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Abstract

A wearable gaze tracking device can work with users in daily-life.
For long time of use, a non-active method that does not employ an
infrared illumination system is desirable from safety standpoint. It
is well known that the eye model constraints substantially improve
the accuracy and robustness of gaze estimation. However, the eye
model needs to be calibrated for each person and each device. We
propose a method to automatically build the eye model for a wear-
able gaze tracking device. The key idea is that the eye model, which
includes the eye structure and eye-camera relationship, impose con-
straints on image analysis even when it is incomplete, so we adopt
an iterative eye model building process with gradually increasing
eye model constraints. Performance of the proposed method is eval-
uated in various situations, including different eye colors of users
and camera configurations. We have confirmed that the gaze track-
ing system using our eye model works well under general situa-
tions: indoor, outdoor and driving scene.
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1 Introduction

First Person Vision (FPV) [Kanade 2009] is a new concept that aug-
ments human cognitive functions by working side by side with the
user. The goal of FPV is to work with people to understand their be-
havior and intent for the purpose of improving their quality of life.
Gaze has an important role in the FPV concept, especially when
wearable gaze tracking is required [Hayhoe and Ballar 2005].

Earlier gaze tracking systems used an intrusive method(using con-
tact lens with a hole for pupil), but more recent ones use computer-
vision based non-intrusive methods (video-oculography) for eye-
position detection. Video-oculography is classified into two cate-
gories: appearance-based and feature-based approaches:

• An appearance-based approach uses an entire eye image as
the feature descriptor and maps the feature descriptor to gaze
position [Tan et al. 2002]. It works well in both indoors and
outdoors, but is sensitive to illumination change and less ac-
curate compared with the next feature-based approach.

• A feature-based approach uses corneal reflection [Ohno and
Mukawa 2004], pupil contour [Pérez et al. 2003], and iris con-
tour [Hansen and Pece 2005] to estimate eye position. Corneal
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Figure 1: Overview of our device and method: (up) devices of eye
and outside cameras that can attached glass easily , (down) pro-
posed method for itelative3D eye model building automatically.

reflection and pupil contour features need Infrared Ray(IR) re-
flection, while iris contour feature can be detected under natu-
ral lighting. When with IR-illumination, good accuracy (less
than 1 degree) is achieved. Comprehensive surveys can be
found in [Hansen and Ji 2010; Morimoto and Mimica 2005].

As a device to be used daily, it is undesirable for the eye to illumi-
nate by IR for a long period, especially for older people and chil-
dren [Basilio Noris and Billar 2011], even if intensity of IR meets
the safety standards. Not using IR illumination requires a vision
technique to locate the iris or pupil. Li and Parkhurst [2006] pro-
posed ellipse fitting with RANSAC scheme, and Vester-Christensen
et al. [2005] employed an active-contour method to track the iris or
pupil based on a combination of a particle filter and the EM algo-
rithm. These methods still lack robustness in illumination change
and handling occlusion.

Recently, Wu et al. [2007] improved robustness to occlusion by in-
troducing 3D eye models that consist of 3D-eyeballs, iris and eye-
lids in order to allow the device to work under natural light. How-
ever, their method needs to measure, at run-time, as many as seven
parameters (eyeball size, iris size and eyelids positions) in every
frame, which made the eye position detection difficult. Tsukada
et al. [2011] showed that at run-time, only two parameters are ac-
tually to be measured, and achieved accuracy and robustness that
are competitive to commercial products [NAC -EMR-9] that use
IR. Their method, however, still required to build an accurate eye
model and camera position by a time consuming and cumbersome
manual process.

We propose a method to build an accurate 3D eye model automati-
cally by extending the Tsukada’s approach. The model specifies the
size of the eyeball and iris, and the external relationship between
the eye camera and eye. As shown in Figure 1, our model building
method consists of feature extraction (ellipse fitting) and an iterative
eye model parameter estimation process. We adopt a coarse-to-fine
approach in adding constraints from eye model adaptively.



2 Eye Model Description

Referring to Figure 2, our eye model description includes an eyeball
sphere with radius re, and the iris circle with radius rI . The center
C is located at T = [tx ty tz]

⊤ from camera center c . Our goal
is to estimate P = (re, rI , tx, ty, tz) automatically from a training
data set.

Figure 2: Description of our eye model

We set the Z-axis of the eye coordinate to pass camera center. The
intrinsic camera parameters are: focal length f and image cen-
ter (u0, v0). We assume that these intrinsic camera parameters
have been calibrated in advance. When the projected position of
iris center (uc, vc) is given, the projected iris shape under weak-
perspective approximation is an ellipse whose major/minor axes
a, b, the rotation angle φ are expressed as follows:
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The location (xc, yc) is the ellipse center position in the camera
coordinate, given by
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where zp is the distance along z-axis between the camera center and
the iris center as shown in Figure 2.

3 Eye Model Building Method

We describe how to estimate model parameters P from training
data {I1, I2, · · · , I}, each of which is an image of the eye at var-
ious positions. The method proceeds in four steps, as shown in
Figure 3. First, we obtain an initial ellipse fitting to each image
in the training data set, and then remove outliers using grid-based

Figure 3: Flowchart of Eye Model Building

clustering. Next, the 3D eye model is estimated by repeatedly im-
posing ellipse fitting. Last, we perform the final refinement of the
3D eye model.

3.1 Feature extraction: Ellipse Fitting (Step1)

We extract ellipse features from training data by Tsukada
method starting with the initial eye model parameters: P 0 =
[re0, rI0, tx0, ty0, tz0]. Obviously, the eye model imposes on the
location and shape of the ellipse that appear in the image. The
more reliable the eye model is, the stronger constraints can be im-
posed. Since the initial eye model P 0 may include some errors,
the Tsukada approach uses a parameter λ that controls the degree
of imposing model constraints in ellipse fitting1. The λ takes range
from 0 to 1; λ = 0 means no constraint, and λ = 1 means fitting
the projected ellipse from the model with no deformation allowed.
This way, from the i-th training data set, an ellipse ei is extracted,
ei = [ai, bi, xei, yei, φi] as defined by Equation (1a),(1b),(1c) and
(2). Images that contain eye blinking or blurring due to quick sac-
cades are excluded by using the number of fitted edges and fitting
score. Then, ellipse-set E = {e1, e2, · · · , eM′} are produced.

3.2 Outlier Removal (Step2)

There are ill-fitted ellipses in ellipse set E . We introduce three steps
how to remove ill-fitted ellipses as follows:

• Set grids S(h,w), h = 1, · · · , H, w = 1, · · · ,W , to cover
whole eye with reference to eye corner, and cluster each el-
lipse using the nearest neighbor distance method that is from
ellipse center (xei, yei) to grid center as shown in Figure 4
(up).

• Each grid S(h,w) has some ellipses, e.g. {e1, e3, e10}, and
the average ellipse is represented as ēSh,w

. We find ill-fitted

1λ in this paper is represented by λ1in equation (19) in [Tsukada et al.
2011] .



ellipses using an overlapped area g
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and ellipse ej , where j represents the index
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indicates their intersection. The g has a value from
0 to 1: g = 0 means perfectly overlapped, and g = 1 means
non-overlapped.

• Ellipses that have a higher overlapped-score than threshold τG
are removed. Then, we remove the grids where the number of
ellipses are smaller than threshold τN due to low reliability.

Finally, we pick up a constant number of ellipses, τNP , from
each grid for equalization, and set a new ellipse-set E’ =
{e1, e2, · · · , eN} , N ≦ M ′.

3.3 Rough 3D Eye Model Building(Step3)

Given ellipse-set E’ = {e1, e2, · · · , eN}, a projected ellipse epi is
estimated using parameters P and Equation (1a),(1b) and (1c). The
3D eye model parameter P ∗

0 is estimated by solving the equation:

P
∗

0 = argminimize
P

G (ei, epi) (4)

where the cost function G is expressed as G =
∑

i=1 toN

g(ei,epi)/N.
The function g was introduced in Equation (3) for similarity cal-
culation. In order to be robust against outliers, we set a maximum
value of gMAX .

Initial ellipse-set {e1, e2, · · · , eN} are not accurate enough to
estimate the precise 3D eye model, so we repeat Step1~3 un-
til they converge. During this iterative process, we increase
the constraint λ gradually. The convergence criteria defined
as the number of iterative reaches predefined parameter τLoop,
|Gcurrent −Gprevious| ≤ δG or minimum value GMin.

3.4 3D Eye Model Refinement (Step4)

We refine parameter P ∗
0 using a cost function of Q . The function

Q is introduced by Tsukada and consists of two terms: (1) distance
between projected ellipse and edges di,j (j = 1, · · ·Ki), and Ki

is the number of edges of i-th image; and (2) the difference of an-
gle between ellipse’s normal direction and gradient ∇di,jon each
edge point. The projected ellipse epi is estimated by the Tsukada
method where parameter λ is set as λ = 1 , and the cost function
Q is expressed by

Q (di, epi) =

∑

j=1 toKi

(dsitance(di,j ,epi)+β·angle(∇di,j ,epi))

Ki

(5)
where β is a coefficient of angle difference, this is a predefined
parameters. Final 3D eye model and camera position are obtained
by

P
∗

= argminimize
p

∑

i=1 to N′

Q(di , epi) (6)

In practice, the statistics data say that eye ball size of an adult is
almost the same radius 11.5~12.5[mm], and there is limit of iris
size, with radius 5~7[mm] , so we add these limitations in Equation
(4) and (6).

Figure 4: Outlier removal:(up): grid images for clustering. “Yel-
low grid” means target grid. (down left): All ellipses in the target
grid. Red ellipse is an average ellipse. (down right): Green are se-
lected ellipses in step2. Red is the average ellipse. Large difference
ellipses are removed.

4 Evaluation of Our Method

4.1 The Wearable Gaze Tracking Device tested

The device has two cameras: one is for capturing the eye and an-
other is for out-side. The resolution of eye camera is 256 × 144
(color) and the outside camera is 1280 × 720 (color). A unit con-
taining cameras and an associated control board with USB interface
can be attached on a pair of glasses. The unit connected to a PC for
capturing images with synchronization works at ~30 fps.

4.2 Quantitative Evaluation

We evaluate the performance of our proposed method using the
error score of ellipse fitting. In the experiments, we applied our
method to five people who have various eye color and different
eye-camera position. To capture various eye positions for train-
ing images, we use monitor and control marker positions flexibly.
Throughout our experiments, the number of training data set is
400 and test data set is 100 images, which do not include blink or
blurred images. The grid sizes are H = 36 and W = 64, and pre-
defined parameters are set as follows: {λinitial = 0.05, β = 1.0,
τG = 0, τN = 5, τNP = 7, τLoop = 3, gMAX = 8, δG = 0.1,
Gmin = 30}. It takes about 2 hours to build a 3D eye model in
Matlab.

Table 1 shows the experimental result: Q score and parameter (eye
size and camera position), i.e.(re, rI , tx, ty, tz). The Q score is de-
fined as cost function Q Equation (5). Our method is more accurate
than the manual model building. Also robustness, (i.e.standard de-
viation) is far superior. You can see that the Q score of person D is
worse than others, this is because the reflection of lighting was so
strong that edges had many outliers in training data set.



Table 1: Compared our method to manual building model using average and standard deviation of ellipse fitting score.

person A
Brown eye

person B
dark Brown

with contact lens

person C
Brown-gray eye

person D
Blue-gray eye

person E
Blue eye

Q score:
Manual[avg,std]

31.02± 16.91 32.33± 8.63 33.47± 19.71 65.80± 32.98 50.91± 44.18

Q score:
Our method[avg,std]

24.22± 14.07 27.43± 7.60 30.74± 8.34 42.35± 22.12 35.49± 13.61

Camera Position
Eyeball, iris size

[−6.25 1.95 50.60]

[5.11 11.85]

[−1.99 − 2.30 54.39]

[5.40 11.96]

[−3.96 − 4.51 63.04]

[5.03 11.61]

[0.20 2.81 54.27]

[5.24 11.99]

[−3.20 − 4.81 64.67]

[5.21 11.88]

Figure 5: Examples of gaze tracking results using our method. (a) Apply to blue eye. (b) Outdoor scene. (c) Driving scene. (d) Sports scene.
(e)Combination with Face Detector. (f) Apply our method to IR images that are captured by commercial gaze tracking product.

4.3 Examples of Gaze Tracking using our Eye Model

We apply our eye model building method to the Tsukada’s ap-
proach. As shown in Figure 5, test data includes several different
situations: a) different eye color, b) outdoor, c) driving, d) sports , e)
combination with Face Detector and f) apply to IR images (for pupil
detection). The gaze tracker that used our model building method
works robustly even with different eye color, existing light reflec-
tion and occlusion (Please see supplementary materials). In test
data f), we apply the exact same method, and we did not add any
process such as corneal reflection removal, but it works robustly.

5 Conclusion

We propose a method to build a 3D eye model automatically for
wearable gaze tracking. Our method adopts coarse-to-fine approach
by adding eye model constraints iteratively, and achieves more ac-
curate and robust ellipse fitting.

References

BASILIO NORIS, J.-B. K., AND BILLAR, A. 2011. A wearable gaze
tracking system for children in unconstrained environments. Computer

Vision and Image Understanding.

HANSEN, D. W., AND JI, Q. 2010. In the eye of the beholder: A survey
of models for eyes and gaze. IEEE Transactions on pattern analysis and

machine intelligence 32, 478–500.

HANSEN, D. W., AND PECE, A. E. 2005. Eye tracking in the wild. Com-

puter Vision and Image Understanding 98, 155–181.

HAYHOE, M., AND BALLAR, D. 2005. Eye movements in natural behavior.
TRENDS in Cognitive Sciences Vol.9 No.4, 188–194.

KANADE, T. 2009. First person vision. In First Workshop on Egocentric

Vision(in conjunction with CVPR2009).

LI, D., AND PARKHURST, D. 2006. Open-source software for real-time
visible- spectrum eye tracking. In The 2nd Conference on Communica-

tion by Gaze Interaction (COGAIN).

MORIMOTO, C. H., AND MIMICA, M. R. 2005. Eye gaze tracking tech-
niques for interactive applications. Computer Vision and Image Under-

standing 98 Issue 1, 4–24.

NAC. -EMR-9. Nac-emr-9 eye tracking products. In
http://www.nacinc.com/products/Eye-Tracking-Products/EMR-9/.

OHNO, T., AND MUKAWA, N. 2004. A free-head, simple calibration,
gaze tracking system that enables gaze-based interaction. In ETRA: eye

tracking research & application symposium.

PÉREZ, A., CÓRDOBA, M. L., GARCÍA, A., MÉNDEZ, R., MUÑOZ,
M. L., PEDRAZA, J. L., AND SÁNCHEZ, F. 2003. A precise eye-gaze
detection and tracking system. In WSCG.

TAN, K.-H., KRIEGMAN, D. J., AND AHUJA, N. 2002. Appearance-based
eye gaze estimation. In Workshop on Applications of Computer Vision.

TSUKADA, A., SHINO, M., DEVYVER, M., AND KANADE, T. 2011.
Illumination-free gaze estimation method for first-person vision wear-
able device. In Computer Vision in Vehicle Technology:From Earth to

Mars(In conjunction with ICCV 2011).

VESTER-CHRISTENSEN, M., LEIMBERG, D., ERSBØLL, B. K., AND

HANSEN, L. K. 2005. Deformable models for eye tracking. In Den

14. Danske Konference i Mønstergenkendelse og Billedanalyse.

WU, H., KITAGAWA, Y., WADA, T., KATO, T., AND CHEN, Q. 2007.
Tracking iris contour with a 3d eye-model for gaze estimation. In Asian

Conference on Computer Vision.


