
Automatic Alignment of Local Representations

Yee Whye Teh and Sam Roweis
Department of Computer Science, University of Toronto�

ywteh,roweis � @cs.toronto.edu

Abstract
We present an automatic alignment procedure which maps the disparate
internal representations learned by several local dimensionality reduction
experts into a single, coherent global coordinate system for the original
data space. Our algorithm can be applied to any set of experts, each
of which produces a low-dimensional local representation of a high-
dimensional input. Unlike recent efforts to coordinate such models by
modifying their objective functions [1, 2], our algorithm is invoked after
training and applies an efficient eigensolver to post-process the trained
models. The post-processing has no local optima and the size of the sys-
tem it must solve scales with the number of local models rather than the
number of original data points, making it more efficient than model-free
algorithms such as Isomap [3] or LLE [4].

1 Introduction: Local vs. Global Dimensionality Reduction
Beyond density modelling, an important goal of unsupervised learning is to discover com-
pact, informative representations of high-dimensional data. If the data lie on a smooth low
dimensional manifold, then an excellent encoding is the coordinates internal to that man-
ifold. The process of determining such coordinates is dimensionality reduction. Linear
dimensionality reduction methods such as principal component analysis and factor analy-
sis are easy to train but cannot capture the structure of curved manifolds. Mixtures of these
simple unsupervised models [5, 6, 7, 8] have been used to perform local dimensionality
reduction, and can provide good density models for curved manifolds, but unfortunately
such mixtures cannot do dimensionality reduction. They do not describe a single, coher-
ent low-dimensional coordinate system for the data since there is no pressure for the local
coordinates of each component to agree.

Roweis et al [1] recently proposed a model which performs global coordination of local
coordinate systems in a mixture of factor analyzers (MFA). Their model is trained by max-
imizing the likelihood of the data, with an additional variational penalty term to encourage
the internal coordinates of the factor analyzers to agree. While their model can trade off
modelling the data and having consistent local coordinate systems, it requires a user given
trade-off parameter, training is quite inefficient (although [2] describes an improved train-
ing algorithm for a more constrained model), and it has quite serious local minima problems
(methods like LLE [4] or Isomap [3] have to be used for initialization).

In this paper we describe a novel, automatic way to align the hidden representations used by
each component of a mixture of dimensionality reducers into a single global representation
of the data throughout space. Given an already trained mixture, the alignment is achieved
by applying an eigensolver to a matrix constructed from the internal representations of the
mixture components. Our method is efficient, simple to implement, and has no local optima
in its optimization nor any learning rates or annealing schedules.



2 The Locally Linear Coordination Algorithm

Suppose we have a set of data points given by the rows of ����� ���	�
���
����������������� from
a � -dimensional space, which we assume are sampled from a ����� dimensional mani-
fold. We approximate the manifold coordinates using images �����  � �
 � ���������! � ��� in a� dimensional embedding space. Suppose also that we have already trained, or have been
given, a mixture of " local dimensionality reducers. The # th reducer produces a �%$ dimen-
sional internal representation &('
$ for data point �)' as well as a “responsibility” *	'
$,+.-
describing how reliable the # th reducer’s representation of � ' is. These satisfy / $ * '
$ �10
and can be obtained, for example, using a gating network in a mixture of experts, or the
posterior probabilities in a probabilistic network. Notice that the manifold coordinates and
internal representations need not have the same number of dimensions.

Given the data, internal representations, and responsibilities, our algorithm automatically
aligns the various hidden representations into a single global coordinate system. Two key
ideas motivate the method. First, to use a convex cost function whose unique minimum is
attained at the desired global coordinates. Second, to restrict the global coordinates  ' to
depend on the data � ' only through the local representations & '
$ and responsibilities * '2$ ,
thereby leveraging the structure of the mixture model to regularize and reduce the effective
size of the optimization problem. In effect, rather than working with individual data points,
we work with large groups of points belonging to particular submodels.

We first parameterize the global coordinates  ' in terms of * '
$ and & '
$ . Given an input� ' , each local model infers its internal coordinates & '
$ and then applies a linear projection3 $ and offset 465 $ to these to obtain its guess at the global coordinates. The final global
coordinates  ' is obtained by averaging the guesses using the responsibilities as weights:
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This process is described in figure 1. To simplify our calculations, we have vectorized the
indices 9LK ��# = into a single new index
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J 9LK �R# = is an invertible mapping from
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Figure 1: Obtaining global coordinates from data via responsibility-weighted local coordinates.



The key assumption, which we have emphasized by re-expressing  ' above, is that the
mapping between the local representations and the global coordinates  ' is linear in each
of & '
$ , * '
$ and the unknown parameters 4

B
$ . Crucially, however, the mapping between the

original data � ' and the images  ' is highly non-linear since it depends on the multipli-
cation of responsibilities and internal coordinates which are in turn non-linearly related to
the data ��' through the inference procedure of the mixture model.

We now consider determining
3

according to some given cost function � 9 � = . For this we
advocate using a convex � 9 � = . Notice that since � is linear in

3
, � 9 � 9 3 =
= is convex in

3
as well, and there is a unique optimum that can be computed efficiently using a variety of
methods. This is still true if we also have feasible convex constraints � 9 � = � - on � . The
case where the cost and constraints are both quadratic is particularly appealing since we
can use an eigensolver to find the optimal

3
. In particular suppose � and � are matrices

defining the cost and constraints, and let �8�FI � � I and � � I � � I . This gives:
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where �	� is the trace operator. The matrices � and � are typically obtained from the
original data � and summarize the essential geometries among them. The solution to the
constrained minimization above is given by the � smallest generalized eigenvectors � with
��� ������� . In particular the columns of

3
are given by these generalized eigenvectors.

Below, we investigate a cost function based on the Locally Linear Embedding (LLE) algo-
rithm of Roweis and Saul [4]. We call the resulting algorithm Locally Linear Coordina-
tion (LLC). The idea of LLE is to preserve the same locally linear relationships between
the original data points � ' and their counterparts  ' . We identify for each point � ' its
nearest-neighbours ������� ' and then minimize
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with respect to � subject to the constraints / ���! " $ ' � � 0 . The weights are unique1

and can be solved for efficiently using constrained least squares (since solving for $ ' � is
decoupled across ) ). The weights summarize the local geometries relating the data points
to their neighbours, hence to preserve these relationships among the coordinates  ' we
arrange to minimize the same cost
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but with respect to � instead. � is invariant to translations and rotations of � , and scales as
we scale � . In order to break these degeneracies we enforce the following constraints:0+ 7 '  ' � 0+-,0 � � � - 0+ 7 '  '  �' � 0+ � � � �*� ? (6)

where ,0 is a vector of 0 ’s. For this choice, the cost function and constraints above become:
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with cost and constraint matrices
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1In the unusual case where the number of neighbours is larger than the dimensionality of the data1
, simple regularization of the norm of the weights once again makes them unique.



As shown previously, the solution to this problem is given by the smallest generalized
eigenvectors � with ���8� �0�(� . To satisfy �� ,0	� I 3 � - , we need to find eigenvectors
that are orthogonal to the vector � 5 � I �/,0 . Fortunately, � 5 is the smallest generalized
eigenvector, corresponding to an eigenvalue of 0. Hence the solution to the problem is
given by the S ' ? to 9 � : 0 = ��� smallest generalized eigenvectors instead.

LLC Alignment Algorithm:
� Using data � , compute local linear reconstruction weights $ ' � using (4).
� Train or receive a pre-trained mixture of local dimensionality reducers.

Apply this mixture to � , obtaining a local representation & '
$ and
responsibility * '
$ for each submodel # and each data point � ' .

� Form the matrix I with H ' G � * '
$>E B'
$ and calculate � and � from (9).
� Find the eigenvectors corresponding to the smallest � : 0 eigenvalues

of the generalized eigenvalue system � � ���0�(� .
� Let

3
be a matrix with columns formed by the S nd to � : 0 st eigenvectors.

Return the
J th row of

3
as alignment weight 4

B
$ .

Return the global manifold coordinates as � �FI 3 .

Note that the edge size of the matrices � and � whose generalized eigenvectors we seek
is " : / $ � $ which scales with the number of components and dimensions of the local
representations but not with the number of data points

+
. As a result, solving for the

alignment weights is much more efficient than the original LLE computation (or those
of Isomap) which requires solving an eigenvalue system of edge size

+
. In effect, we

have leveraged the mixture of local models to collapse large groups of points together and
worked only with those groups rather than the original data points. Notice however that
the computation of the weights � still requires determining the neighbours of the original
data points, which scales as

� 9 + � = in the worse case.

Coordination with LLC also yields a mixture of noiseless factor analyzers over the global
coordinate space  , with the # th factor analyzer having mean 4 5 $ and factor loading

3 $ .
Given any global coordinates  , we can infer the responsibilities *P$ and the posterior means& $ over the latent space of each factor analyzer. If our original local dimensionality reduc-
ers also supports computing � from * $ and & $ , we can now infer the high dimensional mean
data point � which corresponds to the global coordinates  . This allows us to perform op-
erations like visualization and interpolation using the global coordinate system. This is the
method we used to infer the images in figures 4 and 5 in the next section.

3 Experimental Results using Mixtures of Factor Analyzers
The alignment computation we have described is applicable to any mixture of local dimen-
sionality reducers. In our experiments, we have used the most basic such model: a mixture
of factor analyzers (MFA) [8]. The # th factor analyzer in the mixture describes a proba-
bilistic linear mapping from a latent variable & $ to the data � with additive Gaussian noise.
The model assumes that the data manifold is locally linear and it is this local structure that
is captured by each factor analyzer. The non-linearity in the data manifold is handled by
patching multiple factor analyzers together, each handling a locally linear region.

MFAs are trained in an unsupervised way by maximizing the marginal log likelihood of
the observed data, and parameter estimation is typically done using the EM algorithm2.

2In our experiments, we initialized the parameters by drawing the means from the global covari-
ance of the data and setting the factors to small random values. We also simplified the factor analyzers
to share the same spherical noise covariance ���
	���
�� although this is not essential to the process.
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Figure 2: LLC on the S curve (A). There are 14 factor analyzers in the mixture (B), each with 2 latent
dimensions. Each disk represents one of them with the two black lines being the factor loadings. After
alignment by LLC (C), the curve is successfully unrolled; it is also possible to retroactively align the
original data space models (D).

A B Figure 3: Unknotting the trefoil
curve. We generated 6000 noisy
points from the curve. Then we fit
an MFA with 30 components with
1 latent dimension each (A), but
aligned them in a 2D space (B).
We used 10 neighbours to recon-
struct each data point.

Since there is no constraint relating the various hidden variables & $ , a MFA trained only
to maximize likelihood cannot learn a global coordinate system for the manifold that is
consistent across every factor analyzer. Hence this is a perfect model on which to apply
automatic alignment. Naturally, we use the mean of & $ conditioned on the data � (assuming
the # th factor analyzer generated � ) as the # th local representation of � , while we use the
posterior probability that the # th factor analyzer generated � as the responsibility.

We illustrate LLC on two synthetic toy problems to give some intuition about how it works.
The first problem is the S curve given in figure 2(A). An MFA trained on 1200 points
sampled uniformly from the manifold with added noise (B) is able to model the linear
structure of the curve locally, however the internal coordinates of the factor analyzers are
not aligned properly. We applied LLC to the local representations and aligned them in a 2D
space (C). When solving for local weights, we used 12 neighbours to reconstruct each data
point. We see that LLC has successfully unrolled the S curve onto the 2D space. Further,
given the coordinate transforms produced by LLC, we can retroactively align the latent
spaces of the MFAs (D). This is done by determining directions in the various latent spaces
which get transformed to the same direction in the global space.

To emphasize the topological advantages of aligning representations into a space of higher
dimensionality than the local coordinates used by each submodel, we also trained a MFA
on data sampled from a trefoil curve, as shown in figure 3(A). The trefoil is a circle with a
knot in 3D. As figure 3(B) shows, LLC connects these models into a ring of local topology
faithful to the original data.

We applied LLC to MFAs trained on sets of real images believed to come from a complex
manifold with few degrees of freedom. We studied face images of a single person under
varying pose and expression changes and handwritten digits from the MNIST database.
After training the MFAs, we applied LLC to align the models. The face models were
aligned into a 2D space as shown in figure 4. The first dimension appears to describe



Figure 4: A map of reconstructions of the faces when the global coordinates are specified. Contours
describe the likelihood of the coordinates. Note that some reconstructions around the edge of the map
are not good because the model is extrapolating from the training images to regions of low likelihood.
A MFA with 20 components and 8 latent dimensions each is used. It is trained on 1965 images. The
weights � are calculated using 36 neighbours.

changes in pose, while the second describes changes in expression. The digit models were
aligned into a 3D space. Figure 5 (top) shows maps of reconstructions of the digits. The
first dimension appears to describe the slant of each digit, the second the fatness of each
digit, and the third the relative sizes of the upper to lower loops. Figure 5 (bottom) shows
how LLC can smoothly interpolate between any two digits. In particular, the first row
interpolates between left and right slanting digits, the second between fat and thin digits,
the third between thick and thin line strokes, and the fourth between having a larger bottom
loop and larger top loop.

4 Discussion and Conclusions

Previous work on nonlinear dimensionality reduction has usually emphasized either a para-
metric approach, which explicitly constructs a (sometimes probabilistic) mapping between
the high-dimensional and low-dimensional spaces, or a nonparametric approach which
merely finds low-dimensional images corresponding to high-dimensional data points but
without probabilistic models or hidden variables. Compared to the global coordination
model [1], the closest parametric approach to ours, our algorithm can be understood as post
coordination, in which the latent spaces are coordinated after they have been fit to data. By
decoupling the data fitting and coordination problems we gain efficiency and avoid local
optima in the coordination phase. Further, since we are just maximizing likelihood when
fitting the original mixture to data, we can use a whole range of known techniques to escape
local minima, and improve efficiency in the first phase as well.

On the nonparametric side, our approach can be compared to two recent algorithms, LLE



Figure 5: Top: maps of reconstructions of digits when two global coordinates are specified, and the
third integrated out. Left: � st and � nd coordinates specified; right: � nd and � rd. Bottom: Interpolating
between two digits using LLC. In each row, we interpolate between the upper leftmost and rightmost
digits. The LLC interpolants are spread out evenly along a line connecting the global coordinates of
the two digits. For comparison, we show the 20 training images whose coordinates are closest to the
line segment connecting those of the two digits at each side. A MFA with 50 components, each with
6 latent dimensions is used. It is trained on 6000 randomly chosen digits from the combined training
and test sets of 8’s in MNIST. The weights � were calculated using 36 neighbours.

[4] and Isomap [3]. The cost functions of LLE and Isomap are convex, so they do not
suffer from the local minima problems of earlier methods [9, 10], but these methods must
solve eigenvalue systems of size equal to the number of data points. (Although in LLE the
systems are highly sparse.) Another problem is neither LLE nor Isomap yield a probabilis-
tic model or even a mapping between the data and embedding spaces. Compared to these
models (which are run on individual data points) LLC uses as its primitives descriptions
of the data provided by the individual local models. This makes the eigenvalue system to
be solved much smaller and as a result the computational cost of the coordination phase of
LLC is much less than that for LLE or Isomap. (Note that the construction of the eigenvalue
system still requires finding nearest neighbours for each point, which is costly.) Further-
more, if each local model describes a complete (probabilistic) mapping from data space



to its latent space, the final coordinated model will also describe a (probabilistic) mapping
from the whole data space to the coordinated embedding space.

Our alignment algorithm improves upon local embedding or density models by elevating
their status to full global dimensionality reduction algorithms without requiring any modifi-
cations to their training procedures or cost functions. For example, using mixtures of factor
analyzers (MFAs) as a test case, we show how our alignment method can allow a model
previously suited only for density estimation to do complex operations on high dimensional
data such as visualization and interpolation.

Brand [11] has recently proposed an approach, similar to ours, that coordinates local para-
metric models to obtain a globally valid nonlinear embedding function. Like LLC, his
“charting” method defines a quadratic cost function and finds the optimal coordination di-
rectly and efficiently. However, charting is based on a cost function much closer in spirit to
the original global coordination model and it instantiates one local model centred on each
training point, so its scaling is the same as that of LLE and Isomap. In principle, Brand’s
method can be extended to work with fewer local models and our alignment procedure can
be applied using the charting cost rather than the LLE cost we have pursued here.

Automatic alignment procedures emphasizes a powerful but often overlooked interpreta-
tion of local mixture models. Rather than considering the output of such systems to be a
single quantity, such as a density estimate or a expert-weighted regression, it is possible
to view them as networks which convert high-dimensional inputs into a vector of internal
coordinates from each submodel, accompanied by responsibilities. As we have shown, this
view can lead to efficient and powerful algorithms which allow separate local models to
learn consistent global representations.
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