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ABSTRACT

Motivation: Digital reconstruction, or tracing, of 3D neuron

structures is critical toward reverse engineering the wiring and

functions of a brain. However, despite a number of existing studies,

this task is still challenging, especially when a 3D microscopic

image has low signal-to-noise ratio (SNR) and fragmented neuron

segments. Published work can handle these hard situations only

by introducing global prior information, such as where a neurite

segment starts and terminates. However, manual incorporation of

such global information can be very time consuming. Thus, a

completely automatic approach for these hard situations is highly

desirable.

Results: We have developed an automatic graph algorithm, called

the all-path pruning (APP), to trace the 3D structure of a neuron.

To avoid potential mis-tracing of some parts of a neuron, an

APP first produces an initial over-reconstruction, by tracing the

optimal geodesic shortest path from the seed location to every

possible destination voxel/pixel location in the image. Since the

initial reconstruction contains all the possible paths and thus could

contain redundant structural components (SC), we simplify the

entire reconstruction without compromising its connectedness by

pruning the redundant structural elements, using a new maximal-

covering minimal-redundant (MCMR) subgraph algorithm. We show

that MCMR has a linear computational complexity and will converge.

We examined the performance of our method using challenging 3D

neuronal image datasets of model organisms (e.g. fruit fly).

Availability: The software is available upon request. We plan to

eventually release the software as a plugin of the V3D-Neuron

package at http://penglab.janelia.org/proj/v3d.

Contact: pengh@janelia.hhmi.org

1 INTRODUCTION

Digital reconstruction, or tracing, of 3D neuron structures (Fig. 1)

is critical toward reverse engineering the wiring and functions

of a brain (Roysam et al., 2009; Peng et al., 2011b). A number

of studies (e.g. Al-Kofahi et al., 2002, 2003; Abdul-Karim et al.,

2005; Cai et al., 2008; Dima et al., 2002; Evers et al., 2005;

Losavio et al., 2008; Meijering et al., 2004; Narro et al., 2007;

Peng et al., 2010a, 2010b, 2011a; Rodriguez et al., 2009; Schmitt

et al., 2004; Sun et al., 2009; Vasilkoski et al., 2009; Wearne et al.,

2005; Weaver et al., 2004; Xie et al., 2010; Xiong et al., 2006; Yuan

et al., 2009; Zhang et al., 2007, 2008, 2011) have been conducted

to develop semi- or fully automatic neuron-tracing methods that

would yield more efficient neuron reconstruction than the currently

widely adopted manual reconstruction strategy. Most of these

existing methods have used various structural components (SC),

e.g. 3D spheres, ellipsoids, cylinders, lines segments or irregular

∗To whom correspondence should be addressed.

compartments, to model a neuron’s morphology (Fig. 1a–e). The

most successful strategy among these algorithms is to build-up

the reconstruction by incrementally adding more and more such

SCs into the morphological modeling of a neuron. Good examples

include image voxel scooping (Rodriguez et al., 2009), ray shooting

(Wearne et al., 2005) and template matching (Zhao et al., 2011).

These bottom-up local searching methods are suitable for 3D images

that have ideally continuous neurite tracts and good signal-to-noise

ratio (SNR).

However, precise digitization of the 3D morphological structure

of a neuron acquired through various microscopy methods, such as

3D laser scanning microscopy, remains very problematic in practice.

It is especially hard when an image has low SNR, and/or broken

and fuzzy neurite segments that are due to the intrinsic punctuated

neurite structures (e.g. synaptic boutons) or imperfections in sample

preparation (Fig. 1f and g). Notably such datasets are common for the

nervous systems of different animals. For instance, the punctuated

and thus often broken neurites can be ubiquitously seen in the single-

neuron images of Drosophila melanogaster (fruit fly) (Fig. 1f),

Caenorhabditis elegans and mouse (Fig. 1g). The local search

methods discussed above cannot easily handle these hard situations,

as it is very difficult to cross these gaps (i.e. low signal regions).

One strategy to tackle this challenging situation is to combine

both global and local cues. Global prior information, such as the

starting and ending locations of neurite structures, will guide the

finer-scale optimization using local image content. Such global

priors of neurite structure can be supplied easily using a novel and

highly effective 3D visualization system V3D (Peng et al., 2010b).

The Graph-augmented Deformable model (GD) algorithm, which

is a graph-augmented deformable model, can be used to trace the

optimal paths from the starting location to each of the ending points

automatically (Peng et al., 2010a). Then, the entire reconstruction

can be assembled automatically by detecting branching points along

the merging paths (Peng et al., 2010b). This method had been

successfully applied to reconstructing neuronal connections in the

most detailed mouse brain image atlas to date (Li et al., 2010).

Unfortunately, when a neuron’s structure is very complicated or the

image quality is low, it may still be very time-consuming to input

such simple global prior/guiding information (Zhang et al., 2008).

Thus, a completely automatic approach for broken structures and

low SNR images is highly needed.

We previously proposed to detect the tips/termini of a neuron

automatically based on the spatial anisotropy of these terminal

points (manuscript under review) or adaptive template matching

(e.g. the AutoMarker function in the V3D system), followed by the

GD-tracing. However, tip detection may not be accurate when the

termini of a neuron do not form sharp tips, such as those terminated

with synaptic boutons (Fig. 1f). Adaptive template matching may

also mis-detect the irregularly shaped termini. Therefore, here, we

propose a new method that iteratively prunes an over-reconstruction
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Fig. 1. Neuron tracing/reconstruction from images and SC examples of a reconstruction. (a) A 3D reconstruction of a fruit fly neuron. (b) The entire

morphology model can typically be decomposed as individual segments (shown in different colors), which are connected at the branching points. Typically,

each segment can be traced/reconstructed separately. (c) The zoom-in view of the BOX1 in (a) and (b). (d) Illustration of the modeling of image voxel

information using a series of spherical SCs. The edge of image region (bright voxels) best matches to the aggregation of SCs. (e) Other types of SCs besides

spheres, such as ellipsoids and cylinders, can be used in locally matching the image content and thus growing the reconstruction. (f ) A maximum intensity

project of a 3D stack of a fruit fly lamina neuron (courtesy of G. Rubin lab, Janelia Farm, HHMI). The neurites are highly punctuated, have high contrast in

image intensity and appear to be broken. (g) Stained CA3 pyramidal neuron of a mouse brain region (courtesy of R. Tsien lab, Stanford University), where

axonal varicosities make it hard to grow a reconstruction using local searching based on SCs.

of a neuron. We show its efficiency and convergence. We examine

its performance using challenging 3D neuronal image datasets of

different model organisms (e.g. fruit fly).

2 METHODS

2.1 APP: overview of the method

The goal of a neuron-tracing algorithm is to produce a reconstruction of a

neuron’s morphology as complete as possible, using a reasonably succinct

model. To be precise, we define a reconstruction of a neuron as a set of

topologically connected structure components that describe the 3D spatial

morphology of this neuron in a 3D image. The structural component (SC,

Fig. 1) is a loosely defined concept that could mean neuron branches,

individual reconstruction node, individual voxels or other sub-structures

contained in the neuron reconstruction. We call a reconstruction complete

when all visible regions and their voxels in a neuron image are covered in

this reconstruction (e.g. Fig. 1d). We call a reconstruction over-complete (i.e.

an over-reconstruction) if this construction is complete, but some of its SCs

are covered by other SCs and thus appear to be redundant. As mentioned in
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Automatic 3D neuron tracing

Section 1, SCs are often spheres, ellipsoids or cylinders. SCs are represented

as reconstruction nodes, each of which has a respective shape descriptor. In a

reconstruction, graphs are often used to describe the topological relationship

of all reconstruction nodes (and thus SCs). Such graphs can be coded in

the SWC format (Cannon et al., 1998). Typically, a neuron reconstruction

is described as a tree graph, which has a root/seed reconstruction node,

many leaf nodes, branching nodes and other inter-nodes. We follow the same

convention here.

Our new neuron-tracing method is called all-path pruning (APP). It

consists of two major steps, namely (i) producing an initial over-complete

reconstruction (ICR) of a neuron and (ii) pruning its redundant SCs. We

consider spherical SCs centered at every possible voxel location of a

neuron. We design an efficient and reliable method to produce a complete

reconstruction based on these SCs (Section 2.2). Then, we design a maximal-

covering minimal-redundant (MCMR) subgraph-searching algorithm to

automatically determine redundant SCs iteratively and remove them until

no one can be further deleted (Section 2.3). In this way, we efficiently

simplify the complete reconstruction using a minimal number of SCs, while

maintaining the best covering of entire reconstructed neuron structure.

2.2 ICR of a neuron structure

Our method takes both a 3D neuron image I and a seed-location

Ps = (xs,ys,zs) that is within the neuron region as inputs. The seed is often

the soma or another big bright spot (in case soma has not been imaged) of

the neuron, and can be detected automatically in many cases (it is beyond the

discussion of this paper; thus, here we just assume its availability). Let us

assume bright, but not dark, image voxels represent the neuron signal. To

produce the initial over-complete reconstruction (ICR) of the neuron, we use

the average intensity value, ta, of the entire image as a global threshold to

define the image ‘foreground’, that is, any voxel that has greater value than ta
is assumed to be part of the neuron, otherwise it belong to image background.

Of note, in fluorescent images the amount of bright voxels is typically small;

thus, ta is often very low. Therefore, using ta as the global threshold is very

conservative and thus ensures all the possible signals are captured. After the

global thresholding, we also optionally run a median filter with the 3×3×3

window to remove noise.

Next, we create an undirected graph G= (V ,E) on the image foreground,

where the set of graph vertices V stands for image voxels and the set of

graph edges E encodes a geodesic metric function defined below. A pair of

vertices, which correspond to image voxels at locations v0 = (x0,y0,z0) and

v1 = (x1,y1,z1), have an undirected edge between them when and only when

the two vertices correspond to immediate spatial neighbors, i.e. their spatial

coordinates simultaneously satisfy |x0 −x1|≤1, |y0 −y1|≤1 and |z0 −z1|≤1

(and of course at two different locations). The edge weight is defined as,

e(v0,v1)=‖v0 −v1‖

(

gI (v0)+gI (v1)

2

)

,

(1)

where the first term is Euclidian distance of the two vertices, and gI (.) in the

second term constrains that the edge weight between bright voxels will have

smaller value than that between dark voxels. gI (.) has the following form,

gI (p)=exp
(

λI

(

1−I(p)
/

Imax

)2
)

,
(2)

where I(p) is the voxel intensity value at location p and Imax is the maximum

intensity of the entire image I , respectively. We use the exponent of squared

inverse intensity to accentuate the voxel intensity that represents signal. λI

is a positive coefficient to control the contribution of this term. We choose

λI =10 (other big values like 20 lead to similar results in experiments).

As our geodesic metric function outputs only the positive value, we then

use Dijkstra algorithm (Dijkstra, 1959) to find the shortest path from the

seed-location Ps to every other vertex in G. Since G contains only edges

of adjacent voxel-vertices, it is highly sparse. Thus, the time complexity to

solve the geometric shortest path is O(N logN) (N is the number of vertices

in G). In practice, this step often takes only a few seconds to run for a

512×512×128 image stack on a current laptop computer.

In the resultant shortest path map, we search vertices that have no child,

and call such a set as the leaf set. Obviously, we can back trace a path from

every leaf vertex to the seed location, which is also called the root vertex. All

these paths share many common pieces. We organize the entire solution as

a tree graph. Since this step detects all ordered paths from the root to every

image foreground voxels, and thus include no false negative, we call this

tree graph the all-path reconstruction, which is an ICR.

This automatic ICR method is similar to the graph step in our earlier GD

(Peng et al., 2010a) and V3D-Neuron 1.0 (Peng et al., 2010b). Differently,

in GD we have the prior information of the starting and ending locations of

a neurite tract, whereas here we use all possible foreground voxels as ending

locations of a neuron. Since the underlying graph G remaining the same, the

initial reconstruction has the same computational complexity compared to

V3D-Neuron 1.0.

2.3 Pruning a reconstruction: MCMR subgraph

algorithm

We treat each vertex/node in the ICR as a SC. Then, we take three steps in the

next three sub-sections to prune the redundant SCs, while maintaining the

overall coverage of all SCs. The entire strategy is called maximal-covering

minimal redundant (MCMR) subgraph search.

2.3.1 Dark-leaf pruning (DLP) We have used a very conservative global

threshold, ta, which is the mean intensity of the entire image, to define the

image foreground. The reason is that to capture all possible paths in the

neuron, we have to maximize any potential connectivity of any bright image

regions that may be a neuron area connecting to the seed location. This

threshold is often so low that a number of the ‘foreground’ voxels are not

visible to human eyes. In an ICR, these invisible regions correspond to many

redundant branches.

Therefore, we use another threshold, tv, which defines the lowest ‘visible’

voxel intensity. We choose tv =30 (assume we have an 8-bit image, of which

the maximal intensity is 255). Then, because the reconstruction is a tree

graph, we iteratively remove all leaf nodes whose respective voxel intensity

is below tv; until no more leaf node can be detected. In this way, we maximize

the connectivity of different regions, while reduce the structural complexity

of the reconstruction.

2.3.2 Covered-leaf pruning (CLP) To effectively prune leaf nodes, we

estimate the covering radius of each remaining reconstruction node. Such

a radius could be estimated using the image distance transform. However,

3D distance transform is sensitive to noise and irregular foreground border.

Thus, we develop a more robust method. We define a radius-adjustable sphere

centered at a reconstruction node, and then enlarge the radius gradually

until 0.1% of the image voxels within this sphere are darker than the global

threshold ta (i.e. average voxel intensity of the entire image). In most cases,

the choice of 0.1% makes an estimated boundary of a neurite have clear

contrast to the image background. Indeed, the threshold 0.1% is the same as

used as the default value in the V3D-Neuron 1.0 system (Peng et al., 2010b),

which has been increasingly used by the neuron reconstruction community.

We treat each of the reconstruction nodes, along with its estimated radius,

i.e. the covering range, as an SC.

For two reconstruction nodes a and b (or SCs, equivalently), we say a is

significantly covered by b if they satisfy the following condition:

�(a∩b)
/

�(a)≥0.9, (3)

where �(.) is an operator for computing the volume (or mass, see below) of

the occupied region of an SC of this reconstruction node. In our case, since

each SC is a sphere, Equation (3) tells how much volume of a sphere another

SC occupies. As the voxel intensity can be uneven, even the overlapping

volume is the same, the case that a is bright and b is dark will be quite different

from the case that both a and b are bright. Indeed, intuitively the latter case
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(a) (b) (c)

Fig. 2. Different covering situations of reconstruction nodes. Red and purple

dots: leaf and non-leaf nodes, respectively. Green and blue circles: covering

ranges for leaf and non-leaf nodes. (a) Keep; (b) prune; and (c) prune.

appears to be more heavily overlapped. Hence, we redefine �(.) as the mass-

computing operator for the respective SC region. As a result, the more bright

voxels have been covered, the more significant the covering is.

A reconstruction node may be covered jointly by multiple others. Let S =

{b,c,...} as a series of reconstruction nodes, we say it covers a reconstruction

node a if the following condition is satisfied:

�(a∩S)
/

�(a)=�(a∩(b∪c∪ ...))
/

�(a)≥0.9, (4)

where �(.) is the mass-computing operator for the occupied region of the

SC of a.

In an ICR, there are many redundant reconstruction nodes that highly

overlap with each other. Obviously, a reconstruction node that is covered

by others may be removed, without influencing the completeness of the

reconstruction. However, which reconstruction nodes should be removed

first? In general, this is a highly combinatorial subset selection problem,

which is hard. However, one remarkable advantage of producing the ICR

is that since we already have the ordered connectivity of all reconstruction

nodes, we can design the following linear-time method to remove these

redundant nodes.

We note that (i) when no node covers a leaf node, this leaf node should

always be kept (Fig. 2a) and (ii) if a leaf node is covered by another node

(Fig. 2b) or several other nodes jointly (Fig. 2c), this leaf node can be safely

pruned. Therefore, we check all the leaf nodes in the reconstruction, and

remove those being significantly covered by other remaining nodes. We

iterate this pruning process until no more leaf node can be pruned.

To make this process as efficient as possible, we first scan the entire

reconstruction, where all dark leaf nodes have been removed. We create a

look-up table to record all the 3D spatial locations of reconstruction nodes.

Then, for each node a, we create an empty covering list Ca, which would

store the identities of other nodes that cover the node a. Next, we scan the

entire reconstruction again and for every node b, we compute whether or not

b’s covering range (determined by its radius) includes any other nodes’ (e.g.

the node a) spatial location. If yes, then we put b in a’s covering list, which

is sorted (from large to small) by the radius. The sorting is automatically

done as we are growing each of the nodes’ covering list. It can be seen that

since each node is only covered by a local neighborhood, the process to

determine the covering list needs only linear time. The actual pruning as

discussed in the preceding paragraph needs only a few times of scanning

of currently remaining leaf nodes of the reconstruction; thus, the overall

time complexity of this algorithm is linear time. Also note that this pruning

algorithm guarantees to converge, as there are a limited number of nodes in

the reconstruction. When we prune more and more leaf nodes, this process

must stop when no leaf is covered by other reconstruction nodes.

2.3.3 Inter-node pruning (INP) and refinement After covered-leaf node

pruning, the reconstruction is already succinct, in the sense that all

neuron regions have been reached by a minimum number of leaf nodes.

However, we could further reduce the complexity of the reconstruction,

without compromising its connectedness and completeness, by removing

the redundant inter-nodes that connect leaf nodes to branching nodes or the

root.

We start from every leaf node a, and for its immediate parent node b,

which at the same time is not a branching node or the root, we check if b is

significantly covered by a, based on the criterion in Equation (5), where the

operator is the same as in Equation (3).

�(a∩b)
/

�(a)≥0.1 (5)

When the condition of Equation (5) is met, then this inter-node b is pruned

and a’s parent is updated as b’s original parent. If b is not pruned, then

we check if b’s non-branching-node parent, denoted as c, would be pruned

based on the coverage relation of c and b. For each leaf node, we iterate this

process until a branching point or the root is reached. For each branching

point, we do the same thing until its parent branching point or the root is

reached. In this way, we can prune all redundant inter-nodes. Of note, in

Equation (5) we have used a different threshold from Equation (3). This is

because overall as few as possible reconstruction nodes should be used to

maintain the coverage of the whole neuron region. Thus, the fewest number

of leaf nodes should be pruned and the greatest number of inter-node should

be pruned.

All the reconstruction nodes, except the root, in the simplified

reconstruction have integer spatial co-ordinates, which correspond to the

image voxel vertexes we initially use (Section 2.2). Thus individual segments

of the reconstruction may not appear to be entirely smooth, which is more

intuitive to human observation. Hence, we can use the gradient descent

based deformable curve optimization (Peng et al., 2008, 2010a) to refine

the locations of all inter-nodes. This is indeed equivalent to running the

mean shift algorithm for every inter-node in a segment until convergence,

with respect to a regularization constraint that the path is least bended.

The inter-node refinement step has a similar effect as treating all leaf

nodes as neuron termini and then running our previous V3D-Neuron tracing

method (Peng et al., 2010b).

2.4 Comparison to related methods

Optimal pruning of a neuron reconstruction is a topic that has not been

well studied. Intuitions such as removing short branches via thresholding

the absolute branch length were briefly mentioned in a few papers (e.g.

Rodriguez et al., 2009), but we are not aware of any carefully designed

algorithms on this topic. Our APP and MCMR methods fill this niche. An

APP, as an integration of MCMR and the ICR, is designed to produce a

compact neuron reconstruction that captures all image signals, and then to

effectively overcome many problems of the existing local searching schemes

in dealing with the broken or punctuated neuron structures, or low SNR

images.

An APP is efficient, due to that it uses the topology of the initial

reconstruction to constrain the search space. This reduces a combinatorial

search to linear search, without compromising the connectedness and

completeness of the entire reconstruction. This idea may be useful in general

in other data analysis applications.

Image thinning is an image morphological operation that can be used to

produce a skeleton of an image object. In principle, we can view image

thinning as a pruning process. However, image thinning is sensitive to the

contour as well as its orientation of the image object, which can be easily

affected by image noise. As a result, in an image thinning result, one often

finds unexpected branches. Differently, an APP is robust to the local contour

shape.

Another related method is the principal curve (Hastie, 1994) and the

principal skeleton (Qu and Peng, 2010). These methods are essentially

regression models or deformable curves defined based on a series of

control points, regularized by some kind of smoothness constraint. Besides

the difference of the designing principles of these methods to APP, our

experience is that APP is less sensitive to local minima and does not need a

prior shape model to handle arbitrary neuron morphology.

APP can be further enhanced by considering a shape context model of

branches extracted from a proof-corrected database of neuron morphology

(Peng et al., 2011a), so that the resultant system would be able to produce
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Automatic 3D neuron tracing

Fig. 3. APP result. (a) A 3D image stack of a fruit fly neuron. MIP: maximum intensity projection. Arrows A and B: two locations where the intensity of

the axon is very low, thus the local search using SCs would be difficult. Arrow C: a location where the bright bouton is close to another neurite tract, so that

simple local SC searching can easily produce a wrong morphology. (b) ICR (red) of this neuron, where the neuron region is fully covered by reconstruction

nodes. The topological connection relationship and order of these nodes are also determined in this reconstruction. (c) Pruning of the reconstruction nodes

(thus also the respective SCs and redundant branches) yield a compact by representative reconstruction (red), which is still complete (the radii of the nodes

are not shown for clearer illustration).

probabilistically more probable branches, instead of connecting regions

purely based on intensity. This can be useful for tracing multiple neurons

that have been co-stained in the same image.

3 EXPERIMENTS

We first investigated APP’s pruning performance by visually

inspecting it in 3D and checking its convergence and ability to

simplify complete reconstructions (Sections 3.1 and 3.2). We also

evaluated APP’s robustness and consistency (Section 3.3) and

compared it to other competitive methods (Section 3.4). We then

applied APP to tracing neurons of model animals (Section 3.5).

3.1 Visual inspection of pruning results

Figures 3 and 4 show the pruning results step by step for one

of the challenging fruit fly neurons we used in the experiments

of subsequent sections. This lamina neuron has clear punctuated

sites (boutons), where the stained synaptic proteins are so enriched

that the inter-bouton segments of the neuron appear very dark

and discontinuous in the 3D image stack. Previously, we tried to

reconstruct it using 3D cylinder matching method (Zhao et al.,

2011), but encountered problems at locations of low intensity gaps,

as shown in Figure 3a arrows A and B.

Figure 3b shows the ICR has a full coverage of all meaningful

neurite regions. Yet, it contains 94 741 reconstruction nodes.

After the MCMR pruning, a major amount of branches were

successfully removed. The final reconstruction (Fig. 3c) has only

418 reconstruction nodes. The reconstruction has a very meaningful

coverage of every bouton.

In details, the dark-leaf pruning (DLP) (Fig. 4a) effectively

removed all the invisible segments in the initial reconstruction

(Fig. 3b), without compromising the connectedness of the entire

structure. After this step only 22 903 reconstruction nodes were kept.

For each bouton, the covered-leaf pruning (CLP) (Fig. 4b)

successfully removed all the branches, except the most

representative one. The number of remaining nodes is 1391.
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Fig. 4. Detailed MCMR pruning process of the zoom-in area of Figure 3.

The 3D display is tilted from the frontal projection in Figure 3b so that

both the 3D structure of the reconstruction and its spurs are visible. (a)

The remaining complete reconstruction (magenta) after pruning all dark leaf

nodes repeatedly. (b) The remaining reconstruction after iterative CLP. (c)

The reconstruction after an INP. (d) The mesh of the complete space-filling

model of the final reconstruction in (c).

The inter-node pruning (INP) knocked out another 973 redundant

nodes (Fig. 4c). The final reconstruction (Fig. 4d) is very compact,

but effectively covers all interesting neuron regions. Remarkably,

for each bouton in this image stack, the MCMR algorithm puts one

and only one reconstruction node to represent it, and there is no

inter-node between a bouton-representing leaf node and its parent

branching node.

Fig. 5. Number of remaining reconstruction nodes after each step of the

MCMR pruning. Three confocal images of fruit fly neurons were used.

Neuron 1 (courtesy of A. Chiang lab): 1024×1024×56 voxels, voxel XYZ

size 0.215 µm ×0.215µm ×1 µm. Neuron 2 (courtesy of G. Jefferis lab):

512×512×60 voxels, voxel size ratio Z/XY = 3.03. Neuron 3 (courtesy of

G. Rubin lab): 963×305×29 voxels, voxel size ratio Z/XY = 1.

3.2 Convergence and compression rate

Figure 5 summarizes APP’s performance for three fruit fly neuron

images we used. They are typical images produced in three different

labs using different protocols, which were applied to different brain

areas. The image sizes also vary significantly. Especially, the levels

of image brightness, contrast and noise are all different for these

three images.

In spite of the difference among images, in all cases, APP

converges quickly. When the image is bright (neuron 2), DLP may

not remove as many nodes as in the other images. The covered-leaf

node pruning and INP steps always have an order of magnitude of

reduction of the total reconstruction node number.

Evidently, the MCMR pruning greatly reduces the complexity

of the reconstructions. Figure 5 shows that 94.0–99.6% of

reconstruction nodes can be removed without compromising the

completeness of the reconstructions.

3.3 Robustness and consistency

We tested the robustness and consistency of APP using two

experiments. We chose the image used in Figure 4 as it is a hard

case that we did not find another automatic method that would be

able to produce a meaningful reconstruction.

First, we traced the same neuron image multiple times, each

from a different seed location, and compared the similarity of the

resultant reconstruction. We computed the ‘spatial distance’ (SD)

between any pair of reconstructions, say R1 and R2, by averaging

the reciprocal minimal spatial distances of their reconstruction nodes

(Peng et al., 2010b). A larger distance means the greater discrepancy

between R1 and R2. When some nodes have spatial distance >2

voxels, this discrepancy is visible. Thus, such a spatial distance is

called substantial SD (SSD). The percentage of SSD nodes in a

pair of reconstruction, SSD%, is also a good measure of the visible

difference of two reconstructions.
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Fig. 6. Consistent reconstructions produced for the same neuron from

different seed locations. The final skeletons of reconstructions are

intentionally displaced for better visualization. Different colors indicate

different reconstructions. Dots: reconstruction nodes. Root/seed nodes are

bigger dots. The major difference of these reconstructions happens around

the locations of their seed locations.

In our experiment, we traced it 20 times from 20 randomly

selected, and spatially distant seeds. The reconstructions are very

similar (Fig. 6). The number of reconstruction nodes range from

390 to 403, with mean ± standard deviation = 398 ± 3.34 voxels.

The average SD score between R1 and the 19 other reconstructions

is 0.215 voxels over the entire structure. The average SSD% score

is only 2.79%. For these visible distinct regions, the average SSD

score is only 3.0 voxels. Therefore, the overall structures traced from

APP are consistent.

In the second experiment, we added different levels of ‘deletion’

noise into the same image and thus produced an even more

challenging image for reconstruction (remember the original image

is already very challenging). We reconstructed multiple times from

the same seed location and tested the robustness of APP.

Figure 7 shows that with as much as 75% of visible voxels have

been randomly removed from this image (Fig. 7b), APP is still able

to produce an overall meaningful reconstruction (Fig. 7c), which has

a similar skeleton with the reconstruction obtained from the noise-

free image. Most distinct areas of these reconstructions happen at the

bouton regions, where most bright voxels are deleted and thus this

area has a number of fragments. Interestingly, most of the skeleton

regions remain very similar. This demonstrates the robustness of

APP.

Table 1 shows the distance scores between the original

reconstruction and each of these noisy reconstructions. When 25%

to 75% bright voxels have been removed, there are 32–40%

reconstruction nodes have visible spatial differences. However,

these nodes enrich at the bouton region, but not the major neuron

branching points (Fig. 7). The SSD% score jumps up when 90% of

image voxels are darkened; this is reasonable—there is nothing in

this noisy image to trace.

3.4 Comparison to manual, semi-automatic and

automatic neuron-tracing methods

We have compared APP to a number of tracing tools, including:

(i) manual tracing (V3D-Neuron 1.0’s Pinpoint-N-Link method);

(ii) semi-automatic tracing (V3D-Neuron 1.0’s 1-point-to-N-point

Fig. 7. Reconstructions produced for the same original neuron image, but

contaminated by different levels of noise. (a) A part of the original image,

where there are some dark regions that are hard for tracing. (b) A noise

image where bright voxels are randomly deleted. As a result, the bouton

region becomes fragmented. The noise introduced is a random deletion of

q% of bright voxels (intensity >50). In this sub-figure, q=75. (c) The

final skeletons of reconstructions are intentionally displaced for better

visualization. Different colors indicate different reconstructions. Red: the

reconstruction from noise-free image. Green, orange, yellow and magenta:

q is 25, 50, 75 and 90, respectively. When q=90, most signals of the image

have been removed. See summary result in Table 1 as well.

Table 1. Distance scores of the reconstructions of a noise-free image and

several images, where different levels of noises were added

Score 25% 50% 75% 90%

SD 1.912 2.041 4.320 63.53

SSD 3.781 4.024 9.458 66.24

SSD% 31.9 35.2 40.1 81.7
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Fig. 8. Two reconstructions produced by APP (green) and V3D-Neuron

1.0’s 1-point-to-N-point automatic tracing function (red). The contours of

the spherical structural components of reconstruction nodes are overlaid on

top of the original image (gray scale).

tracing, and V3D-Neuron 2.0’s Paint-N-Trace method); and (iii)

automatic tracing (Wearne et al., 2005; Zhao et al., 2011).

Compared to APP, both manual and semi-automatic

reconstruction methods are slow. Typically, they take a few

minutes to trace simple structures and 20–30 min for a relatively

complicated structure. The respective results are still not error-free

in many cases. On the other hand, APP is fast, but is limited by the

resolution of an image. This drawback is shared by other automatic

methods we have tested. However, APP has the advantage to be

able to trace in discontinued areas, which is a major problem for

the methods we have tested. Indeed, for all images we have shown

in the previous sections, these automatic methods failed to produce

meaningful results.

With the prior ending points available, V3D-Neuron 1.0’s

1-point-to-N-point tracing is a powerful semi-automatic method

to reconstruct neuron morphology. For the datasets used in the

previous sections, we compared the fully automatic APP with V3D-

Neuron 1.0, using the same seed location. Figure 8 shows that

both methods produce very similar skeletons (SD = 0.84 voxels,

SSD = 3.55 voxels, SSD% = 7.6%). This means APP is as good as

the semi-automatic method, without any manual guidance.

A closer examination shows that APP can estimate the diameter of

reconstruction nodes more precisely than V3D-Neuron 1.0. This is

because V3D-Neuron 1.0 only back-trace the paths from predefined

ending points, where due to various local image noise the diameter

estimation may be imperfect. Then, because V3D-Neuron 1.0 also

smoothes the diameters along the paths, this results in an overall

under-estimation of the diameters of reconstruction nodes. On the

contrary, APP considers all possible paths and thus always uses

the reconstruction nodes that have the large diameter (equivalently,

the radius mentioned in Section 2) to cover other nodes with smaller

diameters. Thus, the diameter estimation is more accurate. Of note,

generally APP’s result has a little bit over-estimation of the visually

optimal diameter of each reconstruction node. This is more obvious

when the image object (e.g. a bouton) is of irregular shape.

Fig. 9. An example of traced neurons that have complicated morphology.

(a) The original image (courtesy of A. Chiang lab). (b) The reconstruction

produced by APP.

3.5 Application in model animals

We have applied APP to tracing a number of neurons of model

animals, including fruit fly and mouse. Due to the limitation of space,

we show only one example in Figure 9, which is a neuron with very

complicated arborization. It is fair to say this neuron is so difficult

that the dense arbor may not be trace-able even by hand.

We should note that even our method is able to produce the

reasonably meaningful reconstruction (Fig. 9) quickly, the result is

still not perfect. One cause is that the voxel resolution of this image,

especially along the Z-direction, is not high enough. The anisotropic

property of image voxels makes it hard to estimate the radii of neuron

reconstruction nodes, and thus reduces the reconstruction accuracy

of our method. It may also be interesting to consider non-spherical

structure components to enhance our pruning algorithm.

4 CONCLUSION

We have developed an automatic APP method to trace the 3D

structure of a neuron. This method is fast. We show that this

method is robust to image noise and locations of seeds. It is

able to produce results comparable to the semi-automatic tracing

methods and also produce automatic reconstructions for neurons of

complicated morphology.
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