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ABSTRACT

Recent advances in the neuroscientific understanding of the brain
are bringing about a tantalizing opportunity for building synthetic
machines that perform computation in ways that differ radically
from traditional Von Neumann machines. These brain-like archi-
tectures, which are premised on our understanding of how the hu-
man neocortex computes, are highly fault-tolerant, averaging re-
sults over large numbers of potentially faulty components, yet man-
age to solve very difficult problems more reliably than traditional
algorithms. A key principle of operation for these architectures
is that of automatic abstraction: independent features are extracted
from highly disordered inputs and are used to create abstract invari-
ant representations of the external entities. This feature extraction
is applied hierarchically, leading to increasing levels of abstraction
at higher levels in the hierarchy.

This paper describes and evaluates a biologically plausible com-
putational model for this process, and highlights the inherent fault
tolerance of the biologically-inspired algorithm. We introduce a
stuck-at fault model for such cortical networks, and describe how
this model maps to hardware faults that can occur on commod-
ity GPGPU cores used to realize the model in software. We show
experimentally that the model software implementation can intrin-
sically preserve its functionality in the presence of faulty hard-
ware, without requiring any reprogramming or recompilation. This
model is a first step towards developing a comprehensive and bio-
logically plausible understanding of the computational algorithms
and microarchitecture of computing systems that mimic the human
cortex, and to applying them to the robust implementation of tasks
on future computing systems built of faulty components.

Categories and Subject Descriptors

B.8.1 [Hardware]: Performance and Reliability—Reliability, Test-

ing, and Fault-Tolerance; C.1.3 [Processor Architectures]: Other
Architecture Styles—Non-Von Neumann

General Terms

Algorithm, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

Keywords

Neuromorphic Architectures, Automatic Abstraction, Fault Toler-
ance

1. INTRODUCTION
The original Von Neumann model of a computing unit has been

a relatively nice fit for the technology evolutions of the past four
decades. However, it is hard not to notice that this model is un-
der growing pressure. The power dissipation bottleneck has made
architects shift their focus to multi-core architectures but the pro-
gramming bottleneck of multi-cores raises doubts on the ability to
truly take advantage of many-core systems. More recently, the reli-
ability bottleneck brings a whole new set of challenges to the table.
Architects have attempted to meet all these challenges, but the pro-
posed solutions progressively erode performance scalability. With
such limitations, it now makes sense to investigate alternative mod-
els better suited to cope with this technology evolution.

Either upcoming ultra-CMOS [34] technology, or alternative tech-
nologies like nanotubes [7], share some common properties. First,
the number of individual transistors/elements will continue to in-
crease. Second, these elements will not necessarily be much faster
(in some cases slower). Third, they will come with a growing num-
ber of defects and faults. Now, when one considers these properties,
it is hard not to observe that nature has found a way to harness a
huge number of elements with similar properties to realize complex
information processing tasks.

The fact that biologists have made tremendous progress in un-
derstanding the working of parts of the brain [20] is not yet well-
known to computer architects. Considering the abilities of the brain,
it is clear that computer architects should leverage this information,
if only for special purpose computing systems. Computer archi-
tects are uniquely positioned for this task because, unlike biolo-
gists, their goal is to steer this research towards useful computing
systems and applications. Although both the elementary compo-
nents and the resulting biologically-inspired computing systems are
quite different from existing systems, similar approaches can and
should be used to architect them. These approaches include un-
derstanding how to combine and control elementary components
hierarchically into increasingly complex building blocks, defining
a programming approach for these computing systems, understand-
ing their potential applications scope, understanding the appropri-
ate modelling level to integrate billions of components without be-
ing overwhelmed by complexity nor missing key properties, and so
on.

Using the example of vision processing, and employing specific
advances recorded in the neuroscientific literature, we show that it
is now possible to rebuild/replicate certain cortical sensory tasks
out of elementary neurons, thereby providing a detailed explana-



tion of how such functions can emerge, and operate, within the
brain. Next, we highlight that the corresponding architectures are
based on a small set of structural and operating rules, which are lo-
cal by nature, and that repetitively and hierarchically applying these
rules results in architectures capable of increasingly complex tasks.
Consequently, these architectures have intrinsic scalability proper-
ties: they easily translate additional components into increasingly
powerful processing tasks; unlike in traditional computers, scala-
bility here means more complex functions rather than faster exe-

cution, though both can be related. These architectures also have
programmability assets: they only rely on the repeated exposure
to data, without resorting to the supervised training common in ar-
tificial neural networks. Finally, we describe a specific GPGPU-
based software implementation of a hierarchical cortical network,
modeled after the visual cortex, that is capable of complex visual
recognition tasks in a biologically-plausible fashion [13].

Within this context, this paper makes the following novel contri-
butions:

• We describe how the random structure and permanent learn-
ing properties of the cortical network model are intrinsically
robust to permanent defects, far beyond the capabilities of
traditional computing systems.

• We introduce a stuck-at fault model for cortical networks
and show how it maps to permanent faults that can occur
in current-generation GPGPus that are emulating a cortical
network in software.

• We show how to emulate these stuck-at faults efficiently, us-
ing at-speed GPGPU execution, and validate that approach
against a detailed cycle-accurate simulator (GPGPUSim).

• We demonstrate experimentally that the performance of the
cortical network (measured as its recognition rate) degrades
gracefully with increasingly faulty hardware, and that the
network is able to transparently recover lost functionality
without any reprogramming or recompilation.

2. CORTICAL STRUCTURE, OPERATIONS

AND MODELING

2.1 Cortical Organization
The neocortex is the part of the brain that is unique to mammals

and is highly developed for humans; it accounts for about 77% of
the human brain (in volume) [38]. The apparent uniformity of the
neocortex suggests that even though different regions specialize in
different tasks, they employ the same underlying algorithm.

Neuron and Synapse. Neurons and synapses are the most well-
known elementary building blocks of the brain. A neuron performs
two types of operations: it sums its inputs and it triggers an output
if the sum is beyond a certain threshold. Typical firing interval
for a neuron is 20ms to 200ms [21], orders of magnitude slower
than CMOS transistors switching times. Synapse is the connection
between two neurons; each neuron has hundreds to thousands of
synaptic connections.

Structure. Neurons are spatially organized in two ways, see
Figure 1. Horizontally, they are grouped in 6 layers [15], and the
convoluted form of the cortex simply corresponds to the folding
of these 6 layers within a restricted volume. Vertically, they are
grouped into structures known as cortical columns or hypercolumns
(HCs). The HCs are decomposed into minicolumns (MCs) con-
taining approximately 200 neurons; groups of 50 to 100 such MCs
correspond to a HC. The term cortical column is sometimes used

for both types of columns, though, in biology, it usually refers to
HCs.

Within and across cortical columns, there are numerous forward,
backward (called feedback) and lateral connections. These connec-
tions can be either excitatory (they can increase the output of the
target neuron) or inhibitory (they decrease its output). This multi-
directional flow of information can be observed at different levels
of granularity: within a cortical column, across cortical columns,
and across regions which derive from the hierarchical organization
of cortical columns.

2.2 Cortical Operations: Automatic Abstrac-
tion

While the cortical structure of certain regions of the brain, such
as the visual cortex, has been investigated for a long time, quantita-
tive models, consistent with physiological data, and capable of ac-
counting for complex visual tasks, were proposed only recently [32,
33]. Such models are particularly valuable because they provide an
implementable explanation for automatic abstraction. It is believed
that cortical regions operate by progressively abstracting and ma-
nipulating increasingly complex notions throughout the neural hi-
erarchy [26].

For instance, from the set of pixels of an image, the visual cortex
will first identify segments, then elementary shapes such as angles
and intersections, and increasingly complex combinations, such as
objects found in our environment, see Figure 2. This automatic
abstraction capability for various inputs (visual, auditory, olfactory
but also symbolic) partly explains why the neocortex still outper-
forms traditional computers for a number of tasks. Emulating such
capability is thus a major step in building computing systems that
can compete with at least some processing characteristics of the
brain.

2.3 Biological vs. Artificial Neural Networks
In terms of developing neural models, the machine-learning com-

munity pursues a different goal than the neurobiology community:
to build the most efficient classification algorithms. Instead, the
neurobiology community seeks to build models of neural networks
which shall ultimately emulate the whole range of biological neu-
ral networks’ capabilities, classification being only one of them.
Our end goals are more in sync with the neurobiology community:
emulate biological neural networks with the goal of reproducing a
large range of their capabilities, along with the additional goal of
achieving computational efficiency.

There are additional significant differences between biological
and artificial neural networks. Both types of networks typically
rely on different learning strategies. ANNs often rely on back-
propagation for learning classification tasks: the correct answer
is known and is fed back through the network by adjusting the
synapse weights based on the network error; this form of learn-
ing is called supervised learning [14]. Biological neural networks
rely on what the machine-learning community calls unsupervised

learning: the correct answer is not known, but the network learns
through repeated exposure to the input via local learning rules, i.e.,
Hebbian learning [4]. There may also exist indirect feedback, e.g.
reward/punishment (reinforcement learning) [37].

Another major difference between biological and artificial neural
networks is the attention given to the network structure. ANNs
often rely on full connectivity, or random structures [14]. Recent
progress in neurobiology [10, 3] show that the network structure
and the nature and arrangement of connections are complex and
play a major role in the abstraction capabilities of the network.

Finally, both single and multi-layer perceptron models are highly



Figure 1: Forward, feedback and lateral connections

between neurons and cortical columns.

Figure 2: Increasingly complex visual abstractions (segments,

angles and long segments, complex shapes, etc.).

intolerable to permanent hardware defects. Emmerson et al. [8]
show that even a slight amount of faulty behavior (either in the per-
ceptron or the connections) can significantly deteriorate the recog-
nition rate of these models.

2.4 Cortical vs. Traditional Microarchitectures
The externally-observable operation of many systems can be re-

produced with a behavioral model that operates at an appropriate
level. As architects, we are familiar with many examples of such
behavioral models. Increasingly high-level models often aggregate
the behavior of lower-level elements in time and/or in space. For
example, a gate-level model of a digital circuit removes details re-
lated to individual transistors and does not model transient switch-
ing behavior, reporting only steady-state logic values. Typically,
the precision of these models varies inversely with their computa-
tional demands, and an appropriate model must be chosen to satisfy
both reasonable time to completion and sufficient precision.

Sandberg and Bostrom provide a thorough introduction to neu-
ral modeling, and identify eleven different levels of model, ranging
from ANNs all the way to molecular dynamics and even quantum-
level simulation [30]. They argue that brains can be emulated with-
out higher-level algorithmic understanding: as long as biological
details are measured carefully and replicated faithfully, a feline
brain, or even a human brain, will “boot up” and work as expected.
A recent experiment showed that a large-scale supercomputer (IBM
Blue Gene/L) possesses the computational throughput for modeling
a rat cortex using this approach within an order of magnitude of real
time (9x slowdown) [1]. And the DARPA Synapse [6] program has
set a goal of scaling emulation up to a feline cortex.

In contrast, as architects, we want to build cortically-inspired
computing systems which emulate selected functional subsets of
the human cortex. This requires detailed high-level algorithmic un-
derstanding of the cortical properties, rather than simply precisely
reconstructing the biological baseline. It also requires high compu-
tational efficiency, which suggests developing high-level behavior
models emulating cortical functionality. The pitfall is development
of high-level but unfaithful models which fail to emulate the tar-
get functions because they do not capture the key aspects of their
biological implementation. For that reason, such high-level mod-
els must be validated against lower-level, less computationally ef-
ficient, but biologically plausible models.

This paper is a first step in that direction; we describe a cor-
tical column-level model that matches existing physiological data
for structure and operations, and that is capable of one critical as-
pect of cortical computation: feed-forward sensory processing and
automatic abstraction along the lines of the visual cortex (which is
relatively well understood in the neuroscience literature). We then
provide and evaluate our implementation of the cortical model and
show that the online automatic abstractions and robustness proper-
ties of biological networks translate into an intrinsic tolerance of
the model to permanent hardware defects on a GPGPU architec-
ture.

2.5 Silicon-Based Implementation
We do not present a specific silicon-based implementation in this

article, because the recent progress in neurobiology, which moti-
vate this work, relate more to the structure and connections between
neurons, than to the behavior of neurons and synapses themselves.
As a result, the neural arrangements presented in this article can
be readily implemented in silicon by leveraging the large body of
work on hardware implementation of artificial neural networks [16,
31]. Recent hardware implementations of ANNs, especially those
which leverage analog or hybrid digital-analog structures [31], pro-
vide very low power consumption. Finally, one of the major assets
of ANNs is their inherent robustness to transient faults. They are
robust to transient faults because information/decisions are aver-
aged out over multiple neurons, so one neuron temporarily provid-
ing erroneous information has no catastrophic impact [9].

3. A BIOLOGICALLY PLAUSIBLE AND EF-

FICIENT MODEL FOR A CORTICAL MI-

CROARCHITECTURE
In this section, we present our cortical column model which

builds upon the cortically inspired hierarchical learning model pro-
posed by Hashmi et al.. [11, 12, 13]. As mentioned in Section 2,
the key feature of our model is to implement the notion of auto-

matic abstraction. This notion was first proposed by neuroscien-
tists in the HMAX model, see Riesenhuber et al. [27]; this model
itself relies on physiological data of large-scale biological neural
networks. However, in that model, the synaptic connections and
values are precisely preset. As a result, this model does not have



the robustness capabilities that we are seeking (losing a neuron or
a synapse can drastically affect functionality), nor can such pre-
cise wiring occur in the biological case either. Therefore, if we can
implement a model with similar abstraction capabilities by only re-
lying on stochastic connections, we achieve the desired robustness
capabilities; and in the process, we actually improve the biological
resemblance of the model.

3.1 Input and Receptive Field
In the mammalian brain, a nerve path transfers visual data from

the retina to the LGN (Lateral Geniculate Nucleus) cells [20]. LGN
cells detect contrast: they react strongly to an illuminated point sur-
rounded by darkness (on-off cells) or conversely to a dark point sur-
rounded by light (off-on cells). These cells are spatially distributed
with on-off and off-on LGN cells intertwined [28], roughly operat-
ing like a pixel sensor. The output of the LGN cells is then fed to
the rest of the visual cortical hierarchy.

Modeling biology, before exposing the visual inputs to our model,
they are preprocessed using the LGN transform. In our model, we
consider a regular spatial distribution (grid-like) of LGN cells i.e.
one on-off and one off-on cell per pixel. We have also experimented
with more random distributions of LGN cells without noticeable
differences. From these experiments, we have concluded that the
only important factor is the spatial density of LGN cells with re-
spect to the image resolution.

The receptive field is a tool used by biologists to describe what a
cell (LGN or any neuron in the visual cortex) “sees”. The receptive
field of an LGN cells is two concentric circles made up of retinal
cells. An on-off LGN cell shows high activation if the retinal cells
in the middle of its receptive field have high activation while the
surrounding retinal cells have low activation i.e. light surrounded
by darkness. On the other hand, an off-on LGN cell shows high
activation if the retinal cells in the middle of its receptive field have
low activation while the surrounding retinal cells have high activa-
tion. The receptive field of LGN cells is shown on the bottom of
Figure 3.

3.2 Connectivity
As explained before, neurons are arranged into layers within

a cortical column (or minicolumn). Furthermore, neurons con-
nect to neighboring neurons (either within or between columns)
with a Gaussian probabilistic law, i.e., the probability of connection
decreases with distance. Empirically, the connectivity is actually
fairly dense (about 70%), almost uniform, within a given neighbor-
hood [19], and drops afterward [28]. This suggests that neurons
within a restricted neighborhood are almost fully connected.

Based on these biological findings, in our model, we group the
minicolumns (MCs) into hypercolumns (HCs) with the following
rules (see Figure 4): First, a MC within a HC is fully connected to
all the MCs within the same HC via lateral inhibitory connections.
This emulates a winner-take-all sort of a behavior among the MCs
within an HC. Second, all the MCs within a HC share the same
receptive field i.e. the MCs belonging to the same HC are con-
nected via excitatory feedforward connections to the same MCs of
the lower level HCs (albeit with different synaptic weights). Fig-
ure 4 demonstrates the connectivity among the MCs within a HC
and also the connectivity among HCs at various hierarchical levels.
It should be noted that the MCs in the upper levels receive inputs
from multiple lower level MCs. Moreover, the number of HCs de-
creases rapidly from one level to the other, corresponding to a hi-
erarchy where each level width quickly shrinks. This organization
of the topology is a direct extrapolation of the hypothesis proposed
by Hubel and Wisel for the connectivity of the first levels [17].

3.3 Evaluation of Minicolumn Activity
Activity of a MC depends on the activations of its input MCs

weighted by their synaptic weights. Formally,

xi(t) = f
(

g̃i(t)
(

∑

j
Cij(t)− T

))

Cij(t) =

{

-2.0 if the weight W̃ij(t) is low

xj(t)W̃ij(t) if the weight W̃ij(t) is high

The output xi(t) of MCi is between 0 and 1 (inclusive) and we
define MCi as active at time t if its activity xi(t) > 0.7. f(X) =

1

1+e−X
is a non-linear activation function also used by traditional

ANN models. The normalized weights and gain are defined as
W̃ij(t) = Wij(t)/Ωi(t) and g̃i(t) = 10 × Ωi(t). Here, Wij(t)
is the weight of synapse j → i at time t. Ωi(t) =

∑

j
Wij(t) is

the sum of all the synaptic weights of a MC. Note that weight nor-
malization W̃ij(t) is a (simple) emulation of the “synaptic scaling”
phenomenon observed in several regions of the brain [18] and that
of the gain was inspired by the so-called “intrinsic plasticity” (i.e.
activity dependent modification of the neuron gain) observed in the
cortex [25]. T defines the robustness of a MC to noisy input and
can take a value between 0 and 1. For our experiments, we set it to
0.95.

Simple ANN models usually define the input of the activation
function simply as

∑

xjWij . The expression of Cij can be seen
as a reflection of the non-linear summation properties observed in
some dendrites [23]: when the weight Wij is low, the contribution
is very negative (non-linearity). We empirically observed this non-
linearity to be necessary for proper functional behavior.

With respect to the notion of “low” and “high” weights in Cij(t),
it must be noted that there is a form of permanent competition
between the synapses of a neuron, i.e., a form of zero-sum game
which is akin to permanent normalization. Such rescaling only oc-
curs for large synaptic weights. The definition of “low” and “high”
weights are thus:

Low Weight if W̃ij(t) < 1/Ωi(t)

High Weight if W̃ij(t) ≥ 1/Ωi(t)
.

3.4 Evaluation of Hypercolumn Activity
In our model, a HC is an abstract representation of a group of

MCs that are tightly bound together via lateral inhibitory connec-
tions. A HC gets active if any of the MC within that HC gets acti-
vated. The MCs within a HC follow a winner-take-all approach i.e.
if multiple MCs within a HC get active, the MC with the strongest
activation inhibits the rest of the activated MCs. Thus at any mo-
ment in time only on MC within a HC is active. Furthermore, the
inhibited MCs modify their synaptic weights to decrease their cor-
relation with the present input so that they do not get activated by
the same input pattern in the future.

3.5 Learning Through Repeated Exposure and
Random Firing

As mentioned in Section 2, Hebbian learning [4] is a dominant
form of learning in large-scale biological neural networks. With
Hebbian learning, if an input of a neuron is strongly activated, and
that neuron itself has a strong output, then the synapse (synaptic
weight) corresponding to that input is reinforced. Intuitively, if the
input is strong at the same time as the output, it means that in-
put plays a significant role in the output and should be reinforced.
According to this definition, the synaptic weights of an active MC
corresponding to its active inputs are increased (emulating long-
term potentiation), or decreased if the inputs are inactive (emulating



Figure 3: Illustration of automatic abstraction of complex objects

applied to visual processing with a 4-layer hierarchy. For clarity,

the MC-HC structure is not illustrated and only a fraction of the

connections is illustrated.

Figure 4: Organization of the connectivity. For clarity, this scheme

only considers two MC per HC and only shows some of the connec-

tions of a single HC in level n+ 1.

long-term depression). This weight modification is only applied to
active minicolumns xi in accordance with Hebbian learning.

As a result of Hebbian learning, at each level, minicolumns will
progressively react most strongly to inputs they receive repeatedly,
in effect learning them. In the visual cortex, these inputs cor-
respond to shapes, which get increasingly complex in the upper
levels. The shape “memorized” by a neuron can actually be “dis-
played” using a receptive field, see Figure 3.

The capability of the network to distinguish between a large
number of shapes, and to achieve rotation, translation and scal-
ing invariance, rests in its capacity to learn a large number of dif-
ferent shapes. Since all MCs within a HC receive the same in-
put (as they share the same receptive field), the main distinction
among MCs within a HC rest in their connectivity with the MCs in
the lower levels. This connectivity is modeled by modulating the
strengths of synaptic weights corresponding to various inputs to a
MC. Strong synaptic weight corresponding to a lower level MC
represents strong connectivity while 0 weight synapses are equiva-
lent to no connectivity.

Unlike traditional Hebbian learning models, we do not rely on
random initialization of synaptic weights for initial network con-
nectivity. Rather, in our model, the synaptic weights of all of the
MCs are initialized with very weak random values. This suggest
that the MCs in our model do not assume any initial connectivity
and the whole network is like a blank slate. We leverage on the
random activation property of the MCs for inducing random initial
conditions, and for perturbing the inputs of the MCs as the learn-
ing process occurs. More precisely, at each time step, each MC
has a small probability to become active even if its input do not
justify it. This corresponds to allowing random firing of the MC.
If a MC randomly fires, its synaptic weights corresponding to its
active inputs are reinforced. Thus, through this random firing be-
havior, initial network connectivity is established. We stop random

firing for MCs with strongly established synaptic weights for feed-
forward communication. We empirically observed that this random
firing allows a great variety of shapes to emerge, but that stopping
random firing is necessary to stabilize columns which have con-
verged.

The biological origins of random firing and the fact it stops after
repeated activity are the following ones. Neurons receive synaptic
inputs from all types of connections: forward, lateral, feedback. As
long as the forward synapses are weak, the combination of these
inputs creates a “synaptic noise”, akin to random firing. When
the forward connections become strong, because the neuron has
“learned” a feature, they become dominant and the neuron output
is no longer affected by the remaining “synaptic noise”. As a result,
it appears as if random firing has stopped, though it still exists but
no longer has a significant impact in the network’s behavior.

3.6 Automatic Abstraction
We now explain how the notion of automatic abstraction is im-

plemented in HC hierarchy, using our visual cortex example. Each
MC of the first level “samples” the input pixels within its receptive
field, see level 1 in Figure 3. The subsequent MCs progressively
respond to the activations of the MCs within their receptive fields
and thus learn complex shapes.

Emergence of shapes. The first-level MCs connect to the out-
put of the LGN cells. Based on the initial random activation of
the MCs, connections between the first level MCs and the LGN
cells within their receptive field are established. As explained in
Section 2.2, the LGN cells detect contrasts, and especially extract
contours. These contours of most natural shapes decompose into
tiny segments at a fine enough granularity. The first-level MCs,
initially by virtue of random firing respond to such segments, and
afterwards are strengthened through Hebbian learning. These seg-
ments progressively emerge as some of the dominant shapes in the



first-level columns, (see Figure 3). This behavior is supported by
biological evidence of the existence of Gabor filters in the first lay-
ers of the visual cortex [17]. The subsequent levels continue the
same process and learn increasingly complex shapes. For instance,
combinations of segments can produce crosses, angles, and other
complex shapes (see Figure 3).

Filtering. The MCs higher up in the hierarchy correspond to
the aggregate information (sum) of an increasingly high number
of lower level MCs. As a result, their receptive field rapidly be-
comes a murky combination of more simple shapes, and does not
carry a crisp semantic. Here, lateral inhibitory connections enable a
necessary filtering role by silencing weak minicolumns, and allow
crisper shapes (richer semantic) to emerge in upper-level columns.
These lateral inhibitory connections implement a form of max op-
erators among clusters of MCs. Formally, this lateral inhibition is
again implemented using a Hebbian learning rule i.e. if MCi is ac-
tive (xi(t) > 0.7) but there is at least one MC (say MCK ) in the
HC such that xK(t) > xi(t), then MCi undergoes lateral inhibi-
tion from K, which means in our model : (1) xi(t) = 0 and (2)
the weights incoming to MCi from active synaptic units are down-
scaled. This form of modification implements competition within
the HCs and corresponds to so-called presynaptic lateral inhibition
[36].

3.7 Summary
In summary, with such a model, there is no need for a-priori

specification or knowledge of the information to be extracted from
input data. The information is progressively abstracted into increas-
ingly complex notions. Which complex notions emerge will de-
pend on the network structure, the initial conditions and the charac-
teristics of the input data. In other words, this process implements
a form of “learning by example”.

4. MODEL EVALUATION ON GPGPU
4.1 Model Implementation

While the model described in the previous sections may eventu-
ally be realized with specialized hardware, we have investigated fit-
ting a software version of that model on a currently available archi-
tecture. The most attractive architecture we have encountered so far
is the general purpose graphics processing unit (GPGPU), specifi-
cally NVIDIA’s CUDA. In this programming model, highly paral-
lel workloads can be processed on hundreds to thousands of CUDA
threads. In current top-end CUDA devices, groups of threads are
scheduled to run on a streaming multiprocessor (SM) which is com-
posed of eight in-order cores and 16KB of fast-access shared mem-
ory [5]. CUDA makes it easy for programmers to optimize their ap-
plications through a number of different methods, including mem-
ory access coalescing and using the shared memory space as a fast-
access user-managed cache [29].

Nere et al. [24] have successfully demonstrated that the cortical
model of Hashmi et al. [13] maps well onto the CUDA architecture.
We use this CUDA based implementation for our experiments. By
mapping a single minicolumn to a CUDA thread, we can have thou-
sands of minicolumns concurrently active on a GPGPU. Since the
minicolumn’s firing is based on the dot-product evaluation of the
input and minicolumn weights, the model is an example of a high-
throughput data-intensive application CUDA was invented for. Fi-
nally, the shared memory space per SM is ideal for fast lateral com-
munication between neighboring minicolumns.

Section 3.6 describes the cortical architecture as having different
hierarchically organized components, composed of minicolumns
and hypercolumns. Similarly, NVIDIA’s CUDA framework con-
sists of a hierarchical organization, with threads, cooperative thread

arrays (CTAs), and kernel launches. The GPU-accelerated code
translates the components of the cortical architecture to the CUDA
framework. With such an organization on CUDA, the minicolumns
in a hypercolumn can easily synchronize as well as laterally com-
municate and share receptive field inputs in the fast access shared
memory space, as seen in Figure 5.

Initially, we evaluate the recognition accuracy of our model by
creating a hierarchy of multiple hypercolums and exposing it to a
subset of handwritten digit images obtained from the MNIST hand-
written digit database [22]. Our training data consists of 100 varia-
tions of each of the digits (a total of 1000 images). For this exper-
iment, we create a hierarchical hypercolumn network with 5 lev-
els. This hierarchical network contains 24 hypercolumns each with
15 minicolumns at level 0, 12 hypercolumns each with 20 mini-
columns at level 1, 6 hypercolumns each with 20 minicolumns at
level 2, 3 hypercolumns each with 15 minicolumns at level 3, and
1 hypercolumn with 15 minicolumns at level 4. After 15,000 train-
ing epochs, the hierarchical network exhibited recognition of each
of the handwritten digit images in the training dataset with 100%
accuracy. This means that, after 15,000 training epochs, each of
the handwritten examples in the training dataset (see examples in
Figure 6) is correctly assigned to the digit (0-9) it actually rep-
resents. The software model implemented on a GeForce 9800 GT
GPU achieves a recognition rate of 40 characters per second, which
is quite in comparison with respect to the biological example [35].

The test set of MNIST database consists of 10,000 images of
handwritten digits. For the test set, our model achieves an average
recognition rate of 85% when trained with 1,000 digit images. We
note that this is not comparable to the present state-of-the-art ANN
handwritten digit recognition applications. The main reason is that,
various parameters of these ANN applications are carefully tuned
in order for these applications to achieve less that 1.0% error rates.
Thus, the performance of these applications is quite specific to the
training datasets. On the other hand, our model does not rely on any
carefully tuned parameters which makes it more general and suit-
able for a wide variety of training datasets. This means that for our
model, same network can be utilized for robust recognition of dig-
its, synthetic images, and real life images. It should also be noted
that the purpose of this study is not be beat the recognition accuracy
of the state-of-the-art ANN handwritten digit applications. Rather,
we intend to show that the biologically plausible connectivity and
learning rules make our model far more tolerant to permanent hard-
ware defects as compared to traditional ANN applications.

4.2 Robustness and Inherent Fault Tolerance
Permanent defects and transient faults are not only a concern

for future architectures, but are already a prevalent issue in some
of the latest systems. For instance, the NVIDIA Fermi is the first
GPU architecture to provide SECDED error correcting code for all
DRAMs, caches and registers. Permanent defects, at design time
or during the chip lifetime, are also expected to further increase in
the future.

Currently, applications programmed for GPU chips like Fermi or
Tesla, assume that all cores of the GPU function correctly. If any
of the 512 shaders (cores) of a Fermi chip becomes dysfunctional
(increasingly likely as the number of cores increases), it would be
necessary to rewrite applications so that no task is mapped to faulty
shaders, or the compiler would have to perform that remapping au-
tomatically. Here, we consider that the programmer or compiler
is given explicit control over the shader mapping, though no such
ability is yet present in current generation GPGPUs. For instance,
all existing vision recognition applications written for GPUs would
have to go through that reprogramming or recompilation process.



Figure 5: Mapping a hypercolumn to a CUDA CTA.

Figure 6: Sample of handwritten digits obtained from MNIST

database.

Even vision recognition applications based on artificial neural net-
works would suffer from the same limitation. While ANNs are
conceptually neural networks, neither their back-propagation learn-
ing process nor their software implementation as imperative array-
based computations are defect tolerant.

The software implementation of our model for the GeForce 9800
GT GPU preserves the key concepts of the model: the connections
(synaptic weights) are initialized with weak random values, oper-
ators (sum, max) are implemented in a robust manner through a
set of synapses, there is no central control nor supervision for the
learning process since it happens in a distributed manner, yet it can
implement complex tasks such as vision recognition. Thanks to
these properties, the software implementation of our model is in-
herently robust to faulty GPU hardware. It can function properly
and thus, unlike most other applications, it can take advantage of
the GPU, without requiring any reprogramming or recompilation,
even if one or several of the cores is dysfunctional and has to be
deactivated. All that is needed is to periodically retrain the appli-
cation so that it adapts to the new configuration of the faulty hard-
ware, but again without specifying that configuration; the learning
process will automatically adjust to the faulty hardware. Naturally,
the present article only makes a demonstration of such robustness
for vision recognition, but part of our motivation for a generic cor-
tical model is to apply it to the broad range of tasks that large-scale
biological neural networks are known to tackle.

4.3 Fault Identification and Detection Model
In the case of a biological network (the neocortex), the fault

model is quite simple: if neurons or minicolumns become defec-
tive, they stop generating any activations and eventually die out.
When this type of fault occurs, other neurons/ minicolumns mod-
ify their synaptic weights to detect and interpret the feature that was
previously recognized by the damaged neuron/ minicolumn.

In our software implementation, each MC runs on a shader core,
which can have multiple failure modes. For this work, we set aside
catastrophic failures (e.g. short circuits, which crash the entire
GPU) and intermittent faults, which may lead to transient degra-
dation in recognition rate, but are handled gracefully by the forgiv-
ing nature of the cortical column algorithm (since our model uses
repeated exposures of the same image for learning and recogni-
tion, intermittent faults and transient errors are averaged out). In-
stead, we focus on permanent faults that corrupt the computation
of the minicolumn. Ultimately, due to the sigmoid nature of the
output activation functions these faults will manifest themselves as
the MC either not firing when it should (a stuck-at-zero fault), or
firing when it should not (a stuck-at-one fault).

A MC stuck-at-zero behaves the same as a damaged neuron/
minicolumn in a biological network: since it is not generating any
activity, its functionality is automatically taken over by the neigh-
boring MCs. On the other hand, the MCs that are stuck-at-one can

severely degrade the performance of our network, since all the in-
formation being generated by the MCs hierarchically below the de-
fective MC is masked by the fault. Thus, the stuck-at-one condition
must be detected and the MC deactivated.

To detect stuck-at-one conditions, we recompute the response
of the winning minicolumn on two neighboring shaders, and use
voting to determine which, if any, of the shaders is defective. To
minimize overhead, we perform this recomputation only intermit-
tenly, once every 100 iterations. This is a reasonable optimization,
since permanent faults are rare and detection latency is not critically
important for our image recognition application. In other applica-
tions, a higher-overhead, lower-latency detection mechanism may
be warranted. A shader is disabled if two of its neighbors disagree
with its result. In subsequent iterations of the model, all neighbor-
ing MCs (in the same hypercolumn) as well as upstream MCs in the
next level of the hierarchy ignore the output of the defective MC.

At this point, our model utilizes the idea of automatic abstraction
and random firing to relearn the features being recognized by the
MCs running on the defected shader core. It should be noted that
since all the MCs within a HC share the same receptive field, MCs
connected to defected MCs need not be reconnected as their output
is already being exposed to multiple MCs at the upper level in the
hierarchy.

4.4 Fast Emulation of a Faulty GPU using a
Fault-free GPU

Here, we demonstrate that we can emulate the behavior of a
faulty GPU by simply deactivating one or more MCs within our
model and running the model on a fault-free GPU. Demonstrating
this equivalence allows us to perform long-running and large-scale
experiments on the robustness of the model without incurring the
overhead of detailed simulation of a faulty GPGPU.

In order to show this equivalence, we use the simulator GPG-
PUSim configured to emulate the real GPU we validate against and
later use, the aforementioned GeForce 9800 GT; this GPU has 14
multiprocessors with 8 shader cores in each one. Initially, we use
GPGPUSim [2] to simulate the effects of deactivated shader cores
(scalar processors) on our hypercolumn model. For our experi-
ments, we add a feature in GPGPUSim that allows us to deacti-
vate a given shader core. The output of deactivated shaders remain
unchanged at zero.

On GPGPUSim, we perform the following experiment. We ini-
tialize a single hypercolumn with 32 minicolumns with a receptive
field of size 3 × 3. We expose this hypercolumn to 15 unique pat-
terns of size 3 × 3. After a few training epochs, the hypercolumn
recognizes each of the unique patterns. This means that, out of 32
minicolumns, 15 adjusted their weights so that they would fire for
one of the unique features in the training set.

At this point, we inject permanent faults in randomly selected
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FRR with spatially localized shader core deactivation.

shader cores. These shader cores are then detected and deactivated.
Then, we evaluate the impact of deactivating the defected shader
cores on the recognition rate of the hypercolumn. Note that in our
model implementation, each hypercolumn maps onto a multipro-
cessor and each minicolumn maps onto a shader core. Thus, 4
minicolumn threads map onto a single physical shader core, so that
deactivating a shader disables 4 minicolumns. The results of this
experiment are reported in Figure 7, see GPGPUSim. All the re-
sults are averaged over 20 trials unless otherwise stated. The initial
recognition rate (IRR) is the recognition rate immediately after the
shader cores are deactivated, before any retraining, while the final
recognition rate (FRR) is the recognition rate after retraining. We
then perform the following experiment on the real GPU, see HC
Model. We deactivate 4 randomly selected minicolumns by set-
ting their output to zero. Then, we similarly report the IRR and the
FRR for the real GPU.

We can draw two observations from these experiments. The first
one is the graceful degradation of the model to defects. The IRR
experiment emulates either transient faults or permanent defects
where no retraining was performed. After retraining, the recog-
nition rate remains almost perfect until the number of faulty shader
cores per multiprocessor equals 5; then 20 out of 32 minicolumn
threads have been disabled, and the remaining 12 functional mini-
columns are not numerous enough for the 15 features to be learned.
The second observation is that the GPGPUSim simulator with faulty
shaders behaves almost exactly the same as the real GPU with de-
activated minicolumns. Hence, for subsequent large-scale experi-

ments, we will emulate faulty shaders on a real GPU with deacti-
vated minicolumns.

4.5 Spatially Distributed Defects
In this section, we study the impact of faulty shaders which are

randomly spatially distributed. We construct a 6-level hierarchi-
cal network. This network contains 24 hypercolumns at level 0,
12 hypercolumns at level 1, 6 hypercolumns at level 2, 3 hyper-
columns at level 3, 1 hypercolumn at level 4 and 1 hypercolumn at
level 5 for a total of 47 hypercolumns and 940 minicolumns (each
hypercolumn contains 20 minicolumns). This network is trained
again on a sample of handwritten digits (0-9) obtained from the
MNIST database until it achieves 100% recognition rate. At this
point, we deactivate shader cores from random locations. Since
there are 20 minicolumns within a hypercolumn, deactivating one
shader core affects 2.5 minicolumns per hypercolumn on the aver-
age. Since on average 3.3 out of 47 hypercolumns map onto a sin-
gle GeForce 9800 GT multiprocessor, each deactivated shader core
affects 8.5 minicolumns on average. For example, for the GeForce
9800 GT, deactivating 6.25% of the shader cores means 7 out of
112 shader cores are deactivated. Thus, a total of around 60 mini-
columns throughout the hierarchy are disabled. After deactivating
the shader cores, we evaluate IRR. We then retrain the network un-
til it achieves a stable recognition rate and measure the FRR. The
results for this experiment are presented in Figure 8. We can ob-
serve the same behavior as in the validation experiment, though it
can be noted that 100% recognition accuracy can be achieved even
with only 50% functional shader cores.

We also want to illustrate that the robustness of the model can di-



rectly benefit from redundant parallel hierarchies without any spe-
cial algorithmic modification. We create 3 parallel hierarchical
networks similar to the one described above. Each hypercolumn
within these hierarchies contains 20 minicolumns. The output of
each of these hierarchies is fed to an association network which
pools minicolumns in the top level of each of the hierarchies firing
for the same digit. Thus, if a minicolumn corresponding to a digit
in any of the 3 hierarchies fires, the minicolumn in the association
network associated to the digit will fire. Essentially, a minicolumn
in the association network can be thought of as an ’OR’ of of its
inputs from the each of the hierarchical networks.

Each of these 3 hierarchies is trained on a sample of MNIST
digits. After training, we repeat the same shader core deactivation
process as described above. For this case, deactivating a single
shader core once again affects 2.5 minicolumns per hypercolumn
on the average. But for this case on the average 10 hypercolumns
map onto a single multiprocessor. Thus deactivating a single shader
core affects approximately 25 minicolumns throughout the 3 hier-
archical networks. Figure 9 shows the IRR and FRR for this exper-
iment. Comparing with Figure 8, we see that the IRR of the larger
hierarchical network degrades significantly slower and its FRR is
similarly improved. From this result, we can also infer that simi-
lar benefits can be achieved by simply increasing number of mini-
columns per hypercolumn.

4.6 Spatially Clustered Defects
Because hardware defects can also occur in spatial clusters, we

evaluate the impact of such defects on the robustness of the model.
In the model, neighbor minicolumns are more likely to carry simi-
lar information, or to interact in an inhibitory fashion. As a result,
clustered defects can potentially be more harmful to the task func-
tionality. On the other hand, the fact that the information quickly
spreads out across hierarchy levels can compensate for that vulner-
ability. We assess the sensitivity to clustered defects in the follow-
ing experiment. We deactivate 5 neighbor shader cores at a time
and plot the results in Figure 10. We can see that if the deactivated
shader cores are used for minicolumns higher in the hierarchy, it
takes fewer retraining iterations than if they the minicolumns are
lower in the hierarchy. This is mainly due to the fact that if a mini-
column at level n is disabled, all the hypercolumns above level n
getting input from the disabled minicolumn have to retrain them-
selves to relearn the lost feature. This is an incremental process:
first, the hypercolumn in level n will relearn the lost feature; then,
given the new activation pattern in level n minicolumns, level n+1
hypercolumns must relearn this pattern; this learning is repeated all
the way to the top of the hierarchy.

4.7 Other GPU Defects
Apart from shader core defects, a number of other GPU compo-

nents e.g. datapath, storage, and scheduler can incur defects.
Datapath Defects: A faulty datapath means that all the shader

cores within the affected multiprocessor get corrupt input data. As
a result, all the corresponding shaders must be deactivated, and the
defect is equivalent to clustered shader defects, investigated in Sec-
tion 4.6.

Storage Defects: Faulty storage can occur either within shader
cores (registers), or at the level of caches or memory banks. In both
cases, if ECC cannot compensate for the permanent defects, one or
several shader cores must be deactivated. In the former case, one
shader must be deactivated. In the latter case, the set of shader
cores which can fetch data from/store data into the correspond-
ing caches and banks can be deactivated. Within a multiprocessor,
there is a shared memory accessed by all the shader cores, and each

of the shader cores has its local memory as well. Permanent local
memory defects can be dealt with by deactivating individual shader
cores. Shared memory defects can result in the deactivation of the
whole multiprocessor, but not the whole GPU. Apart from local
and shared memories, there are also global, constant, and texture
memories. All the shader cores can access any of these memories.
Thus, non-correctable defects in these memories can result in the
loss of the entire GPU.

Thread Scheduler Defects: A faulty thread scheduler can mani-
fest itself in a number of ways: sending threads to the wrong shader
cores or multiprocessors, sending wrong memory addresses to the
shader cores, etc. These cases can be again handled by identifying
and deactivating the effected shader cores. Another solution is to
consider the scheduler’s relative footprint as small enough to afford
a robust implementation using larger devices.

Overall, almost all GPU defects can be dealt with by deactivating
one or multiple (distributed or clustered) shader cores, even if they
do not directly affect shader cores themselves.

5. CONCLUSIONS AND FUTURE WORK
In this article, we advocate leveraging new advances in neuro-

science to investigate computing systems which process informa-
tion by building and then manipulating increasingly abstract repre-
sentations of information, rather than quickly performing a large set
of elementary computations. While the application scope of these
computing systems is restricted compared to traditional comput-
ers, we know the biological example can significantly outperform
traditional computers for a range of tasks; moreover, this comput-
ing approach blends well with upcoming limitations of technology
(speed, power dissipation, reliability). In the short to medium term,
commodity GPGPUs are a promising substrate for deploying large-
scale cortical models based on these principals, while direct silicon
implementations are still unavailable. We demonstrate that the in-
herent fault tolerance of cortical networks maps cleanly to failure
modes that can occur in commodity GPGPUs, and develop a stuck-
at fault model for such systems. Fault injection experiments vali-
date our intuition that such systems are inherently far more tolerant
to permanent faults than conventional computing systems.

In the future, we plan to explore a number of directions. First, we
want to add other cortical features like feedback, attention, tempo-
ral learning, and memory to our learning model. Second, we plan
to study the performance of our model on other interesting work-
loads like game-bots, speech to text conversion, etc. We also plan
to study the mapping of our cortical model to hardware circuit im-
plementation.
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