
Aberystwyth University

Automatic adaptation of hypermutation rates for multimodal optimisation
Corus, Dogan; Oliveto, Pietro S.; Yazdani, Donya

Published in:
FOGA 2021 - Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms

DOI:
10.1145/3450218.3477305

Publication date:
2021

Citation for published version (APA):
Corus, D., Oliveto, P. S., & Yazdani, D. (2021). Automatic adaptation of hypermutation rates for multimodal
optimisation. In FOGA 2021 - Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms (FOGA 2021 - Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms). Association for Computing Machinery, Inc. https://doi.org/10.1145/3450218.3477305

Document License
CC BY-NC

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 22. Aug. 2022

https://doi.org/10.1145/3450218.3477305
https://pure.aber.ac.uk/portal/en/publications/automatic-adaptation-of-hypermutation-rates-for-multimodal-optimisation(efe3089d-064e-41d7-918c-ebd2ce756680).html
https://pure.aber.ac.uk/portal/en/publications/automatic-adaptation-of-hypermutation-rates-for-multimodal-optimisation(efe3089d-064e-41d7-918c-ebd2ce756680).html
https://doi.org/10.1145/3450218.3477305

Automatic Adaptation of Hypermutation Rates for Multimodal
Optimisation

Dogan Corus
Kadir Has University
Fatih, Istanbul, Turkey

dogan.corus@khas.edu.tr

Pietro S. Oliveto
The University of Sheffield

Sheffield, UK
p.oliveto@sheffield.ac.uk

Donya Yazdani
Aberystwyth University

Aberystwyth, UK
d.yazdani@aber.ac.uk

ABSTRACT

Previous work has shown that in Artificial Immune Systems (AIS)
the best static mutation rates to escape local optima with the ageing
operator are far from the optimal ones to do so via large hyper-
mutations and vice-versa. In this paper we propose an AIS that
automatically adapts the mutation rate during the run to make
good use of both operators. We perform rigorous time complexity
analyses for standard multimodal benchmark functions with sig-
nificant characteristics and prove that our proposed algorithm can
learn to adapt the mutation rate appropriately such that both age-
ing and hypermutation are effective when they are most useful for
escaping local optima. In particular, the algorithm provably adapts
the mutation rate such that it is efficient for the problems where
either operator has been proven to be effective in the literature.

CCS CONCEPTS

• Theory of computation → Theory of randomized search

heuristics;

KEYWORDS

randomized search heuristics, artificial immune systems, evolution-
ary algorithms, hypermutations, ageing, multimodal optimization,
parameter adaptation, runtime analysis
ACM Reference Format:

Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2021. Automatic Adapta-
tion of Hypermutation Rates for Multimodal Optimisation. In Foundations of

Genetic Algorithms XVI (FOGA ’21), September 6–8, 2021, Virtual Event, Aus-

tria. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3450218.
3477305

1 INTRODUCTION

It is well understood that the performance of virtually all general
purpose optimisation algorithms depends crucially on the param-
eter settings of their variation operators, used to create new can-
didate solutions, and of their selection operators used to decide
whether to accept new solutions or keep previously identified ones.
For instance the performance of local search algorithms [31] on
a given problem class depends on the neighbourhood size choice,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FOGA ’21, September 6–8, 2021, Virtual Event, Austria

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8352-3/21/09. . . $15.00
https://doi.org/10.1145/3450218.3477305

while for simulated annealing [27] also the cooling schedule used
in the selection phase comes into play. Nature inspired optimisation
algorithms often come with parameter ranges that are suggested by
the underlying paradigm that they imitate. For example, traditional
generational evolutionary algorithms (EAs) and genetic algorithms
(GAs), inspired by Darwinian evolution, naturally require lowmuta-
tion rates or their runtime will be exponential even for any function
with unique optimum [4].

In recent years increasing evidence has been provided that steady-
state EAs and GAs become more efficient either at hillclimbing or at
escaping from local optima of multimodal optimisation problems (or
both) by using considerably higher mutation rates than those that
have traditionally been recommended [2, 6, 7, 14, 34, 36]. In contrast
to generational evolutionary systems where all generated solutions
form the new population, the use of artificially introduced elitism
in steady-state EAs and GAs allows them to considerably increase
the mutation rate without quickly deteriorating their performance
i.e., it does not matter if solutions of low quality are created by
the higher mutation rates as these will not be accepted [5]. This
advantage has been exploited recently by so called Fast EAs that
use power-law mutation operators which allow for large muta-
tions more often than the binomial distributions of the traditional
standard bit mutations (SBMs) of EAs [19, 22, 23]. However, the
elitism introduced into steady-state algorithms does not allow them
to be competitive on problems where non-elitist algorithms (e.g.,
simulated annealing) are particularly efficient [13, 24, 29, 32].

Artificial immune systems (AISs), inspired by Burnet’s clonal
selection working principle of the natural immune system of verte-
brates [3], naturally apply high mutation rates (i.e., hypermutation)
which have also been proven to escape from local optima more effi-
ciently than SBMs. Furthermore, by using an ageing operator, they
have been shown to also be capable of escaping from local optima
by accepting solutions of lower quality (i.e., essentially through
non-elitism). The effectiveness of both hypermutations and ageing
at escaping local optima has been proven on standard multimodal
benchmark functions with significant structures from the litera-
ture [10], as well as for identifying arbitrarily good approximations
for NP-Hard problems such as NumberPartitioning (EAs using
SBMs may get stuck on poor 4/3 approximations) [9, 37]. Tradi-
tional AISs, such as Opt-IA [12] and B-Cell [25], exhibit this greater
exploration capabilities at the expense of being slower during the
exploitation phases of the optimisation (i.e., hillclimbing). Recently,
though, so called Fast AISs have been presented that are asymptoti-
cally as fast as traditional randomized local search (RLS) and EAs at
hillclimbing, while still outperforming them during the exploration
phases [8]. Such improved performance during the hillclimbing

Corrected Version of Record. V.1.1. Published September 28, 2021.

https://doi.org/10.1145/3450218.3477305
https://doi.org/10.1145/3450218.3477305
https://doi.org/10.1145/3450218.3477305

FOGA ’21, September 6–8, 2021, Virtual Event, Austria Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

phases even allows for linear speed-ups of the AISs to approximate
Number Partitioning [11].

A major problem with the generality of the Fast AISs is that the
hypermutation parameter should be set such that the mutation rate
should be high for optimal performance at escaping local optima
by performing large mutations, and low for doing so by accepting
lower quality solutions by using the non-elitist capabilities of the
ageing operator. In particular, if the mutation rate is too high in
the latter case, once a local optimum is escaped from, then there
is a high probability that the algorithm returns to it via a large
mutation if its basin of attraction is large. Hence, on one hand,
setting the parameter to appropriate values requires considerable
problem knowledge. On the other hand, a fixed parameter value
inevitably leads to suboptimal performance for problems where
both the elitist and non-elitist strategies are required at different
moments.

In this paper we propose an Adaptive Fast AIS that changes the
hypermutation rate automatically to identify whether it is more
effective to escape from local optima via large mutations or by
accepting solutions of lower quality. The adaptive mechanism we
propose to use is inspired by the standard 1/5 rule traditionally used
in evolutionary computation [1] but differs considerably from it by
increasing the mutation rate with the decrease of the success rate,
rather than the other way round. The insight for this considerable
change is that during the hillclimbing phases where improvements
are easier to identify, low mutation rates suffice, while on local op-
tima where improving solutions are harder to identify, then higher
mutation rates should be helpful. We rigorously prove that the
Adaptive Fast AIS either outperforms or performs just as well as
the recently introduced Fast EAs and Fast AISs on the same mul-
timodal benchmark functions where the latter were shown to be
beneficial. Furthermore we introduce a more general and harder
multimodal benchmark function where it is necessary to adapt the
hypermutation rate because we show that the state-of-the-art fast
algorithms with static rates are at least super-polynomially slower.

2 PRELIMINARIES

In this section, we first introduce the artificial immune system
framework that we will use throughout the paper, the power law
mutation operators (i.e., hypermutations) used by the Fast EAs
and Fast AISs and our proposed adaptive Fast AIS. Afterwards we
describe the standard benchmark functions from the literature that
we will use to assess the performance of the algorithms.

2.1 Algorithms from the Literature

A bare-bones (1+1) AIS is shown in Algorithm 1 [10, 12]. This simple
algorithmic framework will suffice to show the benefits of adapting
the hypermutation rate for multimodal optimisation. The algorithm
uses both characteristic operators of an AIS: ageing and hypermu-
tation. The AIS applies hybrid ageing which is the best known for
escaping local optima [9, 10, 33]. The algorithm is initialised by
choosing a bit-string representing a candidate solution (called b-cell
or equivalently individual) uniformly at random with an assigned
age of zero. At each iteration of thewhile loop an offspring is created
by performing a hypermutation. If the offspring improves the fitness
of its parent, its age will be set to zero. Otherwise, it inherits the age

Algorithm 1 (1+1) AIS

1: Initialise 𝑥 ∈ {0, 1}𝑛 uniformly at random and set 𝑥 .𝑎𝑔𝑒 := 0;
2: evaluate 𝑓 (𝑥);
3: while the termination condition is not satisfied do

4: 𝑥 .𝑎𝑔𝑒 := 𝑥 .𝑎𝑔𝑒 + 1;
5: 𝑦 := 𝐻𝑦𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥);
6: evaluate 𝑓 (𝑦);
7: if 𝑓 (𝑦) > 𝑓 (𝑥) then
8: 𝑦.𝑎𝑔𝑒 := 0;
9: else

10: 𝑦.𝑎𝑔𝑒 := 𝑥 .𝑎𝑔𝑒 ;
11: for𝑤 ∈ {𝑥,𝑦} do
12: if 𝑤.𝑎𝑔𝑒 ≥ 𝜏 then

13: with probability 1/2, reinitialise𝑤 uniformly at random
with𝑤.𝑎𝑔𝑒 = 0;

14: Set 𝑥 = arg max
𝑧∈{𝑥,𝑦 }

𝑓 (𝑧);

of the parent. In the next step, if any of these b-cells’ age exceeds
a threshold 𝜏 , that b-cell will be reinitialised with probability 1/2
and its age will be set to zero. Finally, the best b-cell will be chosen
to evolve in the next generation.

For the hypermutation variation step we will consider the re-
cently proposed power-law operators used by the Fast EA and
the Fast AIS that have been shown to escape local optima more
efficiently than traditional EAs. The Fast EA uses a heavy-tailed
power-law distribution [19]. It flips each bit in the bit-string repre-
senting the parent solutionwith probability𝛼/𝑛where themutation

rate 𝛼 is chosen in each generation according to the following prob-
ability distribution (which for future reference will be used by the
Adaptive Fast (1+1) AIS𝛽):

𝑝 (𝛼) := 𝛼−𝛽∑𝑛
𝑖=1 𝑖

−𝛽 . (1)

Here the parameter 𝛽 was defined to be strictly larger than 1, and a
parameter value of 𝛽 = 1.5 was recommended when the operator
was originally introduced. Compared to the strongly concentrated
binomial distribution of SBM (each bit is flipped in every genera-
tion with a static probability 𝛼/𝑛 - usually 𝛼 = 1), this power-law
distribution allows for a greater balance between large and small
mutations. We make two minor modifications to the operator: 1)
rather than flipping each bit with probability 𝛼/𝑛, the operator will
flip exactly 𝛼 bits; 2) we extend the tail of the distribution to choose
𝛼 within [1, · · · , 𝑛] rather than within [1, · · · , 𝑛2] as originally pro-
posed (i.e., the sum

∑𝑛/2
𝑖=1 𝑖

−𝛽 has been changed to
∑𝑛
𝑖=1 𝑖

−𝛽 in the
denominator of (1)). The former change simplifies the analysis with-
out affecting the average performance of the operator considerably.
The latter modification has recently been considered by [22]. Both
changes allow to make fairer comparisons with the hypermutation
operator used by the Fast AIS which can flip any exact number of
chosen bits. When this operator is used in line 5 of Algorithm 1,
we call the algorithm Fast (1+1) AIS𝛽 .

The hypermutation operator of the originally proposed Fast
AIS uses a similar distribution [8]. However, the distribution is
symmetric i.e., the probability of flipping 𝑘 bits is the same as that

Automatic Adaptation of Hypermutation Rates FOGA ’21, September 6–8, 2021, Virtual Event, Austria

of flipping 𝑛 −𝑘 bits for all 𝑘 ∈ {0, . . . , 𝑛}. Thus, while the expected
number of bit-flips is always 𝑛/2, the 𝛽 parameter determines the
shape of the distribution. Another distinction is that, instead of
choosing a mutation rate 𝛼 and flipping each bit with probability
𝛼/𝑛, the Fast AIS uses the power-law distribution to pick mutation

potentials - the number of bits to flip (the reason why we made the
first modification to the Fast EA operator for a fairer comparison
of the distributions). In particular, the operator picks the mutation
potential 𝑀 ∈ {0, 1, . . . , 𝑛} with probability 𝑝 (𝑀) where 𝑝 (𝑀) :
{0, 1, . . . , 𝑛} → (0, 1], and then flips exactly𝑀 bit-positions picked
uniformly at random without replacement (this distribution for
future reference will be used by the Adaptive Fast (1+1) AIS𝑠𝛽):

𝑝 (𝑀) := (max{min{𝑀,𝑛 −𝑀}, 1})−𝛽∑𝑛
𝑘=0 (max{min{𝑘, 𝑛 − 𝑘}, 1})−𝛽

, (2)

We include 0 in the support of𝑀 here since it is essential to flip 0-
bits for the efficiency of population based evolutionary algorithms,
in particular as it impacts the take-over times of the population [5–
7, 38]. However, in trajectory-based algorithms such as the ones
discussed in this paper, we recommend to exclude not flipping
any bits as a possible outcome. Hence, for the rest of the paper
we will assume that 𝑀 ∈ {1, . . . , 𝑛}. The originally introduced
Fast AIS had an equivalent distribution of mutation sizes for each
fitness evaluation to (2) when 𝛽 = 1 [8]. However, any 𝛽 ≥ 1 may
be applied. It should be pointed out that the originally proposed
operator flipped 𝑛 bits at every operation one by one and used a
probability distribution very similar to (2) to determine whether
to evaluate the solution after the 𝑀-th bit-flip and stopped the
hypermutation as soon as an improvement was detected (i.e., stop
at first constructive mutation). However, this is not necessary as
shown in [11] and for a fairer comparison with the distribution
of the Fast (1+1) AIS𝛽 we remove this feature and only evaluate
the solution once all the𝑀 bits are flipped. If this hypermutation
operator is used in the framework of Algorithm 1, we call the
resulting algorithm Fast (1+1) AIS𝑠𝛽 . Fig. 1 compares the two
power-law distributions with that of SBM.

Both algorithms exhibit their best performance at escaping local
optima via large mutations when the parameter 𝛽 is set to a value
close to 1. However, with such a parameter value, the operators lose
effectiveness in conjunction with the ageing operator for escap-
ing from local optima with large basins of attraction by accepting
solutions of inferior quality, because the high mutation rates lead
the algorithm back to the basin of attraction of the original local
optimum with high probability [11].

2.2 Adaptive Mechanism

The mechanism we propose to use to adapt the mutation rate in
the (1+1) AIS is inspired by the 1/5 rule traditionally used in evolu-
tionary computation for continuous optimisation [26]. The method
has also been applied successfully in discrete optimisation to au-
tomatically adapt the offspring population size of crossover-based
algorithms [16, 17] and the duration of the learning period in online
algorithm selection (i.e., hyper-heuristics) [20, 30].While commonly
used in continuous optimisation, the 1/5 rule adaptation has rarely
been rigorously studied to automatically adapt the mutation rate
in combinatorial optimisation, with probably the only exception

Figure 1: The probability of flipping exactly 𝑘 bits

for the extended heavy-tailed mutation operator of

Fast (1+1) AIS𝛽 (red and blue) and the symmetric heavy

tailed mutation operator of Fast (1+1) AIS𝑠𝛽 (green and

orange) for different 𝛽 values. The SBM used by standard

EAs (purple) and the uniform heavy tailed mutation of

Fast (1+1) EAunif [23] with 𝑝 = 1/𝑒 (yellow) are added

for comparison. 𝐻
𝛽
𝑛 and 𝐶

𝛽
𝑛 denote the denominators of

(1) and (2) respectively. The input size is set to 𝑛 = 14 for

visualisation.

of [18] that applied it to adapt the mutation rate of the (1+1) EA
for the unimodal Leading Ones benchmark function. In the context
of mutation rate adaptation, the traditional 1/5 rule increases the
mutation rate by a multiplicative factor 𝐹 if an improving mutation
is performed, while it decreases it by a smaller factor (usually 𝐹 1/4)
every time a mutation fails to identify an improvement. The mech-
anism we propose is additionally novel because it considerably
differs from the traditional 1/5 rule in two ways. Firstly, with the
aim of having high mutation rates when stuck for a long time on a
local optimum, the mutation rate is decreased with a success and
increased with a failure (the opposite of how the traditional mech-
anism works). Secondly, since when a local optimum is escaped,
our aim is to hillclimb the newly identified gradient, we set the
mutation rate to its minimum straight away after an improvement.
Formally, assuming maximisation, let 𝑥 , 𝑦, 𝛽min and 𝛽max be respec-
tively the parent, the offspring, and the bounds on the minimum
and maximum values that the parameter 𝛽 may take, and 𝛽𝑡 the
value at time step 𝑡 , then the parameter value at time step 𝑡 + 1 will
be (update mechanism):

𝛽𝑡+1 =
max {𝛽𝑡 ·

(
1 −

ln
(
𝛽max
𝛽min

)
𝜌

)
, 𝛽min} if 𝑓 (𝑦) ≤ 𝑓 (𝑥),

𝛽max otherwise.

FOGA ’21, September 6–8, 2021, Virtual Event, Austria Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

Here the parameter 𝜌 is the number of failures it takes to decrease
𝛽 from its maximum value 𝛽max to its minimum value 𝛽min. For
the analysis we pick 𝛽min ∈ {1, 1 + 𝜖} for some constant 𝜖 > 0 in
order to have the highest probability of making large jumps, while
maintaining a probability of Ω(1/log𝑛) and Ω(1) respectively for
local moves. We set 𝛽max = (log𝑛)2 and 𝜌 = Ω(𝑛 log𝑛) so that for
the first 𝜌/2 iterations after an improvement, the algorithms have:

𝛽 ≥ 𝛽max ·
©­­«1 −

ln
(
𝛽max
𝛽min

)
𝜌

ª®®¬
𝜌/2

≥ 𝛽max · 𝑒
− 1

2 ·ln
(
𝛽max
𝛽min

)

≥ 𝛽max ·
(
𝛽min
𝛽max

)1/2
≥ log𝑛

Thus, with high probability the hypermutation can discover
its entire Hamming neighbourhood in 𝑂 (𝑛 log𝑛) iterations before
sampling any solution outside of it, which has a polynomially small
probability while the current 𝛽 = Ω(log𝑛).

If we use the mechanism to adapt the hypermutation operator of
(1) we call the resulting algorithm Adaptive Fast (1+1) AIS𝛽 , while
if it is adapting the rate for the symmetric distribution of (2), we
call the algorithm Adaptive Fast (1+1) AIS𝑠𝛽 .

Recently a stagnation detection mechanism was introduced in
the literature for steady-state EAs to identify whether they are on
a local optima, and consequently increase the mutation rate [35].
Apart from the different motivations behind our work and theirs,
one crucial difference between the update mechanisms, is that stag-
nation detection only increases the standard bit mutation rate above
the standard 1/n rate, when with high probability no neighbouring
improvements exist, while our proposed mechanism increases the
rate after each unsuccessful hypermutation (at a rate than depends
on parameter 𝜌). Another difference is that the former flips 1 bit
in expectation until stagnation is detected, while the aim behind
our proposed mechanism is to always flip a linear number of bits in
expectation as inspired by the somatic hypermutations occurring
in the immune system (i.e., the expected number of bits that flip
does not change, just the distribution defined by the parameter 𝛽
which we adapt).

Lemma 1. The probability that the Adaptive Fast (1+1) AIS𝛽 and

the Adaptive Fast (1+1) AIS𝑠𝛽 with 𝛽 ∈ [1, (log𝑛)2] flip exactly one

bit at a particular hypermutation operation is at least,

• (ln𝑛 + 𝑂 (1))−1 in general and 1 − 𝑜 (1) when 𝛽 > log𝑛 for

the Adaptive Fast (1+1) AIS𝛽 ,

• (2 · ln𝑛)−1 in general and
1
3 − 𝑜 (1) when 𝛽 > log𝑛 for the

Adaptive Fast (1+1) AIS𝑠𝛽 .

Proof. For the probability of flipping 1-bit we refer to (1) and (2)
and note that in both equations we have the numerator equal to 1.
We will now bound the normalization factors in the denominators
separately. We pessimistically assume 𝛽 = 1. Thus, for Eq.(1) we
have:

𝑛∑
𝑖=1

𝑖−1 ≤ ln𝑛 +𝑂 (1)

and for Eq. (2), we have (recall that we normalize over 𝑀 ∈
{1, . . . , 𝑛} since we avoid flipping 0 bits due to not having a popula-
tion):

𝑛∑
𝑘=1

(max{min{𝑘, 𝑛 − 𝑘}, 1})−𝛽 =

1 +
⌊𝑛/2⌋∑
𝑘=1

𝑘−𝛽 +
𝑛−1∑

𝑘= ⌈𝑛/2⌉
(𝑛 − 𝑘)−𝛽

≤ ln
𝑛

2
+ ln

𝑛

2
+ 1 ≤ 2 ln𝑛

When 𝛽 > log𝑛, the denominator for Eq. (1) is 1 + 𝑜 (1) since for
any 𝑖 ≥ 2, 𝑖−𝛽 = 𝑂 (𝑛−1) and if we exclude 𝑖 = 2, for 𝑖 > 2, we have
𝑖−𝛽 = 𝑜 (𝑛−1). Thus, we can bound the denominator from above by
1 + 𝑜 (1).

On the other hand, we have three terms (𝑘 ∈ {1, 𝑛 − 1, 𝑛}) in
the denominator of Eq. (2) which are equal to 1−𝛽 = 1, while we
can bound the remaining terms as we did for Eq. (1). The result is
3 + 𝑜 (1). □

2.3 Benchmark Functions

Wewill evaluate the performance of the adaptive algorithms against
the static ones on a range of widely used pseudo-Boolean bench-
mark function classes 𝑓 : {0, 1}𝑛 → R. These have been designed
to reflect significant aspects of optimisation problems that are ex-
pected to appear in real-world optimisation applications. Without
loss of generality, we will consider the instances of each function
class that have the global optimum in the 1𝑛 bit-string since the
behaviour of the algorithms is the same for all function class in-
stances.

2.3.1 Unimodal Functions. We will start our analysis by estab-
lishing the hillclimbing performance of the adaptive algorithms.
For this purpose standard unimodal functions from the literature
will be used.

The aim of the well-studied OneMax function is to identify a
hidden bit-string by minimizing the Hamming distance to it of the
candidate solutions. To this end, the function returns the number
of correctly identified bit-positions (i.e., the number of ones when
the 1𝑛 bit-string is used as target). The function reflects the typical
characteristic of optimisation problems, that the closer the algo-
rithm gets to the optimum, the harder it is to identify improving
solutions. When the target is the 1𝑛 bit-string, it is defined formally
as OneMax(𝑥) := ∑𝑛

𝑖=1 𝑥𝑖 (see Fig. 2). The unary unbiased black
box complexity of OneMax is Θ(𝑛 log𝑛) [28] meaning that no al-
gorithm using an unbiased mutation operator may be faster. Both
the Fast (1+1) AIS𝛽 and the Fast (1+1) AIS𝑠𝛽 optimise the function
in this best possible expected asymptotic runtime [8, 19].

LeadingOnes is a slightly harder unimodal function. The aim
of the problem is that of identifying a hidden permutation of the
bit-string. If the 1𝑛 bit-string is used as global optimum, then the
function returns the number of consecutive 1-bits before the first
0-bit: LeadingOnes(𝑥) :=

∑𝑛
𝑖=1

∏𝑖
𝑗=1 𝑥 𝑗 . Its unbiased black box

complexity is Θ(𝑛2) which is also met by the two power-law muta-
tion operators [8, 19].

Automatic Adaptation of Hypermutation Rates FOGA ’21, September 6–8, 2021, Virtual Event, Austria

Figure 2: Benchmark functions. |𝑥 |1 shows the number of 1-

bits in a bit-string. The Ridge function is illustrated over

the Boolean hypercube {0, 1}𝑛 .

The Ridge function class is slightly harder than both OneMax
and LeadingOnes. First a OneMax slope needs to be followed
to the 0𝑛 bit-string. Afterwards, the 0-bits have to be flipped in
consecutive order without touching the tail of the bit-string (i.e.,
only bit-strings of consecutive 1-bits followed by consecutive 0-bits
are on the ridge of higher fitness). While the OneMax slope allows
to assess algorithmic performance as improvements become harder
with progress, the Ridge slope is used to assess performance when
improvement probabilities do not change with the position on the
slope:

Ridge (𝑥) :=
{
(𝑘 + 1) · 𝑛 if 𝑥 = 1𝑘0𝑛−𝑘 , 𝑘 ∈ {1, . . . , 𝑛}
𝑛 − |𝑥 |1 otherwise.

Unary unbiased search heuristics typically require Θ(𝑛2) expected
function evaluations, a runtime that is met by the power-law hyper-
mutation operators. We will use Ridge as a basis for the design of a
multimodal benchmark function where it is necessary to adapt the
mutation rate for the AISs to run in polynomial expected runtimes.
Using Ridge rather than OneMax for the hillclimbing phases will
allow us to make the function more challenging to optimise.

2.3.2 Multimodal Functions. Multimodal functions are gener-
ally used to test the exploration abilities of search heuristics includ-
ing their effectiveness at escaping local optima. We consider two
different classes of multimodal benchmark functions which allow
performance assessment in different scenarios that are expected to
be typically encountered in real-world optimisation.

The Jump𝑘 function class is widely used in the performance anal-
ysis of randomized search heuristics. It consists of two consecutive
OneMax slopes of length 𝑛 − 𝑘 and 𝑘 , respectively. The first slope
leads the algorithm towards the local optima and the second One-
Max slope leads back to it (see Fig. 2). Since the global optimum is
the only search point of better quality than the local optima, elitist

algorithms typically have to perform a large mutation by flipping si-
multaneously 𝑘 exact bits to optimise the function. In particular, for
elitist algorithms, the function models the hardest-to-escape local
optima with basin of attraction of size 𝑘 , since there exists only one
search point at Hamming distance 𝑘 from the local optimum, that
has better fitness. Due to the second slope leading back to the local
optima, the function is also very hard for non-elitist algorithms
that may accept solutions of inferior quality on the second slope.
The function is formally defined as:

Jump𝑘 (𝑥) :=


𝑘 + ∑𝑛

𝑖=1 𝑥𝑖 if
∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑛 − 𝑘

or
∑𝑛
𝑖=1 𝑥𝑖 = 𝑛,

𝑛 − ∑𝑛
𝑖=1 𝑥𝑖 otherwise.

Jump𝑘 was the function class used to show the effectiveness of the
power-law hypermutation operators over the traditional SBM oper-
ators [8, 19]. In particular, the Fast (1+1) AIS𝛽 and the Fast (1+1) AIS𝑠𝛽
have respectively expected runtimes of𝑂 (𝑘𝛽

(𝑛
𝑘

)
) and𝑂 ((min{𝑘, 𝑛−

𝑘})𝛽
(𝑛
𝑘

)
) (if 𝛽 > 1, and𝑂 ((min{𝑘, 𝑛−𝑘})𝛽 log𝑛

(𝑛
𝑘

)
) if 𝛽 = 1) which

are exponentially smaller than theΘ(𝑛𝑘) expected runtime required
by SBM [21]. From the runtime bounds it can be appreciated why
the parameter 𝛽 should be set arbitrarily close to 1 for the operators
to have their best possible performance for Jump𝑘 . A value of 𝛽 = 1
is the best possible if more than𝑛𝜖 bits, for any arbitrarily small con-
stant 𝜖 > 0, have to be flipped to escape from the local optima. We
point out that the best possible expected runtime achievable with
SBM is 𝑂 ((𝑒𝑛/𝑘)𝑘 which is matched by the stagnation detection
adaptive (1+1) EA [35].

The Cliff𝑑 function class is often used to assess the performance
of non-elitist algorithms. It was originally designed as an example
problem where non-elitist EAs outperform elitist ones [24]. This
function includes a OneMax slope with length 𝑛−𝑑 which leads the
algorithms towards the local optima. The local optima are followed
by a second OneMax slope (of length 𝑑) of lower fitness which
leads to the global optimum (see Fig. 2). While for elitist algorithms
the function is just as hard as Jump𝑘 , non-elitist algorithms, by
accepting inferior solutions, can easily find the second slope and
then hillclimb up to the global optimum. Cliff𝑑 is defined as:

Cliff𝑑 (𝑥) =
{∑𝑛

𝑖=1 𝑥𝑖 if
∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑛 − 𝑑,∑𝑛

𝑖=1 𝑥𝑖 − 𝑑 + 1/2 otherwise.

Some non-elitist algorithms such as Metropolis still require expo-
nential time in the length of the second slope [29]. When the second
slope has linear length (i.e., the function is hardest for elitist algo-
rithms) (1+1) EAs and randomized local search algorithms equipped
with ageing are known to optimise the function in 𝑂 (𝑛 log𝑛) func-
tion evaluations i.e., the best runtime achievable by unary unbiased
search heuristic on any function with unique optimum [28], which
is alsomet by the non-elitisit Move-Acceptance hyper-heuristic [29].
With a small 𝛽 parameter value close to 1 (optimal for Jump𝑘), the
Fast (1+1) AIS𝛽 and Fast (1+1) AIS𝑠𝛽 will be inefficient because the
high mutation rates will cause search points on the second slope to
return to the local optima with high probability. The expected run-
time decreases with higher values of 𝛽 and will reduce to𝑂 (𝑛 log𝑛)
in expectation for parameter values in the order of 𝛽 = Ω(log𝑛)
because the mutation operators flip one bit most of the time with

FOGA ’21, September 6–8, 2021, Virtual Event, Austria Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

such a setting. We will show that by automatically adapting the
hypermutation rate, optimal performance can be achieved for both
Cliff𝑑 and Jump𝑘 .

3 UNIMODAL FUNCTION ANALYSIS

In this section we will analyse the hill-climbing capabilities of the
Adaptive Fast (1+1) AIS𝛽 and the Adaptive Fast (1+1) AIS𝑠𝛽 on
unimodal functions. The essence of the following result is that we
can guarantee that an improvement will be achieved before 𝛽 drops
to levels that yield super-constant probabilities for single bit flips.
A constant probability for single bit flips allows the algorithm to
be asymptotically optimal when hill-climbing.

Lemma 2. Let 𝑓 : {0, 1} → R be a unimodal function, 𝐹 be the

number of distinct values 𝑓 can take and 𝐸 [𝑇] be the the expected run-
time on 𝑓 of the Adaptive Fast (1+1) AIS𝛽 (Adaptive Fast (1+1) AIS𝑠𝛽)

with 𝜏 ≥ 𝜌/2 ≥ (6+ 𝜖) ·𝑛 · ln (max (𝐹, 𝑛)) for some arbitrarily small

𝜖 > 0 and 𝛽 ∈ [1, (log𝑛)2]. Then, 𝐸 [𝑇] ≤ 𝑂 (𝑛 log𝑛) + 𝐸 [𝑇 |E𝑠]
where E𝑠 is the event that the optimum is found before a reinitialisa-

tion.

Proof. We will define three events that can happen after the
algorithm is initialised with a solution picked uniformly at random.

• E𝑠 : The optimum is found before reinitialisation.
• E𝑑 : The algorithm reinitialises before any improvement.
• E𝑟 : The algorithm reinitialises after at least one improve-
ment.

We will denote the probabilities of these events as 𝑝𝑠 , 𝑝𝑑 , 𝑝𝑟 re-
spectively. Since the events are mutually exclusive and exhaustive,
𝑝𝑠 +𝑝𝑑 +𝑝𝑟 = 1. Hence, the law of total expectation for the expected
runtime 𝐸 [𝑇] implies:

𝐸 [𝑇] = 𝐸 [𝑇 |E𝑠] · 𝑝𝑠 + 𝐸 [𝑇 |E𝑑] · 𝑝𝑑 + 𝐸 [𝑇 |E𝑟] · 𝑝𝑟 (3)

We bound the conditional expectations as follows,
• 𝐸 [𝑇 |E𝑑] ≤ 𝐸 [𝑇] + 𝜏 + 4, since after 𝜏 iterations without
improvement the probability that both the parent and the
offspring to die due to ageing is 1/4 and the expected time
until it happens is 4. After the reinitialisation the expected
time is 𝐸 [𝑇] by definition.

• 𝐸 [𝑇 |E𝑟] ≤ 𝐸 [𝑇] + 𝐹 · 𝜏 + 4 · 𝐹 , since the argument for the
previous case can be repeated. The algorithm can spend at
most 𝜏 +4 generations in expectation before improving upon
each distinct fitness value.

We bound the probabilities as follows,
• 𝑝𝑑 ≤ 𝑒−

𝜏
2·𝑛 ln𝑛 : If the algorithm picks mutation size 1, which

happens with probability at least 1/(2 · ln𝑛), then the condi-
tional probability of improvement is at least 1/𝑛 since both
operators are unbiased and 𝑓 is unimodal. For the ageing
operator to trigger, the algorithm should sample at least
𝜏 offspring which do not improve upon their parent. The
probability of this event can be bounded above by:

𝑝𝑑 ≤
(
1 − 1

2 · 𝑛 ln𝑛

)𝜏
≤ 𝑒−

𝜏
2·𝑛 ln𝑛 (4)

For 𝜏 ≥ (6 + 𝜖)𝑛 ln𝑛, for any constant 𝜖 > 0

𝑝𝑑 ≤ 𝑒−3 (5)

• 𝑝𝑟 ≤ 𝐹 · 𝑒−
𝜌

6·𝑛 +
𝜌

4·𝑛 ln𝑛 · 𝑒−
𝜏

2·𝑛 ln𝑛 : If the algorithm improves at
least once, then in order to reinitialise it is necessary that for
at least 𝜌/2 generations the algorithm must fail to improve
while the 𝛽 parameter stays above log𝑛. When 𝛽 > log𝑛, the
probability of the operator flipping one bit position is at least
1/3 − 𝑜 (1) due to Lemma 1. If 𝜏 > 𝜌/2, then the algorithm
must also fail to improve in the following 𝜏 − 𝜌/2 iterations
where the improvement probability is at least 1/(2 · 𝑛 ln𝑛)
as in the previous case. Thus, using a union bound over all
possible fitness values:

𝑝𝑟 ≤ 𝐹 ·
(
1 − 1

3𝑛

)𝜌/2
·
(
1 − 1

2 · 𝑛 ln𝑛

)𝜏−𝜌/2
≤ 𝐹 · 𝑒−

𝜌

6·𝑛 −
𝜏−𝜌/2
2·𝑛 ln𝑛

≤ 𝐹 · 𝑒−
𝜌

6·𝑛 +
𝜌

4·𝑛 ln𝑛 · 𝑒−
𝜏

2·𝑛 ln𝑛

• For 𝜏 ≥ 𝜌
2 ≥ (6 + 𝜖)𝑛 ln 𝐹 for some constant 𝑐 > 0 and for

an arbitrarily small 𝜖 > 0:

𝑒−
𝜌

6·𝑛 +
𝜌

4·𝑛 ln𝑛 ≤ 𝐹−2 . (6)
• For 𝜏 ≥ 𝜌

2 ≥ (6 + 𝜖) · 𝑛 ln 𝐹 , 𝑝𝑠 = Ω(1): This result follows
from 𝑝𝑠 = 1 − 𝑝𝑑 − 𝑝𝑟 and equations (6) and (5).

Thus, from (3) we obtain:

𝐸 [𝑇] ≤ 𝐸 [𝑇 |E𝑠] · 𝑝𝑠 + (𝐸 [𝑇] + 𝜏 +𝑂 (1)) · 𝑝𝑑
+ (𝐸 [𝑇] + 𝐹 · 𝜏 +𝑂 (𝐹)) · 𝑝𝑟

(1 − 𝑝𝑑 − 𝑝𝑟)𝐸 [𝑇] ≤ 𝐸 [𝑇 |E𝑠] · 𝑝𝑠 + (𝜏 +𝑂 (1)) · 𝑝𝑑
+ (𝐹 · 𝜏 +𝑂 (𝐹)) · 𝑝𝑟

𝐸 [𝑇] ≤ 𝐸 [𝑇 |E𝑠] +
𝜏 · 𝑝𝑑 + 𝐹 · 𝜏 · 𝑝𝑟

Ω(1)
We will now bound 𝜏 · 𝑝𝑑 + 𝐹 · 𝜏 · 𝑝𝑟 to obtain our claim,
• 𝜏 · 𝑝𝑑 = 𝑂 (𝑛 log𝑛): Due to (4), 𝜏 · 𝑝𝑑 < 𝑒−

𝜏
2·𝑛 ln𝑛 · 𝜏 . The right

hand side decreases for all 𝜏 ≥ 2 · 𝑛 ln𝑛.
• 𝐹 · 𝜏 · 𝑝𝑟 = 𝑂 (𝑛 log𝑛): Since 𝑝𝑟 ≤ 𝐹 · 𝑒−

𝜌

6·𝑛 +
𝜌

4·𝑛 ln𝑛 · 𝑒−
𝜏

2·𝑛 ln𝑛 ,

𝐹 · 𝜏 · 𝑝𝑟 ≤
(
𝑒−

𝜌

6·𝑛 +
𝜌

4·𝑛 ln𝑛 · 𝐹 2
)
· 𝑒−

𝜏
2·𝑛 ln𝑛 · 𝜏

≤ 𝑂 (1) ·𝑂 (𝑛 log𝑛)
where the𝑂 (1) is due to eq (6) and𝑂 (𝑛 log𝑛) is obtained as
in the previous item.

□

Theorem 3. The Adaptive Fast (1+1) AIS𝛽 and the Adaptive Fast

(1+1) AIS𝑠𝛽 with the interval 𝛽 ∈ [1, (log𝑛)2] and parameters 𝜏 ≥
𝜌/2 ≥ (6+𝜖) ·𝑛 log𝑛 for an arbitrarily small constant 𝜖 > 0, optimise

OneMax in Θ(𝑛 log𝑛), LeadingOnes in Θ(𝑛2) and Ridge in 𝑂 (𝑛2)
expected fitness function evaluations.

Proof. The number of distinct values for our functions of in-
terest are at most 2𝑛 (which is the case for the Ridge function).
Thus, our stated 𝜏 and 𝜌 parameters satisfy the scope of Lemma 2.
Since all our claimed upper bounds are Ω(𝑛 log𝑛), we will only
find upper bounds on the expected time given that ageing does not
trigger.

For any unimodal function 𝑓 , the probability that an offspring has
a better fitness than its parent is at least Pr (single bit is flipped) /𝑛

Automatic Adaptation of Hypermutation Rates FOGA ’21, September 6–8, 2021, Virtual Event, Austria

since in any unimodal function at least one Hamming neighbour has
a better fitness value than any current suboptimal solution. Using
that all our functions are unimodal the expected time until the first
improvement occurs is at most 𝑂 (𝑛 log𝑛) since both algorithms
flip a single bit with probability at least Ω(1/log𝑛). We will next
bound the expected time after the first improvement occurs.

Let 𝐸 [𝑇𝑖] denote how many expected hypermutation operations
it takes to improve the fitness-function value from 𝑖 to any value
greater than 𝑖 . Moreover, let E𝑖 denote the event that the 𝛽 value
for the algorithm stays above log𝑛 while the current fitness is 𝑖 .
By the law of total expectation we divide 𝐸 [𝑇𝑖] into two additive
terms:

𝐸 [𝑇𝑖] = Pr (E𝑖) · 𝐸 [𝑇𝑖 |E𝑖] + Pr (¬E𝑖) · 𝐸 [𝑇𝑖 |¬E𝑖] . (7)

Since 𝛽 is set to (log𝑛)2 after an improvement, the event E𝑖
occurs if and only if the algorithm fails to improve (6 + 𝜖) · 𝑛 ln𝑛 ≤
𝜌/2 iterations consecutively as in 𝜌/2 generations 𝛽 multiplicatively
decreases from (log𝑛)2 to log𝑛. As the 𝛽 value stays above log𝑛
until we fail (6+𝜖) ·𝑛 ln𝑛 times after the last improvement, we can
bound Pr (¬E𝑖) from above:

Pr (¬E𝑖) ≤
(
1 − Pr (single bit is flipped)

𝑛

) (6+𝜖) ·𝑛 ln𝑛

= 𝑂 (𝑛−2),

since Pr (single bit is flipped) = 1
3 − 𝑜 (1) for all 𝛽 > log𝑛.

Since for all 𝛽 ∈ [1, (log𝑛)2] we have Pr (single bit is flipped) =
𝑂 (1/log𝑛), the conditional expectation 𝐸 [𝑇𝑖 |¬E𝑖] = 𝑂 (𝑛 log𝑛).
Thus, we can bound the second term in (7) by 𝑂 (log𝑛/𝑛).

When calculating 𝐸 [𝑇𝑖 |E𝑖] for the functions LeadingOnes and
Ridge , we can use the upper bound on the improvement probabil-
ity Pr (single bit is flipped) /𝑛 and conclude that 𝐸 [𝑇𝑖 |E𝑖] = 𝑂 (𝑛)
since E𝑖 implies Pr (single bit is flipped) = Ω(1). In order to find
the total expected time of𝑂 (𝑛2) we recall that both LeadingOnes
and Ridge have 𝑂 (𝑛) different fitness values.

For the OneMax function, 𝐸 [𝑇𝑖 |E𝑖] can be smaller than 𝑂 (𝑛)
depending on 𝑖 . In particular, it is sufficient that the hypermutation
operator flips a single 0-bit into a 1-bit and does not flip any other
bits. Thismutation occurs with probability Pr (single bit is flipped)·
𝑖
𝑛 = 𝑐 ·𝑖

𝑛 for some constant 𝑐 > 0 and its expected waiting time is
at most 𝐸 [𝑇𝑖 |E𝑖] ≤ 𝑛/(𝑐 · 𝑖). When summed over different values
for 𝑖 ∈ {1, . . . , 𝑛}, the total waiting time

∑𝑛−1
𝑖=1

𝑛
𝑐 ·𝑖 is in the order of

𝑂 (𝑛 log𝑛). Thus, for all considered functions the second term in (7)
is a small order term, and the claimed upper bounds follow.

The matching lower bounds are due to the unary unbiased black-
box complexity of the functions [28], which asymptotically match
the upper bounds for OneMax and LeadingOnes functions. □

4 MULTIMODAL FUNCTIONS WHERE

ADAPTATION IS ADVANTAGEOUS

We will now focus on the two multi-modal benchmark functions
that require different 𝛽 values to be optimised effectively. Our adap-
tive mechanism allows the 𝛽 value to drop to its minimum when
on the local optima of either Jump or Cliff. While high mutation
rates (i.e., low 𝛽 values) are necessary to solve the Jump function
effectively, for the Cliff counterpart it is critical to flip as few bits

as possible to avoid sampling solutions from the first slope. This is
easily achieved by the adaptive mechanism which sets 𝛽 = (log𝑛)2
as soon as an improvement is found on the second slope of the
Cliff function.

Theorem 4. The Adaptive Fast (1+1) AIS𝛽 and the Adaptive Fast

(1+1) AIS𝑠𝛽with the interval 𝛽 ∈ [1, (log𝑛)2] and 𝜏 ≥ 𝜌/2 ≥ (6 +
𝜖) ·𝑛 log𝑛 for some constant 𝜖 > 0, optimise Cliff𝑑 in𝑂 (𝜏 · (𝑛 log𝑛)2

𝑑2)
and Jump𝑘 in 𝑂 (𝑘 log𝑛

(𝑛
𝑘

)
) expected function evaluations. For the

parameter setting 𝛽 ∈ [1 + 𝜖, (log𝑛)2] for some arbitrarily small

constant 𝜖 > 0, the expected runtime for Jump𝑘 is at most𝑂
(
𝑘1+𝜖

(𝑛
𝑘

))
while the expected runtime for Cliff𝑑 is 𝑂 (𝜏 ·𝑛2

𝑑2).

Proof. We first prove the upper bound for the Jump function.
The function is identical to OneMax until one of the local optima
(i.e., a solution with 𝑛 − 𝑑 1-bits) is sampled because whether we
initialise with fewer than or more than 𝑛 −𝑑 bits we can regardless
use (𝑛 − OneMax (𝑥))/𝑛 as a lower bound on the probability of
improving any solution except the global or local optima. Thus, we
use the upper bound from Theorem 1 to conclude that in expected
𝑂 (𝑛 log𝑛) iterations after any uniformly random initialisation, we
sample a local optimum. Pessimistically assuming that the hyper-
mutation fails to sample the optimum (which is the only solution
that improves a local optimum) for 𝜌 times after the local optimum
is sampled, for the remaining 𝜏 − 𝜌 ≥ 𝜌/2 = Ω(𝑛 log𝑛) iterations
we have 𝛽 = 1. With 𝛽 = 1 the probability that the hypermutation
samples the optimal solution is Ω

(
(𝑘 log𝑛)−1

(𝑛
𝑘

)−1) since with
probability at least Ω(1/(𝑘 · log𝑛)), 𝑘 bits will be flipped and given
that 𝑘 bits are flipped, the probability that the optimum is sam-
pled is at least

(𝑛
𝑘

)−1 . The expected waiting time until the event
occurs is the reciprocal of this probability, 𝑂

(
𝑘 log𝑛

(𝑛
𝑘

))
. If the

ageing triggers while the current best is at the local optimum, we
repeat our argument that in𝑂 (𝑛 log𝑛) iterations we reach the local
optimum and attempt Ω(𝑛 log𝑛) times to sample the global opti-
mum, which implies that in expectation it is necessary to climb
the OneMax slope𝑂

(
𝑘 log𝑛

(𝑛
𝑘

))
/Ω(𝑛 log𝑛) times. Since climbing

the OneMax slope takes at most 𝑂 (𝑛 log𝑛) times, the expected
waiting time is still in the order of 𝑂

(
𝑘 log𝑛

(𝑛
𝑘

))
. Following the

same arguments we can also find that when 𝛽 ∈ [1 + 𝜖, (log𝑛)2],
the upper bound is 𝑂

(
𝑘1+𝜖

(𝑛
𝑘

))
since the probability of flipping 𝑘

bits changes from Ω(1
𝑘 ·log𝑛) to Ω(𝑘−1−𝜖).

For Cliff, the expected time to reach the local optima is the
same as above, i.e., 𝑂 (𝑛 log𝑛). Now, ageing is triggered after 𝜏
iterations and then, since 𝛽 = 𝛽min due to the time spent on the local
optima, with probability Ω

(
𝑑

𝑛 log𝑛

)
if 𝛽min = 1 and with probability

Ω (𝑑/𝑛) if 𝛽min = 1 + 𝜖 , a solution with more 1-bits is sampled in
the same iteration. In the following ageing phase, with constant
probability, the parent solution is removed from the population
while the offspring is spared. In the following iteration, the survived
individual improves again with probability Ω

(
𝑑

𝑛 log𝑛

)
or Ω

(
𝑑
𝑛

)
depending on whether 𝛽min is equal to 1 or 1 + 𝜖 respectively and
sets its age to zero and 𝛽 = (log𝑛)2. Since each solution with
more than 𝑛 − 𝑑 1-bits has at least one Hamming neighbour with
better fitness value, following the same arguments of the proof of
Theorem 1 we conclude that with probability 1−𝑂 (𝑛−2), 𝛽 > log𝑛

FOGA ’21, September 6–8, 2021, Virtual Event, Austria Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

between two consecutive improvements. Since there are at most 𝑛
improvements, by the union bound the probability that 𝛽 > log𝑛
until the optimum is found is at least 1 −𝑂 (𝑛−1)

Next, we will bound the conditional probability that a solution
with at most 𝑛 − 𝑑 1-bits is sampled before the optimum is found
given that the current solution has at least 𝑛 − 𝑑 + 2 1-bits and that
𝛽 > log𝑛. First, we will bound the probability that a mutation flips
a specific number of bit positions. Since 𝛽 > log𝑛, the probability
of flipping exactly two positions is 𝑂 (2− log𝑛) = 𝑂 (1/𝑛), three
positions is𝑂 (3− log𝑛) = 𝑜 (1/𝑛), 4 to 8 positions is𝑂 (4 · 4− log𝑛) =
𝑂 (1/𝑛2) and more than 8 positions is at most 𝑂 (𝑛 · 8− log𝑛) =

𝑂 (1/𝑛2). Therefore, given that the improvement probability is at
least Ω(1/𝑛) the probability of obtaining a solution with 𝑛 − 𝑑 + 3
1-bits before flipping two bits is a constant. Then, the probability of
obtaining a solution with 𝑛 − 𝑑 + 4 1-bits before flipping three bits
is in the order of 1 − 𝑜 (1), the probability of obtaining a solution
with 𝑛 − 𝑑 + 8 1-bits given that the current solution has at least
𝑛 − 𝑑 + 4 1-bits is at least 1 −𝑂 (1/𝑛). Finally, given that we obtain
a solution with 𝑛 − 𝑑 + 8 1-bits, the probability of improving before
flipping at least 8 bit positions is at least 1 − 𝑂 (1/𝑛2). Thus, the
probability of improving 𝑛 times before we flip at least 8 bits is
at least 1 − 𝑂 (1/𝑛) by the union bound. Combining the failure
probabilities, we conclude that with constant probability we sample
the optimum before sampling a solution with at most 𝑛−𝑑 1-bits. If
any of the failures occur we pessimistically assume that the current
solution is reinitialised and then the local optima is sampled before
the global optimum. Considering that once a local optimum is
found and the ageing mechanism is triggered in 𝑂 (𝑛 log𝑛) + 𝜏 =

𝑂 (𝜏) iterations afterwards, we also find the optimal solution before
reinitialisation with probability Ω(𝑑2/(𝑛 · log𝑛)2) (Ω(𝑑2/𝑛2) if
𝛽min = 1 + 𝜖) in expected 𝑂 (𝑛 log𝑛) iterations. Thus, the total
expected runtime can be bounded above by 𝑂

(
𝜏 · (𝑛 log𝑛)2

𝑑2

)
and

𝑂 (𝜏 · 𝑛2

𝑑2) respectively. □

5 MULTIMODAL FUNCTIONS WHERE

ADAPTATION IS NECESSARY

In this section, we will introduce the CliffWithBasin pseudo-
Boolean function where it is necessary to make larger jumps to
solutions of lower quality compared to the standard Cliff func-
tion. This function will allow us to illustrate how the adaptive
hypermutation algorithms are more effective in more challenging
multimodal optimisation scenarios where it may be convenient
to make large jumps to solutions of lower quality to escape effi-
ciently from local optima. In particular we present a more general
multimodal function that they can efficiently optimise while the
state-of-the-art hypermutation operators with static parameter 𝛽
have at least super-polynomially worse performance.

The function is illustrated in Fig. 3 and is defined as:

Definition 1. For the parameters a := (𝑎1, 𝑎2) ∈ [𝑛]2, 𝑛
(
1
2 + 𝜖

)
<

𝑎1 < 𝑎2 where 𝜖 > 0 is an arbitrarily small constant, and 𝑛 − 𝑎2 =

Figure 3: Sketch of the CliffWithBasin function. Blue

dashed lines (“Ridge slope”) indicate that there exists a

unique solutionwith the plotted function value among solu-

tions with a given |𝑥 |1 value. The solid line indicates a mul-

tiplicative inverse OneMax slope.

Ω(𝑛) let1

𝐹𝑆 :=
{
𝑥 |𝑥 = 1𝑘0𝑛−𝑘 ∧ 𝑘 ∈ {⌈𝑛/2 + 1⌉, . . . , 𝑎1 − 1}

}
,

𝑆𝑆 :=
{
𝑥 |𝑥 = 1𝑘0𝑛−𝑘 ∧ 𝑘 ∈ {𝑎2, . . . , 𝑛}

}
,

𝐵𝐴 := {𝑥 |𝑎1 < OneMax (𝑥) < 𝑎2},
𝐿𝑂 := {𝑥 |OneMax (𝑥) = 𝑎1},

𝑁𝐻 :=
{
𝑥 |OneMax (𝑥) =

⌈𝑛
2

⌉}
.

CliffWithBasina : {0, 1}𝑛 → R is defined as follows:

CliffWithBasina (𝑥) :=

Ridge (𝑥) if 𝑥 ∈ 𝐹𝑆

Ridge (𝑥) − (𝑛 − 𝑎2) + 1/2 if 𝑥 ∈ 𝑆𝑆

(𝑎1 + 1) · 𝑛 −
(
1 − 1

OneMax (𝑥)

)
if 𝑥 ∈ 𝐵𝐴

(𝑎1 + 1) · 𝑛 − 1
LeadingOnes (𝑥)+1 if 𝑥 ∈ 𝐿𝑂

(⌈𝑛2 ⌉ + 1) · 𝑛 − 1
LeadingOnes (𝑥)+1 if 𝑥 ∈ 𝑁𝐻

1
| 𝑛2 −OneMax (𝑥) | o.w.

The function has two parallel slopeswith the second slope having
worse fitness as in the Cliff function while it is necessary to flip 𝑑
exact bit position to move from one slope to the other. Unlike the
Cliff function the slopes consist only of Ridge points, which have
the form 1𝑘0𝑛−𝑘 for some 𝑘 ∈ {𝑛/2, . . . , 𝑛}. The rest of the search
space has gradients that serve to lead the current solution either
to the point 1𝑛/20𝑛/2 which is the beginning of the first slope or
to the local optima ℓ := 1𝑎10𝑛−𝑎1 , i.e., the point with the highest
fitness on the first slope. All solutions which have between 𝑎1 + 1
and 𝑎2 1-bits (i.e., 𝐵𝐴 solutions) have smaller fitness values than
the local and the global optima but higher than any other solution.
1The names of the sets 𝐹𝑆 , 𝑆𝑆 , 𝐵𝐴, 𝐿𝑂 , 𝑁𝐻 abbreviate: first slope, second slope,
basin of attraction, leading ones and n-half, respectively.

Automatic Adaptation of Hypermutation Rates FOGA ’21, September 6–8, 2021, Virtual Event, Austria

This basin of attraction forces the algorithms to make a very precise
mutation to reach the second slope. Moreover, since the second
slope has lower fitness values, even if a solution from the second
slope is sampled, it is highly likely that it is mutated into a solution
in the basin of attraction, preventing the algorithm from following
the second slope to the global optimum. These characteristics make
the function particularly challenging for both elitist and non-elitist
algorithms. For instance Metropolis would fail to access the second
slope of increasing fitness in polynomial expected time due to the
large difference in fitness gradient while the Move-Acceptance non-
elitist hyper-heuristic would likely require an expected runtime in
the order of 𝑂 (𝑛2𝑑) to cross the basin [29].

In the following theorem, we show that constant 𝛽 values lead
to exponential runtime bounds for the CliffWithBasin function.
In particular, constant 𝛽 values cause the hypermutation operator
to flip many bits too frequently such that, with overwhelming
probability, a solution in the second slope is mutated into a 𝐵𝐴

solution before the global optimum is reached.

Theorem 5. The Fast (1+1) AIS𝛽 and the Fast (1+1) AIS𝑠𝛽 with

1 ≤𝛽 = 𝑂 (1) and 𝜏 > 0 cannot optimise CliffWithBasina in fewer

than 𝑒Ω (𝑛)
expected fitness function evaluations.

Proof. In order to prove the lower bound on the runtime, wewill
bound from below the probability of the algorithm reinitialising (i.e.,
starting a generation with random solution uniformly distributed
over the {0, 1}𝑛 hyperspace) before sampling the optimal solution.
We will denote this event as E0 and use the law of total probability
to analyse the conditional probabilities of this event given the age
(𝛼𝑡) and the genotype (𝑥𝑡) of the current solution at iteration 𝑡 . Let
ℓ := 1𝑎10𝑛−𝑎1 . We will start with the conditional probability of the
E0 given that 𝑥𝑡 = ℓ , and define E1 as the event of the algorithm
sampling the 1𝑛 bit-string in the 𝜏 generations following generation
𝑡 :

Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ)
= Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ, E1) · Pr (E1 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ)
+ Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ,¬E1) · Pr (¬E1 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ) .

We will next bound the probability that any solution in 𝐿𝑂 is
mutated into the 1𝑛 string in a single mutation operation. This
mutation requires 𝑛 − 𝑎1 precise bits to be flipped by the operator
and its probability is at most

(𝑛
𝑛−𝑎1

)
= 𝑛−Ω (𝑛) since even if the mu-

tation operator picks the correct number of bits to be flipped with
probability 1, it has to pick each of these 𝑛 − 𝑎1 positions correctly
among 𝑛 alternatives. We can use the union bound to establish
that for any 𝜏 = 𝑝𝑜𝑙𝑦 (𝑛), Pr (E1 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ) = 𝑛−Ω (𝑛) . Since
Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ,¬E1) is equivalent to Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ)
we obtain:

Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ)

> (1 − 𝑛−Ω (𝑛)) · Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ) (8)

When 𝛼𝑡 ≥ 𝜏 both the current solution and any offspring solu-
tionwith equal or less fitness than the parent are each removed from
the population with probability 1/2. We first condition on the new
offspring having improved the solution which only happens when
the global optimum is sampled which has probability 𝑛−Ω (𝑛) and
allows us to absorb the conditional probability into the (1−𝑛−Ω (𝑛))

factor. Then, we condition on which individuals are removed from
the population. If the parent survives, then in the next generation
the conditional probability is equal to Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ) since
we repeat the same experiment in the next iteration. If both indi-
viduals die, then the event E0 occurs. Finally, if only the offspring
individual survives we denote the resulting event as E𝑠 and obtain:

Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ)

>
1
4
+ 1
2
Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ)

+ 1
4
· Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ, E𝑠)

=⇒
Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ)

>
1
2
+ 1
2
· Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ, E𝑠) .

Next, we will condition on which subspace the survived indi-
vidual belongs to. For any constant 𝜖∗ < 1/2, the probability of
mutating from any solution with less then 𝑎2 1-bits (which in-
cludes all the named sets except 𝑆𝑆) to any point in 𝑆𝑆 with at least
𝑎2 + 𝑛𝜖

∗/𝛽
2 1-bits (a safe solution) or to the optimal 1𝑛 bit-string is at

most
(𝑛
𝑛𝜖

∗/𝛽
2

)−1
= 𝑛−Ω (𝑛𝜖∗/𝛽) . Conditioning on that this event does

not happen, if the survived individual has more than 𝑛(1 + 𝜖)/2
1-bits and does not belong to 𝐿𝑂 , 𝐵𝐴, 𝐹𝑆 , 𝑁𝐻 , or 𝑆𝑆 then the uni-
formly initialised individuals will have a better fitness than the
offspring with overwhelmingly high probability and event E0 will
occur. Moreover, all solutions in {0, 1}𝑛\(𝑆𝑆 ∪ {1𝑛}) has a sequence
of𝑂 (𝑛2) local improvements that lead them to ℓ while the probabil-
ities for the mutation to sample a safe solution or the optimum is at
most 𝑛−Ω (𝑛𝜖∗/𝛽) . Thus, with overwhelming probability ℓ is sampled
before the global optimum.

If the current individual 𝑥𝑡 is in 𝑆𝑆 and has less than 𝑎2 + 𝑛𝜖
∗/𝛽
2

1-bits, then the number of 1-bits after the next mutation is |𝑥𝑡+1 |1 =
|𝑥𝑡 |1+𝑌 −(𝑘−𝑌) = 𝑥𝑡 −𝑘+2𝑌 , where𝑌 = 𝐻𝑦𝑝𝑒 (𝑛, 𝑘, |𝑥𝑡 |1) denotes
the number of 0-bits that are flipped to 1. Since the number of 1-bits
in the solution is at least 𝑛 ·

(
1
2 + 𝜖

)
, there exists a mutation size

𝑘 ∈ 𝑂 (𝑛𝜖/𝛽) such that the nearest integer to the expected number
of 1-bits after the operation is exactly 𝑎2 − 1. Since the hypergeo-
metric distribution is symmetric around (and increasing towards)
its mean, the probability that its outcome is in 𝜇 ± 𝜎 is constant.
Since the standard deviation of 𝑌 is 𝑂 (

√
𝑛), some 𝑐 ·

√
𝑛 integers

around the mean share the constant probability in a way that the
integers closer to the mean have a larger share. Consequently the
integer closest to the mean has a probability of Ω(𝑛−1/2). Consid-
ering that the probability of picking the correct mutation size is in
the order of Ω

(
𝑛−𝜖

∗/𝛽
)
and 𝛽 ≥ 1, with probability Ω(𝑛−

1
2−𝜖

∗) a
solution from 𝐵𝐴 is sampled and accepted due to its higher fitness.
In order to improve fitness by increasing the leading ones, at least
a particular bit position needs to be flipped which happens with
probability 𝑂 (1/𝑛). Thus, the conditional probability of improving
to another 𝑆𝑆 solution before reaching 𝐵𝐴 is at most in the order
of 𝑂 (𝑛−1/2+𝜖∗). In order to reach a solution with 2 · 𝑛𝜖∗/𝛽 leading
ones, given that the initial 𝑆𝑆 solution has less than 𝑛𝜖

∗/𝛽 ones,
this conditional event needs to occur at least𝑂 (𝑛𝜖∗/𝛽) times which

FOGA ’21, September 6–8, 2021, Virtual Event, Austria Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

happens with probability 𝑛−Ω (𝑛𝜖∗/𝛽) .

Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = ℓ, E𝑠)

> (1 − 𝑛−Ω (𝑛𝜖/𝛽)) · Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 ∈ 𝐵𝐴)

Next, wewill consider the probability Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 ∈ 𝐵𝐴, E𝑠).
For any 𝐵𝐴 solution, the only search points with higher fitness are
either the global optimum or those belonging to either ℓ or 𝐿𝑂 .
However, there is a local gradient towards 𝐿𝑂 and ℓ while the
improvement to the global optimum has a probability 𝑂 (𝑛−Ω (𝑛)).
Thus, with overwhelming probability the process ends up in either
ℓ or 𝐿𝑂 . Similarly, individuals in 𝐿𝑂 can only improve into the
global optimum or to ℓ thus with overwhelming probability reaches
𝐿𝑂 before the global optimum.

Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 ∈ 𝐵𝐴)

> (1 − 𝑛−Ω (𝑛)) · Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ)

Now we can sequentially replace the conditional probabilities
with the bounds obtained up to (8) while combining the factors in
the form into (1 − 𝑛−Ω (𝑛𝜖/𝛽)) via the union bound:

Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ)

>
1
2
+ 1
2
· (1 − 𝑛−Ω (𝑛𝜖/𝛽)) · Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ)

=⇒

Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ) > (1 − 𝑛−Ω (𝑛𝜖/𝛽))

We can now conclude our proof by showing that after a reini-
tialisation the algorithm samples ℓ before the global optimum with
overwhelming probability. With probability 1 − 𝑒−Ω (𝑛) the newly
initialised solutions have 𝑛

2 ± 𝑛2/3 1-bits in their strings due to
Chernoff Bounds on binomially distributed variables [15]. Thus,
the Hamming distance to the optimal solution and the 𝑆𝑆 solu-
tions are in the order of Ω(𝑛) since all those solutions have at least
𝑎1 ≥ 𝑛

(
1
2 + 𝜖

)
1-bits. In the iterations until the algorithm samples ℓ

(which takes𝑂 (𝑛2) in expectation), the probability of sampling the
optimum is in the order of 𝑛−Ω (𝑛) . The probability of sampling an
initial solution with more than 𝑛

2 ± 𝑛2/3 1-bits has a larger failure
probability than reinitialisation after ℓ is sampled, thus determines
the lower bound on the expected number of reinitialisation before
the optimum is found as 𝑒Ω (𝑛) . □

Next, we focus on the mutation from the local optimum 1𝑎10𝑛−𝑎1
to any solution on the second slope. Thus, we obtain a lower bound
on the runtime by finding how many times the algorithm has to
restart to successfully sample the first solution on the second slope.
While the theorem holds for all 𝛽 values, it implies that when
𝑑 := 𝑎2 − 𝑎1 = Ω(𝑛𝛿) for any constant 𝛿 > 0, superconstant
𝛽 values lead to expected runtimes that are superpolynomially
smaller than the expected times for constant 𝛽 (Theorem 3). The
speed of the adaptive variants lies in their ability to use 𝛽 = 1 when
the algorithm is stuck at the optima, which increases the probabilty
of picking the correct mutation size, while at the same time using
a very high 𝛽 > log𝑛 on the second slope where flipping many
bits brings a high risk of sampling a solution from the basin of
attraction of the local optima.

Theorem 6. The Fast (1+1) AIS𝛽 and the Fast (1+1) AIS𝑠𝛽 with

𝛽 ≥ 1 and 𝜏 > 0 cannot optimise CliffWithBasina with 𝑑 := 𝑎2 −𝑎1
in fewer than Ω((𝑑/4)𝛽

(𝑛
𝑑

)
𝑛3) expected fitness function evaluations.

Proof. We use the same notation and follow the same argu-
ments in the proof of Theorem 3 to establish that with overwhelm-
ing probability a newly initialised solution reaches the local opti-
mum before the optimum. Next, we will consider the conditional
probability Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 = 𝐵𝐴, E𝑠), i.e., given an offspring in
𝐵𝐴 survived while the parent is removed. The probability that the
survived individual 𝑥𝑡 ∈ 𝐵𝐴 has at least 𝑎1 + 𝑖 leading ones for any
𝑖 ∈ [𝑑] is at most 𝑂 (𝑛−𝑖 · 𝑖− log𝑛) since the parent of 𝑥𝑡 is ℓ with
exactly 𝑎1 leading ones. The probability of decreasing the number
of 1-bits in a generation is Ω(1) while the probability of sampling
a solution in 𝑆𝑆 is 𝑂 (𝑛−𝑑+𝑖 · (𝑑 − 𝑖)− log𝑛). If a solution from 𝑆𝑆 is
sampled, then it is still necessary that another improvement occurs
so that the solution is not removed from the population, which
has probability Ω(1/𝑛) for all points in 𝑆𝑆 . Once an improvement
occurs in 𝐵𝐴, the age of the offspring is reset to zero and since
individuals in 𝐵𝐴 have higher fitness than those in 𝑆𝑆 , the only
acceptable solution that will increase the Hamming distance to ℓ is
the global optimum. Thus,

Pr (E0 |𝛼𝑡 = 𝜏, 𝑥𝑡 ∈ 𝐵𝐴, E𝑠)

=

(
1 − 1

𝑛
·

𝑑∑
𝑖=1

𝑂 (𝑛−𝑖 · 𝑖− log𝑛) ·𝑂 (𝑛−𝑑+𝑖 · (𝑑 − 𝑖)− log𝑛
)

· Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ ∪ 𝐿𝑂)

=(1 −𝑂 (𝑛−𝑑−1 · (𝑑/4)− log𝑛)) · Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ ∪ 𝐿𝑂)

Now, we can follow the same arguments as in Theorem 3 and
replace the conditional probabilities sequentially to obtain the(

1 −𝑂

(
𝑛−1 ·

(
𝑛

𝑑

)−1))
·
(
1 −𝑂

(
𝑛−𝑑−1 · (𝑑/4)− log𝑛

))
probability for Pr (E0 |𝛼𝑡 = 0, 𝑥𝑡 = ℓ) which is in the order of(

1 −𝑂

(
(𝑑/4)− log𝑛

(
𝑛

𝑑

)−1
· 𝑛−1

))
.

Since after a reinitialization it takes Ω(𝑛2) to reach ℓ , our claim
follows. □

Finally we show that by adapting the parameter 𝛽 during the
run, the algorithms can optimise the CliffWithBasin function
efficiently. The adaptive algorithms use the minimal 𝛽 values at
the local optimum that minimise the lower bound from Theorem 6
while increasing the 𝛽 value on the second slope avoids the expo-
nential runtime proven for fixed 𝛽 = 𝑂 (1) in Theorem 5.

Theorem 7. The Adaptive Fast (1+1) AIS𝛽 and the Adaptive Fast

(1+1) AIS𝑠𝛽 with the interval 𝛽 ∈ [1, (log𝑛)2], 𝜌 ≥ (12+ 𝜖1) ·𝑛 log𝑛
and ageing parameter 𝜏 = Ω(𝑛1+𝜖2) for an arbitrarily small 𝜖1, 𝜖2 > 0
optimise CliffWithBasina with 𝑑 := 𝑎2 − 𝑎1 in 𝑂 (𝑑

(𝑛
𝑑

)
𝑛3 (log𝑛)2)

expected fitness function evaluations.

Proof. We will first bound the expected time until the local
optimum 1𝑎10𝑛−𝑎1 is sampled for the first time. When a solution

Automatic Adaptation of Hypermutation Rates FOGA ’21, September 6–8, 2021, Virtual Event, Austria

is randomly initialised, the number of 1-bits in its bit-string is dis-
tributed binomially with parameters 𝑛 and 1/2. With overwhelming
probability, the initial solution has 𝑛

2 ± 𝑛2/3 1-bits in its string due
to Chernoff Bounds on binomially distributed variables [15]. Let
𝐺 := {0, 1}𝑛 \(𝐹𝑆∪𝑆𝑆∪𝐵𝐴∪𝐿𝑂∪𝑁𝐻) be the set of solutions where
the CliffWithBasin function is evaluated as | 𝑛2 −OneMax (𝑥) |−1.
For any solution 𝑥 ∈ 𝐺 the probability of improving the function
value is at least 1/2 given that the hypermutation operator flips
only a single bit position. Pessimistically assuming that 𝛽 = 1, we
can bound the expected time until the algorithm samples a solution
with better fitness by 𝑂 (log𝑛) due to the probability of flipping a
single bit and the expected time until a solution in 𝑁𝐻 is sampled
by 𝑂 (𝑛2/3 log𝑛) expected function evaluations since with over-
whelming probability the initial solution has 𝑛/2 ±𝑂 (𝑛2/3) 1-bits.
Using the law of total expectation as in Theorem 1 we can conclude
that the expected time to sample a solution in 𝐹𝑆 , given that the
initial solution is in 𝑁𝐻 is at most 𝑂 (𝑛2) in expectation since all
individuals in 𝑁𝐻 have a Hamming neighbour with better fitness
and only𝑂 (𝑛) different fitness values. We can then extend the same
argument to the progress in 𝐹𝑆 and establish that it takes 𝑂 (𝑛2)
iterations after a uniformly random initialisation in expectation to
sample the local optimum for the first time.

At the local optimum of CliffWithBasin (i.e., 1𝑎10𝑛−𝑎1), we
will pessimistically assume that we do not find the optimum in 𝜌

steps and have 𝛽 = 1 when the ageing triggers. Similarly to the
arguments in Theorem 2 the probability that the parent is removed
from the population while the offspring survives is a constant. We
differ from the previous theorem’s argument here since at the same
iteration that the parent individual is removed from the population,
the offspring must precisely be 1𝑘0𝑛−𝑘 for some 𝑘 > 𝑎2 which oc-
curs if at least 𝑎2 − 𝑎1 precise bits are flipped by the hypermutation
with probability Ω

(
(𝑑 log𝑛)−1

(𝑛
𝑑

)−1) . In the following iteration
with probability 1/𝑛 log𝑛 we find a second improvement and reset
our age to zero and set 𝛽 = (log𝑛)2. Once a solution of the form
1𝑘0𝑛−𝑘 for 𝑘 > 𝑎2 is sampled, the arguments for the constant prob-
ability of finding the optimal solution before sampling a solution
with less than 𝑎2 1-bits, follows the arguments in Theorem 2 for the
Cliff function. Since the time to reach the local optimum after reini-
tialisation is in the order of𝑂 (𝑛2) and the probability of improving
twice after ageing triggers is Ω

(
(𝑑 log𝑛)−1

(𝑛
𝑑

)−1) · (𝑛 log𝑛)−1, our
claim follows. □

Similarly to Theorem 4 if we use 𝛽min = 1 + 𝜖 for some constant
𝜖 > 0, the runtime changes by a factor of 𝑑2𝜖/(log𝑛)2.

6 CONCLUSION

In recent years, power-law mutation operators have gained increas-
ing interest in the randomized search heuristics community. The
reason is that, compared to the traditional binomially distributed
mutation operators, they have been shown to provide exponential
speed-ups at escaping from local optima that require large mu-
tations while still exhibiting asymptotically optimal hillclimbing
performance. Heavy-tailed mutations may become detrimental,
though, when used together with some form of non-elitism which
may be useful to overcome local optima by accepting solutions of

lower quality. In this paper we have shown how such disadvan-
tages may be overcome by automatically adapting the power-law
distribution during the run so to learn to decrease the mutation
rate once local optima have been escaped from.

While we have used standard multimodal benchmark functions
with significant structures to explain the scenarios where the adap-
tive algorithms may considerably improve the performance over
static binomial and power-law mutation operators and have pro-
vided rigorous evidence of their superiority for all problems where
the performance of the heavy-tailed operators is known (and wider
classes), our results also easily extend to the NP-Hard Number-
Partitioning problem since both ageing and hypermutations are
effective for identifying arbitrarily good approximations [9]. Future
work should further evaluate experimentally and theoretically the
performance of the proposed algorithms on classical combinatorial
optimization problems and real-world applications. We note that
recently a different self-adjusting mechanism has been proposed in
the literature with the aim of increasing the standard bit mutation
rate of evolutionary algorithms when detecting local optima [35].
While the mechanism was not designed with the aim of enhanc-
ing the non-elitist performance of search heuristics as well as the
mutation operator in the presence of local optima, a comparison
with our own proposed mechanism should be performed in the
near future.

REFERENCES

[1] Anne Auger and Nikolaus Hansen. 2011. Theory of Evolution Strategies: a New
Perspective. In Theory of Randomized Search Heuristics: Foundations and Recent

Developments. World Scientific Publishing Co., Inc., 289–325.
[2] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed

and Adaptive Mutation Rates for the LeadingOnes Problem. In Parallel Prob-

lem Solving from Nature (PPSN ‘10). Springer, 1–10. https://doi.org/10.1007/
978-3-642-15844-5_1

[3] Frank M. Burnet. 1959. The Clonal Selection Theory of Acquired Immunity. Cam-
bridge University Press.

[4] Dogan Corus, Duc-Cuong Dang, Anton V Eremeev, and Per Kristian Lehre. 2017.
Level-based analysis of genetic algorithms and other search processes. IEEE

Transactions on Evolutionary Computation 22, 5 (2017), 707–719.
[5] Dogan Corus, Andrei Lissovoi, Pietro S. Oliveto, and Carsten Witt. 2021. On

Steady-State Evolutionary Algorithms and Selective Pressure: Why Inverse Rank-
Based Allocation of Reproductive Trials Is Best. ACMTransactions on Evolutionary

Learning and Optimization 1, 1 (2021).
[6] Dogan Corus and Pietro S. Oliveto. 2017. Standard Steady State Genetic Algo-

rithms Can Hillclimb Faster than Mutation-only Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation 22, 5 (2017), 720–732.

[7] Dogan Corus and Pietro S. Oliveto. 2020. On the Benefits of Populations on the
Exploitation Speed of Standard Steady-State Genetic Algorithms. Algorithmica

82 (2020), 3676–3706.
[8] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2018. Fast Artificial Immune

Systems. In Proc. of PPSN 2018. 67–78.
[9] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2019. Artificial Immune

Systems Can Find Arbitrarily Good Approximations for the NP-hard Number
Partitioning Problem. Artificial Intelligence 247 (2019), 180–196.

[10] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2020. When hypermuta-
tions and ageing enable artificial immune systems to outperform evolutionary
algorithms. Theoretical Computer Science 832 (2020), 166–185.

[11] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2021. Fast Immune System
Inspired Hypermutation Operators for Combinatorial Optimisation. (To appear in)
IEEE Transactions on Evolutionary Computation. https://arxiv.org/abs/2009.00990

(2021), 1–1.
[12] Vincenzo Cutello, Giuseppe Nicosia, Mario Pavone, and Jonathan Timmis. 2007.

An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE
Transactions on Evolutionary Computation 11 (2007), 101–117.

[13] Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre. 2021. Escaping Local
Optima with Non-Elitist Evolutionary Algorithms. In Proc. of AAAI 2021. 12275–
12283.

[14] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2018. Escaping

https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/978-3-642-15844-5_1

FOGA ’21, September 6–8, 2021, Virtual Event, Austria Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

Local Optima Using Crossover With Emergent Diversity. IEEE Transactions on

Evolutionary Computation 22, 3 (2018), 484–497.
[15] Benjamin Doerr. 2019. Probabilistic Tools for the Analysis of Randomized Opti-

mization Heuristics. In Theory of Randomized Search Heuristics in Discrete Search

Spaces. Springer, Chapter 1, 1–87.
[16] Benjamin Doerr and Carola Doerr. 2015. Optimal Parameter Choices Through

Self-Adjustment: Applying the 1/5-Th Rule in Discrete Settings. In Proc. of GECCO
2015. 1335–1342.

[17] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-
plexity to designing new genetic algorithms. Theoretical Computer Science 567
(2015), 87–104.

[18] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-adjusting muta-
tion rates with provably optimal success rules. In Proc. of GECCO 2019. 1479–1487.

[19] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.
Fast Genetic Algorithms. In Proc. of GECCO 2017. 777–784.

[20] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John A. Warwicker. 2018.
On the Runtime Analysis of Selection Hyper-Heuristics with Adaptive Learning
Periods. In Proc. of GECCO 2018. 1015–1022.

[21] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the Analysis of the
(1 + 1) Evolutionary Algorithm. Theoretical Computer Science 276, 1-2 (2002),
51–81.

[22] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and Markus Wagner. 2018.
Heavy-tailed mutation operators in single-objective combinatorial optimization.
In Proc. of PPSN XV. 134–145.

[23] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. 2018. Escaping Large
Deceptive Basins of Attraction with Heavy-tailed Mutation Operators. In Proc. of

GECCO 2018. 293–300.
[24] Jens Jägersküpper and Tobias Storch. 2007. When the plus strategy outperforms

the comma strategy and when not. In Proc. of FOCI 2007. 25–32.
[25] Johnny Kelsey and Jonathan Timmis. 2003. Immune inspired somatic contiguous

hypermutation for function optimisation. In Proc. of GECCO 2003. 207–218.
[26] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and

Petros Koumoutsakos. 2004. Learning Probability Distributions in Continuous

Evolutionary Algorithms – A Comparative Review. Natural Computing: An

International Journal 3, 1 (2004), 77–112.
[27] Scott Kirkpatrick, Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by

Simulated Annealing. Science (1983), 671–680. Issue 4598.
[28] Per Kristian Lehre and CarstenWitt. 2012. Black-box search by unbiased variation.

Algorithmica 64 (2012), 623–642. Issue 4.
[29] Andrei Lissovoi, Pietro S. Oliveto, and John A. Warwicker. 2019. On the Time

Complexity of Algorithm Selection Hyper-Heuristics for Multimodal Optimisa-
tion. In Proc. of AAAI 2019. 2322–2329.

[30] Andrei Lissovoi, Pietro S. Oliveto, and JohnA.Warwicker. 2020. How theDuration
of the Learning Period Affects the Performance of Random Gradient Selection
Hyper-Heuristics. In Proc. of AAAI 2020. 2376–2383.

[31] Wil Michiels, Jan Korst, and Emile Aarts. 2007. Theoretical aspects of local search.
Springer, Berlin, Heidelberg.

[32] Pietro S. Oliveto, Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora
Trubenová. 2018. How to Escape Local Optima in Black Box Optimisation: when
Non-elitism Outperforms Elitism. Algorithmica 80 (2018), 1604—-1633.

[33] Pietro S. Oliveto and Dirk Sudholt. 2014. On the runtime analysis of stochastic
ageing mechanisms. In Proc. of GECCO 2014. 113–120.

[34] Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. 2020. A tight lower bound
on the expected runtime of standard steady state genetic algorithms. In Proc. of

GECCO 2020. 1323–1331.
[35] Amirhossein Rajabi and Carsten Witt. 2020. Self-adjusting evolutionary algo-

rithms for multimodal optimization. In Proc. of GECCO 2020. 1314–1322.
[36] D. Sudholt. 2017. How Crossover Speeds up Building Block Assembly in Genetic

Algorithms. Evol. Comp. 25, 2 (2017), 237–274.
[37] Carsten Witt. 2005. Worst-case and Average-case Approximations by Simple

Randomized Search Heuristics. In Proc. of STACS 2005. 44–56.
[38] CarstenWitt. 2006. Runtime Analysis of the (𝜇+1) EA on Simple Pseudo-Boolean

Functions. Evolutionary Computation 14, 1 (2006), 65–86.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algorithms from the Literature
	2.2 Adaptive Mechanism
	2.3 Benchmark Functions

	3 Unimodal Function Analysis
	4 Multimodal Functions where Adaptation is Advantageous
	5 Multimodal Functions where Adaptation is Necessary
	6 Conclusion
	References

