫ ✽ ❪ ✿ ✡ ❪ ✿ ❳ ❨❴❫ ✽
where the cameras are defined by ✛✤✶✤✡ ❪ ❳ ✠ ❳ ✶ ✍ ✛ ✿✶ ✡ ❪ ✿ ❳ ✠ ❳ ✶
for the Euclidean coordinates, and ✛❅✶❵✡ ❪ ✠✩✶ ✍ ✛ ✿✶ ✡ ❪ ✿ ✠✩✶
for the projective reconstruction. To remove this ambiguity,

autocalibration techniques [8, 19] are used.

5 CORRESPONDENCE AND ESTIMATION: RE-
VIEW

In the following subsections we describe two robust match-

ing schemes applicable to a camera moving through a scene

that is largely static. In the two view case the objective is to

simultaneously estimate the fundamental matrix and a con-

sistent set of point correspondences; in the three view case

the objective is to simultaneously estimate the trifocal tensor

and a consistent set of point correspondences over the three

views. No a priori information on camera internal para-

meters or motion is assumed other than a threshold on the

maximum disparity between images. The methodology for

matching is essentially the same in both cases.

5.1 Matching corners between image pairs
The two-view matching problem is representative of all the

simultaneous matching and geometry estimation problems.

In the two view case, the pertinent geometric relation that

we wish to estimate is the 7 degree-of-freedom Fundamental

Matrix, and the primitives matched are 2D corners corres-

ponding to 3D point features. The algorithm is summarized

as follows:

- Extract seed correspondences by simple image-based

matching.

- Use robust estimation to compute the F that has the

greatest number of consistent correspondences.

- Generate more correspondences by guided matching us-

ing the the newly computed F.

- And repeat steps 2 and 3 until the number of matches

stabilizes.

- Compute the Maximum Likelihood Estimate of ❛ .

The following paragraphs describe in greater detail the im-

plementation of each of these steps.



Seed correspondences by unguided matching Given a

corner at position
☛✌✢✤✍✑✥❜✘

in the first image, the search for a

match considers all corners within a region centred on
☛✣✢✾✍❏✥❝✘

in the second image with a threshold on maximum dispar-

ity. The strength of candidate matches is measured by cross-

correlation on corner neighbourhoods. The threshold for

match acceptance is deliberately conservative at this stage

to minimize incorrect matches.

Robust computation of the epipolar geometry The aim

then is to obtain a set of “inliers” consistent with the geo-

metric constraint using a robust technique — RANSAC has

proved the most successful [10, 27, 28, 29]: A putative fun-

damental matrix (up to three solutions) is computed from a

random set of seven corner correspondences (the minimum

number required to compute a fundamental matrix). The sup-

port for this fundamental matrix is determined by the number

of correspondences in the seed set within a threshold distance

of their epipolar lines. This is repeated for many random sets,

and the fundamental matrix with the largest support is accep-

ted. The outcome is a set of corner correspondences con-

sistent with the fundamental matrix, and a set of mismatches

(outliers). The fundamental matrix is then reestimated using

all of its associated inliers to improve its accuracy.

Guided matching The aim here is to obtain additional

matches consistent with the geometric constraint. The con-

straint provides a far more restrictive search region than that

used for unguided matching. Consequently, a less severe

threshold can be used on the matching attributes. In this

case, matches are sought for unmatched corners searching

only epipolar lines. This generates a larger set of consistent

matches.

Maximum Likelihood Estimation Given a statistical

model for the measurement error, that the observed features

have been perturbed by a Gaussian noise process, Maximum

Likelihood Estimation (MLE) can be developed for both the

fundamental matrix and the correspondences.

Suppose ✵✗✛❅✶❞❯ ✛ ✿✶ ✷ are the measured points, then the

MLE involves obtaining a fundamental matrix ❡❛ and correc-

ted correspondences ✵ ❡✛❅✶❢❯ ❡✛ ✿✶ ✷ that minimize

❣ ✡ ❍
✶❁❤

☛ ❡✛✤✶ ✍ ✛❅✶ ✘ ❄✒✐ ❤
☛ ❡✛ ✿✶ ✍ ✛ ✿✶ ✘ ❄

subject to ❡✛ ✿✶ ✚ ❡❛ ❡✛❅✶✟✡❥❀ , where the notation ❤
☛ ✛ ✍❏❦❧✘ is the

Euclidean image distance between ✛ and
❦

. Minimization of❣
requires a consistent parametrization of ❛ , i.e. one where

the constraints on the matrix elements are imposed — in this

case that ♠❜♥♣♦q❛r✡✜❀ . The minimization is carried out using

the Levenberg-Marquardt algorithm [20].

Typical results Typically the number of corners used in as✙t✈✉ ✆✫✇ s①t image of an indoor scene is about 500, the num-

ber of seed matches is about 200, and the final number of

matches is about 250. Using corners computed to sub-pixel

accuracy, the average distance of a point from its epipolar

line is ② 0.2-0.4 pixels.

5.2 Matching points between image triplets
The same basic steps are used over image triplets, with the

geometric constraint provided by the trifocal tensor. Briefly,

putative point matches (Harris corners) are first obtained

for the consecutive image pairs, one/two and two/three, by

simultaneously computing epipolar geometry and matches

consistent with this estimated geometry as described above.

From these seed matches the trifocal tensor is robustly fitted.

The number of point correspondences in each random sample

is now reduced to six, as six point triplets are enough to de-

termine the trifocal tensor. New matches are found (guided

matching) which are consistent with the fitted ❈ . Fitting and

guided matching are repeated until the number of matched

points stabilises. The improvements over [1] include:

1. Parametrizing the trifocal tensor such that it obeys all

the constraints between the tensor elements [28].

2. Maximum-Likelihood Estimation (MLE) of ❈ via

bundle adjustment.

Typical results Typically the number of seed matches over

a triplet is about 100 corners. The final number of matches

is about 180. Using corners computed to sub-pixel accuracy,

the typical distance of a corner from its transferred position

is ② 1 pixel.

5.3 Matching lines between image triplets
Line matching is notoriously difficult over image pairs as

there is no geometric constraint equivalent to the funda-

mental matrix for point correspondences. The following

scheme matches lines over triplets using the geometric con-

straint provided by the trifocal tensor computed as above

from point correspondences, and also a photometric con-

straint based on intensity cross-correlation for neighbour-

hoods long the lines.

In detail there are two stages of verification for line

matches over an image triplet. First, a geometric verifica-

tion. Given the trifocal tensor and putatively corresponding

lines in two images, the corresponding line in the third im-

age is determined. A line segment should be detected at the

predicted position in the third image. Second, a photometric

verification. The basic idea is to treat each line segment as a

list of points to which neighbourhood correlation is applied

as a measure of similarity. Only the point to point corres-

pondence is required, and this is provided by epipolar geo-

metry. Details are given in [21].

Typical results Typically there are 200 lines in each image

and a third of these are matched over the triplet. The line

transfer error is generally less than a pixel. In practice the

two stages of verification eliminate all but a couple of mis-

matches.



Figure 7: Registered triplets. Registered cameras and struc-

ture for 7 frames (five triplets) of the example sequence.

Figure 8: Example sequences: Model house (32 frames);

Dinosaur on turntable (36 frames); Castle, hand-held camera

(25 frames); Basement, camera on a vehicle (12 frames).

5.4 From triplets to sequences

The computation of the trifocal tensor and the concomitant

point and line correspondences provides accurate and reli-

able 3D structure and camera positions from each successive

triplet of views in the sequence.

These image triplets are then merged in order to extract

structure and camera motion for the entire sequence. This

problem is similar to that of registering range images into a

consistent frame and the approach taken is broadly related

to the iterated closest point (ICP) algorithm [3]. The prob-

lem here differs from ICP in two ways. First, rather than

solving for a scaled Euclidean transformation, as in the cal-

ibrated (e.g. range image) case, a projective transformation

of 3-space, represented as a ✞✟✆❞✞ homogeneous transform-

ation matrix, must be determined. Second, the correspond-

ence problem is rendered trivial in this case by the existence

of the image feature correspondences. Further details are

supplied in [11]. An example of the registered views and

structure is shown in figure 7.

6 EXAMPLES

Several example sequences are shown in figure 8. The fol-

lowing descriptions illustrate several applications of the core

structure and motion recovery system. First the sequences

are discussed, with the points of note being identified, and

then some applications of the system are presented, with ref-

erence to the example sequences.

Figure 9: Model house: 3D point and line structure plus

cameras represented by their (numbered) image planes.

Figure 10: Dinosaur: 3D point structure for the Dinosaur

sequence.

6.1 Model house sequence
This is a 32 frame sequence obtained from a low resolu-

tion monochrome Pulnix camera. The model is rotated on a

turntable so that effectively the camera circumnavigates the

object. No information concerning the camera motion is used

at any stage. In particular the angular rotation between views

is irregular. The fact that the sequence is closed is used to

refine the recovered structure. The automatically extracted

point and line structure is shown in figure 9. Because the

model is known to be rotating on a turntable, the quality of

the recovered structure can be assessed by observing the po-

sitions of the recovered cameras, which should lie in a circle.

Of course the model could be improved by imposing the con-

straint that the cameras lie in a circle, and this is planned in

the near future.

6.2 Dinosaur sequence
This sequence is again a closed turntable sequence, but of

a non-polyhedral object. Feature extraction is performed on

the luminance component of the colour signal. No reliable

lines are extracted on this object so only points are used.

Again note (Fig. 10) the circularity of the recovered cam-

eras. Again, no knowledge of the circular motion was used,

in order to more thoroughly exercise the system.

6.3 Castle sequence
This sequence is taken with a standard SLR camera, by

a cameraman walking around the grounds of a Belgian

castle. The images have been digitized to PAL resolution

and presented to the system. There is significant lighting

variation between the first and final frames, and the se-

quence contains non-rigid components (passing pedestrians

and moving trees). Figure 11 shows that structure and mo-

tion are successfully recovered despite these impediments.

6.4 Basement sequence
A camera was mounted on a mobile robot for this sequence.

The robot moves along the floor turning to the left. The for-

ward translation in this sequence makes structure recovery



Figure 11: Castle: Computed cameras and 3D point struc-

ture. The plan view shows the accuracy of the self calibra-

tion.

Figure 12: Basement: Computed cameras and 3D struc-

ture. Digital camera mounted on autonomous guided vehicle

(AGV). Forward motion is a difficult case due to the small

interocular baseline. In this case the combining of all views

gives greatly improved structure over the sequential system.

difficult, due to the small baseline for triangulation. In this

situation, the benefit of using all frames in the sequence is

significant. Figure 12 shows the recovered structure.

7 VRML MODEL CONSTRUCTION

Having the complete point and line structure, we now de-

scribe how to convert the sparse 3D features into a form suit-

able for graphical rendering.

To produce triangulated structure for the polyhedral ex-

amples in this paper, planes are automatically extracted from

the 3D data using the RANSAC technique: random 3-point

subsets of the data are selected to define planes, and the

number of 3D points which are less than a user-specified

distance from each plane are counted. The plane with the

greatest number of consistent points is stored, and the data

points which were consistent with it removed from the struc-

ture. Repeating this process extracts the largest planes from

the dataset, and the process is terminated when the required

number of planes have been found.

The RANSAC procedure, by its nature, will ignore small-

Figure 13: Final model. Two views of the VRML model

obtained after plane fitting and photogrammetric modelling.

Figure 14: Basement: Texture mapped planar model built

from 11 views of the basement sequence. Left: VRML

model of the scene with the cameras represented by their im-

age planes (texture mapped with the original images from

the sequence). Right: a rendering of the scene from a novel

viewpoint different from any in the sequence.

scale structure in the data, but is an ideal starting point for

photogrammetric techniques such as the Debevec et al. ar-

chitectural system [5]. A simplified version of their approach

is used here to add the chimneys and porch back into the

model.

The planes are textured by selecting (automatically) the

image from the sequence which is most fronto-parallel to that

plane, and then texture mapping from the appropriate poly-

gonal image region. As the texture mapping from the image

to the plane is via an affine transformation, it is necessary

to first warp the image to remove any projective distortion.

Again this correction is automatic. Figure 13 shows the final

texture-mapped model. Figure 14 shows the results of the

same process applied to the point and line data of the base-

ment sequence.

Non-polyhedral objects For the non-polyhedral objects,

the surface extraction problem is more difficult, mainly due

to the sparsity of the data. However, the dinosaur sequence is

easily approached by segmenting the (blue) background and

intersecting the cones formed by the occluding contours, and

results are shown in figure 15.

8 FUTURE DEVELOPMENTS

We have presented a system that will take sequences of im-

ages from an uncalibrated camera or cameras, and will auto-

matically recover camera positions and 3D point and line



Figure 15: Dinosaur: Reconstruction from occluding con-

tours.

structure from these sequences. We are currently extending

the core system to include space curves [22].

The system can be used as a pre-process to a number of

computer graphics algorithms. For example building a lu-

migraph or for light field rendering. Since the depth is known

for each image there is also the opportunity in film and video

post-production for techniques to employ this. Examples are

“blue-screening” based on depth (Z-keying); depth based op-

tical blurring to simulate depth of field effects; changing the

lighting of a videoed scene; and, augmenting the video (AR).
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