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A well-established task in forensic writer identification focuses on the comparison of
prototypical character shapes (allographs) present in handwriting. In order for a com-
puter to perform this task convincingly, it should yield results that are plausible and
understandable to the human expert. Trajectory matching is a well-known method to
compare two allographs. This paper assesses a promising technique for so-called human-

congruous trajectory matching, called Dynamic Time Warping (DTW). In the first part
of the paper, an experiment is described that shows that DTW yields results that cor-

respond to the expectations of human users. Since DTW requires the dynamics of the
handwritten trace, the “online” dynamic allograph trajectories need to be extracted

from the “offline” scanned documents. In the second part of the paper, an automatic
procedure to perform this task is described. Images were generated from a large online

dataset that provides the true trajectories. This allows for a quantitative assessment
of the trajectory extraction techniques rather than a qualitative discussion of a small
number of examples. Our results show that DTW can significantly improve the results

from trajectory extraction when compared to traditional techniques.

Keywords: Forensic writer identification; Dynamic Time Warping; Allograph matching;

Trajectory Extraction.

1. Introduction

Forensic writer identification has been enjoying new interest due to an increased

need and effort to deal with problems ranging from white-collar crime to terror-

ist threats. In forensic writer identification, pieces of handwriting are compared

to identify the writer of a so-called “questioned document”. Traditionally this is

done by forensic document experts, using methodologies as described by Huber

and Headrick10 and Morris18. The identification of the writer based only on a piece

of handwriting is a challenging task for pattern recognition. The use of automatic

methods for writer identification was judged critically by forensic practitioners in

the past. However, modern image processing technology, tools for pattern recogni-

tion, and raw computing power have all evolved to such extent that computer use

in this field has become a practical possibility33,34.

A number of systems have been used in Europe and the United States. However,
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most of these systems are getting outdated and do not benefit from recent advances

in pattern recognition and image processing, new insights in automatically derived

handwriting features, user interface development, and innovations in forensic writer

identification systems6,27. The challenge is to integrate these recent developments

into a usable workbench tool for forensic document examination, with the goal to

drastically improve the writer identification systems available today. Our work to

reach this goal, is executed within the Trigraph project22. Trigraph may be consid-

ered as a continuation of the Wanda project6. The Wanda system provides a flexible

workbench for performing document examination and writer-identification tasks. In

Trigraph, modern user-interface technology is combined with (i) expert knowledge

from forensic experts, (ii) automatically derived image features computed from a

scanned handwritten document1,3,27,32, and (iii) information based on allographic

character features40.

This paper focuses on the latter issue. In the first part of this paper, the possibil-

ities of using Dynamic Time Warping19,20,39 (DTW) for so-called human-congruous

allograph matching are explored. It will be shown that DTW is able to yield results

that match the expectations of the human user. Since DTW requires the availability

of “online” character trajectories, it can only be applied to offline (scanned) docu-

ments if the online signal can be recovered from it. In the second part of the paper,

we will present our ongoing research toward the development of a technique that

can perform this recovery automatically. To test the performance of our technique

in an experiment, we generated images from a large online dataset of handwrit-

ten characters using a line generator. The fact that the online data is available as

well, allows for a quantitative assessment of the trajectory extraction techniques

rather than a qualitative discussion of a small number of examples. The results of

this second experiment show that DTW can significantly improve the results from

trajectory extraction when compared to traditional techniques.

1.1. Allograph-based writer identification

An allograph is a handwritten character with a prototypical shape. The shape may

describe a complete character trajectory17,40, certain character fragments1,30, or

one or more peculiar characteristics (like a large loop, a certain lead-in or lead-out

stroke, or a long descender or ascender)10,17,18,34. A well-established task in forensic

document examination focuses on the comparison of allographic shapes present in

the handwriting18. In this approach, the way in which a writer produces certain

allographs is considered as a “signature” of the writer. Finding a writer who employs

one or more prototypical characters corresponds to matching these characters to

the characters available in a database of scanned documents.

This application of character matching was implemented in the Wanda system6.

Wanda comprises a collection of preprocessing, measurement, annotation, and

writer search tools for examining handwritten documents and for writer identifica-

tion purposes. The Wanda allograph matcher38 provides the option to mark specific
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characters in a scanned document by copy-drawing their trajectory. Subsequently,

such marked trajectories are used to index the document with the goal to be used

for the future search of documents or writers. For the allograph matcher to be used

in a practical application, where it can be used to retrieve writers that produce

certain prototypical allographs, it needs to be equipped with a reliable and consis-

tent indexing method that facilitates human-congruous matching. In this paper, we

propose methods suitable for this approach.

1.2. Human-congruous matching

The Wanda allograph matcher employs the HCLUS prototype matching techniques

described by Vuurpijl and Schomaker40. HCLUS uses a set of prototypes to match

unknown characters for the goal of character recognition. Although recognition per-

formances using HCLUS are considered state-of-the-art (about 96% for charac-

ters from the UNIPEN8 datasets), recent preliminary studies with forensic experts

showed that when using HCLUS for allograph search, the results (typically pre-

sented as a list of best matching allographs) in many occasions are not what the

experts would expect. The results are not “congruous” to the human observer:

the best matching allographs selected by the system are different than the ones

that the experts would have selected. Our expectancy was that the matching of

DTW would yield more congruous results. This observation and expectancy form

important motivations of our work. It is paramount that when an automated sys-

tem yields results, these results must be comprehensible and acceptable for the

human users — in our case forensic experts, who have to be able to defend the re-

sults in court. Although eventually, distinguishing the characteristic features used

by experts could give much insight in writer identification, at this moment we do

not attempt to find a definition or specification of what makes a good match. We

are only interested in the quantitative judgment whether a certain match is more

appropriate to a human expert than another match.

Research on visually congruous handwriting recognition is still relatively unex-

plored. Different approaches can be distinguished in two broad main categories. The

first concerns the use of handwriting fragments or holistic information as employed

in the human visual system and in human reading. In a recent paper, De Stefano

et al.4 discuss the use of multi-scale methods for curvature-based shape descrip-

tions that are inspired by the human visual system. Edelman et al.5 proposed a

method for cursive handwriting recognition that employs perception-oriented fea-

tures. Ruiz-Pinales and Lecolinet26 presented a technique for cursive word recogni-

tion that is based on a perceptive model. Schomaker and Segers30 described methods

to identify salient trajectory segments of handwriting that are particularly used by

humans for pattern matching. A survey of holistic features that can be used for

human-congruous recognition is given in, e.g., 17,35.

The second category concerns the use of knowledge about the human handwrit-

ing production process. There is a body of research that points to the exploration
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of limitations and laws of human motor control in the detection of specific trajec-

tories in scanned documents. In 24, characteristics of human motor control that

are based on curvature minimization are used to process a handwritten scan. This

work is targeted at the extraction of dynamic information from handwritten images.

In 31, it is shown that the points at minimal velocity provide stable anchor points

for velocity-based stroke segmentation. Here, knowledge about the handwriting-

production process is exploited for recognition purposes.

In Section 2, we will review a technique called Dynamic Time Warping (DTW),

which we consider as particularly appropriate for the goal of human-congruous

matching. DTW originated in the 1970s during which it was applied to speech

recognition applications. For a review of DTW for speech recognition, the reader

is referred to 14. Tappert 36 was the first to apply DTW to cursive handwriting.

However, due to its computationally expensive algorithm and the advent of HMM

techniques that could also handle problems of varying signal length and local shape

variations, the interest in DTW diminished. With the currently available computing

resources, the popularity of DTW for handwriting recognition has regained inter-

est. Vuori39 describes various implementations of DTW that form the basis of our

work. Using a variation of the algorithms described by Vuori, a match between two

trajectories can be produced that promises to be more intuitive than the matches

that are produced by other matching techniques. The underlying assumption in our

approach is that both categories that can be used for human-congruous matching

(observable character fragments and the process of handwriting production), are

somehow encoded in the character trajectory and that, thus, a proper trajectory

matching technique could employ this encoded information to yield results that are

similar to those of the human user.

1.3. Extracting trajectories from image information

In so-called “online” representations of handwritten shapes, the number of strokes,

the order of strokes, the writing direction of each stroke, the speed of writing within

each stroke, the pen pressure during writing, and information about pen-ups and

pen-downs are comprised11. To be able to use DTW or other techniques that op-

erate on trajectory data for scanned documents, it is required to extract dynamic

information from these static images. As mentioned above, this can be performed

interactively by manually copy-drawing a scanned image. But the challenge is to

perform this process automatically. Many authors have pursued this challenge, see

e.g., 9,11,12,15,17,35. The most prominent approaches first binarize the image and

subsequently generate a skeleton through thinning. The thinned image is used to

detect so-called “clusters”12, which are potential starting or ending points of the

trajectory or points at which one or more strokes cross. The process of trajectory

extraction subsequently amounts to a search for the optimal path through a se-

quence of connected clusters. As will be elaborated in Section 3, most approaches

employ a minimization of length and/or curvature of the extracted trajectories.
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We have explored another powerful application of trajectory matching tech-

niques like DTW: verification of the extracted dynamic trajectories from a scanned

handwritten image. Starting point of this discussion is that if a certain trajectory

is extracted from a handwritten character image, there must exist a prototypical

allograph that matches this trajectory. Given a proper set of prototypes, it must

thus be possible to validate the extracted trajectory. This approach is particularly

suited for forensic document examination, which heavily employs the detection of

particular allographs in document databases for writer identification purposes. In

Section 3, we describe our ongoing research toward using allograph matching for

this purpose. The results indicate that such techniques can significantly improve

the quality of the extracted trajectories. Given our findings that DTW is a tech-

nique that yields results plausible to humans, this method promises to be useful for

forensic document examination.

2. DTW for human-congruous allograph matching

In this section, we describe an experiment that assesses the validity of DTW for

human-congruous allograph matching. We implemented a variation of the DTW

algorithm14, which can compute the similarity between two online trajectories of

coordinates. In addition to temporal and spatial information, our implementation of

DTW also takes into account whether the pen was on (“pen-down”) or above (“pen-

up”) the paper during the creation of a certain point in the trajectory. Allograph

matching is performed by point-to-point comparison of two trajectories. A so-called

“matching path”, that represents the combinations of points on the two curves that

are matched together, is created. The Euclidean distance between all couples of

matching points is summed and averaged (see Figure 1). The resulting distance

number is a measure for the similarity between the two matched allographs.

2.1. The DTW algorithm

In our implementation of DTW, given two trajectories P = (p1, p2, ..., pN ) and

Q = (q1, q2, ..., qM ), two points pi and qj match if the following is satisfied: (Bound-

ary condition satisfied) OR (Pen-up/Pen-down condition satisfied AND Continuity

condition satisfied), where the three conditions are defined as:

• Boundary condition: pi and qj are both the first, or both the last points

of the corresponding trajectories P and Q (i.e. p1 matches with q1 and pN

matches with qM ).

• Pen-up/Pen-down condition: pi and qj match if both are either pen-down

or pen-up (this is an addition to the implementation described by Vuori39).

• Continuity condition: pi and qj match if Equation 1 is satisfied. The variable

c is number between 0 and 1 which indicates the strictness of the condition.

The value c = 0.13 that we used in this paper was adopted from our

previous studies on using DTW for different applications19,20,21.
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Fig. 1. Examples of trajectory matching techniques. Samples (a) and (b) are matched using (c)
linear matching (every point i of trajectory 1 matches with point i of trajectory 2), (d) complete
matching (every point of trajectory 1 matches with the nearest point of trajectory 2), and (e)

DTW-matching. DTW uses the production order of the coordinates, and is able to match the
coordinates that are placed in the same position in the two curves. As can be observed, “strange”

matches like between the points at the bottom of (a) and the left of (b) (as occur in (c)) and
between the points at the end of (a) and the beginning of (b) (as occur in (d)) do not occur in the
DTW-match. Furthermore, DTW does not require resampling (because it can match trajectories
of different length), whereas linear matching does.

M

N
i − cM ≤ j ≤

M

N
i + cM (1)

The algorithm computes the distance between P and Q by finding a path that

minimizes the average cumulative cost. In our implementation, the cost δ(P,Q) is

defined by the average Euclidean distance between all matching pi and qj . Note

that this differs from the edit distance employed by Lei et al.16. The edit distance

represents the number of points that have to be inserted by the DTW matching

process. Our claim is that δ(P,Q) better resembles human-congruous matching of

subsequent closest coordinate pairs.

2.2. Data and prototype creation

Based on the DTW-distance as defined above, it can be determined which allo-

graph from a set of prototypes is most similar to a certain questioned sample. For

the experiment described in this paper, a random selection of about one third of the

samples from the UNIPEN v07 r01-trainset8 was used. We used the semi-automatic

clustering techniques described in40 to yield a number of clusters containing similar

allograph members. Two different averaging techniques were used to merge mem-

bers from the same cluster into one prototype. This resulted in two distinct sets of

allograph prototypes:
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Fig. 2. Two prototype pairs. For the characters a and g, two methods of sampling are shown.

Within a box, the character on the left is processed by the MergeSamples algorithm, whereas the

character on the right is processed by the Resample and Average algorithm. The reader is referred

to the text for more details. While MergeSamples provides a ragged appearance as opposed to

the smooth character on the right, there is less of a shape-bias error in MergeSamples. This is
evidenced from the opening of the character a in the averaged version and the opening of the loop
in the character g.

• Resample and average: Every member in the cluster was resampled to 30

points (a number that is suitable for describing most character shapes in

Western handwriting28). Each point pi of the prototype was calculated by

averaging the x and y coordinates of every ith point of the members in the

corresponding cluster.

• MergeSamples: In stead of resampling, the member with the number of

points closest to the average number of points of all character samples

in the cluster was selected as initial prototype. Subsequently, the other

character samples in the cluster were merged with this prototype, using a

variation of the Learning Vector Quantization algorithm19,39.

Figure 2 shows prototypes that were based on the same cluster but processed

by the two different techniques. As can be observed, the MergeSamples prototypes

(left) are more “coarse” and “bumpy” than the Resample and Average prototypes

(right). Using the two averaging techniques, two prototype collections were con-

structed, each containing 1384 prototypes.

In the experiment described below, DTW was compared to the HCLUS tra-

jectory matching technique. As described in detail in 40, HCLUS employs a set of

prototypes found through hierarchical clustering of the characters in the UNIPEN

v07 r01-trainset. Each character is normalized with the origin translated to (0,0)

and the rms radius of the character scaled to 1. Characters are spatially resampled

at 30 equidistant coordinates. From each character, a feature vector is computed,

containing the 30 (x,y,z) coordinates with the running angles cos(φ), sin(φ) and

corresponding angular differences. Hierarchical clustering is performed using the

Euclidean distance metrics on these feature vectors and the resulting clusters are

manually selected. Allograph matching is performed based on the resulting proto-

types, which correspond to the centroids of members belonging to a cluster.
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2.3. The experiment

To test whether our DTW-algorithm produces results that are more plausible to

humans than the results of the HCLUS allograph matcher40, the following experi-

ment was conducted. The results of two DTW-variations (one for each of the two

prototype collections) were compared to the results of HCLUS. Human subjects

judged the quality of the results yielded by these three allograph matchers. Since

DTW compares points in a way that may resemble the pair-wise comparisons em-

ployed by humans, our assumption was that the results of the DTW-variations

would be judged to be more intuitive than the results of HCLUS. Furthermore, we

expected that subjects would judge the MergeSamples prototypes as more intuitive

than the Resample and Average prototypes, since for the creation of the former set

no resampling (possibly causing loss of information), was performed. Moreover, a

human handwriting expert qualified the MergeSamples prototypes as better resem-

bling a proper average19. Our hypotheses therefore were: (i) the results of DTW

will be judged to be more “human-congruous” than the results of HCLUS; and

(ii) the results of DTW using the MergeSamples prototype set will be judged to be

more “human-congruous” than the results of DTW using the Resample and average

prototype set.

Twenty-five subjects, males and females in the age of 20 to 55, participated

in the experiment, which was inspired by Van den Broek et al.37. Each subject

was provided with 130 trials (that were preceded by 3 practice trials). In each

trial, the subject was shown a “query” allograph and a 5 ∗ 3 matrix containing

different “result” allographs (see Figure 3). The subjects were asked to select those

allographs that they considered to appropriately resemble the query (as stated in

Section 1.2, we were not interested in a qualitative description of what makes a

good match, but only in quantitative differences in the appropriateness of different

matches). Subjects could select (and de-select) allographs by clicking them (selected

allographs were marked by a green border). No instructions were provided on the

criteria to use or on how many allographs to select. The results of each trial were

stored upon clicking a submit button, which also loaded the next trial.

The subjects were in fact shown the results of the three different allograph

matchers (HCLUS and the two DTW-variations). For each trial, a lowercase sample

was randomly taken from the UNIPEN v07 r01-trainset. For each sample, each

allograph matcher returned the five best matching prototypesa. Trials and matrix

location of the resulting allographs were fully randomized in order to compensate

for fatigue effects and preferred order of result. To reduce the effect of differences

in recognition performances of the systems, for each sample query with a certain

label, the five best matching prototypes with the same label produced by each

system were collected.

aAll queries and results of the three allograph matchers can be found at

http://dtw.noviomagum.com.
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Fig. 3. Examples of trials and typical selections. Subjects could select and de-select allographs by

clicking them (selections were marked with a green border). In each of these figures, an example
trial is shown. Allographs that were selected by at least one subject, are marked with a dark

border.

2.4. Results

In total 48750 allographs were presented in this experiment (25 subjects * 130 tri-

als * 15 prototypes per trial). In 3397 (6.9%) cases, subjects judged a prototype

from the MergeSamples system as relevant. In 2942 (6.0%) cases, a prototype from

the Resample and Average and in 1553 (3.2%) cases, the HCLUS prototypes were

selected (Figure 3 illustrates some of the selections made by the subjects). A Gen-

eral Linear Model was used to statistically assess the validity of the hypotheses.

For a significance level of α < 0.01, both hypotheses were found to hold strongly

significant (p < 0.0001).

Since each hypothesis was validated by the experiment, it can be concluded

that (i) the results of DTW are judged to be more “human-congruous” than the

results of HCLUS; and (ii) the results of DTW using the MergeSamples prototype

set are judged to be more “human-congruous” than the results of DTW using the

Resample and Average prototype set. Furthermore, when removing the prototypes

that were considered as irrelevant by the subjects, i.e., by considering only the 7892

selected cases, the effects become even stronger. In respectively 3397 (43.0%), 2942

(37.2%) and 1553 (19.7%) of the cases, the MergeSamples, Resample and Average,

and HCLUS prototypes were selected.
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In the preceding section, it is shown that DTW yields results that are more con-

gruous to what humans expect than other trajectory matching techniques. We have

incorporated these techniques in the Wanda workbench38, which provides a means

to manually index handwritten documents by copy-drawing pieces of scanned ink.

Given a set of indexed documents, allograph-based writer search on the basis of a

query character becomes feasible. Please note that this approach is not unrealistic,

given that it is common practice for forensic examiners to carefully perform inter-

active measurements on suspected documents29. However, our goal is to support

this labor by providing a means to automatically search for particular allographs

in scanned documents.

3. Trajectory extraction for forensic writer identification

In this section, we describe the most common approaches to the automatic ex-

traction of dynamic trajectories: minimization of global parameters such as length,

average curvature, or directional changes11,12,24. We introduce two new methods:

a novel use of local curvature information and the use of DTW techniques for the

verification of the extracted trajectories. This section ends with a presentation of

our first comparative studies, assessing these different methods using a relatively

large dataset.

3.1. Common trajectory extraction techniques

Kato and Yasuhara12 and Jäger11 give an excellent coverage of different approaches

in trajectory extraction techniques. The application of the techniques they describe

are restricted to characters identifiable begin and end points (i.e., where the begin

and end points do not coincide with the stroke). The technique of Kato and Ya-

suhara is also limited to single stroke allographs (i.e., those characters for which

the pen is not lifted from the paper during writing) that do not have one or more

junctions of more than two intersecting strokes. Our algorithm is inspired by the

techniques described in these publications, but does not have the latter limitation.

Given a pre-segmented handwritten character image, our technique creates one

or more theories about the possible writing order by following the next steps:

(1) The image is binarized and thinned, resulting in a skeleton image. For skele-

tonization of the binarized image, we employed the technique described in 9.

(2) Clusters of pixels are detected at the start or end of a stroke or at points

where two or more lines intersect. A cluster is defined as a set of 8-neighboring

pixels that each have either only one 8-neighbor or that have more than two

8-neighbors. Two cluster types are distinguished: (I) boundary clusters, i.e.,

clusters that have one connected line (these are candidates for the start and

end point of the trajectory) and (II) junction clusters, i.e., clusters that have

more than two connecting lines (these are the clusters where two or more lines

intersect). Clusters that have two connecting lines are deleted, since these are
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Fig. 4. Graph representation: The left figure depicts the original allograph image. The middle figure
shows the clusters that were found in that image. The right figure shows the graph representation
of the image. All nodes and directional edges are identified by unique numbers. Nodes 0 and 5

are boundary nodes and all others are junction nodes. The correct trajectory in this example is
represented the series of edges: 1, 3, 4, 2, 13, 6, 11, 7 and 9.

mostly caused by ink blobs within strokes, and do not represent positions where

the writing direction was changed. Figure 4 depicts an example image and the

detected clusters.

(3) A graph is constructed with a node for each cluster and edges for line segments

that connect clusters (see Figure 4). Each edge represents all pixels between

connecting clusters.

(4) Based on this representation, a graph traversal algorithm generates a list of

“theories” containing possible trajectories. There are two approaches to select

theories. The first is exhaustive and tries to minimize global parameters like

length or average curvature by exploring all possible paths. However, as argued

in 12, for more complex characters this approach becomes computationally less

attractive. Furthermore, our experiment shows that in the case of length mini-

mization, retracing of short edges becomes favorable over the real trajectories.

In case of average curvature, the preference is given to straight lines, which of-

ten conflicts with the intended trajectory. Therefore, more efficient techniques

try to exploit local information to restrict the number of possible directions to

take. In the next two subsections, these two approaches are discussed in more

detail.

3.2. Brute force theory evaluation

A theory is represented by an ordered list of edge numbers. For a theory to be valid,

it needs to satisfy four conditions:
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Fig. 5. Example of local curvature. The local curvature of the dark trajectory segments is based

on the stroke that is created by concatenating the segments, limiting the result by finding the
minimum and maximum y-coordinate and spatially resampling the stroke to 30 points.

• The starting point of the first edge and the ending point of the last edge should

be boundary clusters (i.e. we suppose that the starting point and ending point

of the trajectory are at boundary clusters).

• The theory should at least contain one of the two direction edges of each edge,

to make sure that all the strokes in the image are part of the theory.

• Each direction edge can only occur once in a theory, i.e. we suppose that every

edge is traced no more than two times (once in both directions).

• Each edge representing a loop (i.e., connecting a node to itself) can be traced

only once (combined with the second condition, this means that either one of

the two directions is traced, and the other is not).

For each theory adhering to these conditions, the corresponding trajectory is

determined by following the coordinates of the pixels in the skeleton image. The

resulting trajectory is then evaluated using four different methods:

• Trajectory length: Sum of the Euclidean distances between each pair of suc-

ceeding pixels.

• Average curvature: Average angle between each triplet of succeeding pixels.

• Local curvature: Average curvature in the traversed junction clusters. This is

calculated by concatenating the trajectory segments corresponding with the

ingoing and outgoing edges at each junction cluster, limiting the result by

finding the minimum and maximum y-coordinate (i.e., creating one stroke),

spatially resampling the stroke to 30 points28 to avoid the effects of curvature

quantization25, and computing the average curvature in the resampled stroke

(using the method described above). The local average curvatures at the junc-

tion clusters are then averaged by dividing them by the total number of junction

clusters traversed in the theory (see Figure 5).

• Smallest DTW distance: The trajectory is matched to the prototypes in the

MergeSamples prototype set (see Section 2.2), DTW allograph matching em-
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ploys a list of prototypes to be matched to the trajectory. We further pursued

the observation that it is common practice for forensic specialists to examine

handwritten documents by searching for the occurrence of particular allographs.

This involves that for a given character image with a known label, the extracted

theories only have to be compared to prototypes with this same label (and not

to all available prototypes). The best matching trajectory is found by search-

ing for the theory having the smallest DTW distance to all prototypes of the

particular label.

The choice for length and the two curvature measures is based on the assumption

that writers tend to write an allograph with minimum effort, i.e., without traversing

long edges more than once, and by minimizing the average amount of curvature in

the trajectory25. Similar global evaluation criteria that can be computed are, e.g.,

global smoothness, continuity in terms of directional changes, and stroke width12.

3.3. Theory creation employing local information

To limit the amount of possible theories, a number of suggestions are made in the

literature to exploit local information. In general, these try to minimize directional

changes or employ local curvature24. In 12, graph traversal is ruled by an algorithm

that opts for the middle edge at branches, but which is therefore restricted to

junctions with no more than two crossing strokes. In our approach, local curvature

information is employed to construct a theory by deciding at each junction which

edge is the best to continue with. This is decided by calculating the local curvature

(described in Section 3.2) between the incoming and each of the outgoing edges.

The outgoing edge is selected that yields the lowest local curvature.

3.4. Trajectory verification

Verification of the results of algorithms that extract dynamical information from

scanned images can be performed indirectly by using them for the proposed ap-

plication. For example, Lallican et al.15 validated the results of their trajectory

extraction algorithm by using them for word recognition: the trajectory leading to

the most probable word is considered as the most appropriate.

A direct validation, by comparing a resulting trajectory to its corresponding

ground truth, can be performed manually. For example, Kato and Yasuhara12 veri-

fied their results by displaying an animated pencil that following the trajectory that

has been produced by their algorithm. They also used a color code to distinguish

between single-traced and double-traced strokes. Boccignone et al.2 also verified

their results manually.

However, with relatively large amounts of data, visual inspection becomes a

practical problem. If, on the other hand, the ground truth of each sample is avail-

able, automatic validation becomes possible. For example, if the offline and online

signals were recorded simultaneously during data acquisition, both a scanned im-
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age and the actually produced trajectory are available to the system. A problem

with this approach is described by Franke7: When superimposing online pen tra-

jectories and offline ink traces, an appropriate match between the online and offline

data proves to be impossible. This problem is caused by the fact that variations

in pen-tilt and pen-azimuth, which occur in human handwriting, cause different

displacements in the captured online signal.

This problem can be solved by generating offline data from online data. This

approach allows for the quantitative evaluation of much larger amounts of samples

than would be possible by visual validation. Nevertheless, visual validation appears

to be the default in almost the entire literature. Jäger11 uses a line generator to

draw lines between adjacent coordinates from the online signal, resulting in an

offline handwritten image. This image is subsequently processed and the resulting

trajectory is compared to the original online signal. We followed a similar procedure

to verify the results of our algorithms. We randomly selected 1377 online character

samples from the UNIPEN v07 r01-trainset8 and used the Bresenham line gener-

ation algorithm to generate character images with a pixel width of 1. Please note

that employing such artificial images avoids a serious practical issue: If offline data

collected with a scanning device were used, a thinning or skeletonization algorithm

would be required to generate images containing trajectories of 1 pixel wide. It

is well known that processing real scanned documents with such algorithms, can

introduce artefacts that make a proper trajectory extraction very hard or even

impossible11,23. This holds especially in complex characters. However, our current

explorations in assessing the quality of thinning algorithms on real scans show that

even standard thinning techniques can yield useful results23. Furthermore, with the

evolution of skeletonization algorithms13, it is not unthinkable that the practical

possibilities of our algorithm will improve. Furthermore, since the goal of the cur-

rent paper is to improve on trajectory extraction techniques, unambiguous ground

truth trajectories are required, for which the proposed approach is very well suited.

Nonetheless, the results reported in this paper should be interpreted as an upper

boundary.

The trajectories that our algorithms extracted were validated by checking for

every coordinate in the ground truth whether or not it was also present in the

produced trajectory, and whether the coordinates were visited in the right order.

Only if this was the case, the produced trajectory was marked correct.

3.5. Results and discussion

We compared four different trajectory extraction algorithms on the 1377 samples

described above. Three global algorithms were compared: minimization of length,

minimization of average curvature, and trajectory verification by using DTW. We

also assessed one local algorithm, using local curvature information. Table 1 depicts

the results, showing the fraction of correctly extracted trajectories.
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top-n length avg curv loc curv DTW

1 0.35 0.41 0.48 0.89

2 0.83 0.84 0.96 0.99

3 0.91 0.92 0.97 0.99

4 0.97 0.97 0.99 0.99

5 0.97 0.97 0.99 1.00

Table 1. Results of different trajectory extraction techniques. The top-n performance (the fraction

of cases where the correct result is among the n best theories) in terms of fraction correct is

presented for length, average curvature, local curvature, and DTW. Please note that for the first

three measures, the top-1 performance is relatively low since it cannot be decided which of the

two directions should be taken.

There are two important conclusions to draw from these results. The first is

that only DTW is able to achieve an appropriate top-1 performance (fraction of

cases where the best found theory is correct). The other techniques cannot decide

on the direction of the extracted trajectories, since length and curvature are equal

for traveling from begin to end or vice versa. The second observation is that DTW

outperforms the other techniques. The results are strongly significant for the top-1,

top-2, and top-3 rankings. A closer examination of the cases in which DTW fails

(see Figure 6) shows that most errors are caused by missing details in the best

matching prototypes, in particular the occurrence of small loops. These cases form

the majority of errors. A few errors are attributed to the occurrence of hooks at

the start or beginning of a character and to samples in which the writer produced

a character shape in a direction that was not covered by the prototype database.

If the most similar prototype to a specific trajectory lacks a certain detail, DTW

may not be able to correctly trace that detail. In the case of both “h”s, and the “n”

(in Figure 6), the most similar prototypes do not contain loops, and therefore DTW

cannot detect the right direction of the loops. In the case of the “d”, the allograph

was started in the middle and finished at the top. However, the prototype in the

database that was most similar to the image, was traced the other way. DTW was

therefore not able to detect the right direction. In the case of the “l”, the most

similar prototype in the database was a straight line from top to bottom. The best

way to match this prototype to the sample, was by starting at the top, double

tracing the small “hook” on the right, and continuing to the bottom, while the

allograph was actually started at the hook, after which the top piece was double

traced, and the trace was continued to the bottom.

Despite these good results, this method has the weakness that if a certain sample

is not covered by the prototype database, it is possible for DTW to yield the wrong

trajectory. Since each prototype is the result of “averaging” a number of samples

(see Section 2.2), it is probable that details will be missed. Please note, again, that

such errors might be fully acceptable in regular character recognition, but they may

easily upset forensic document examiners. However, the majority of errors is caused
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Fig. 6. Examples of cases where DTW does not extract the right trajectory. The images on the

left of each box are the samples, the images on the right of each box are the nearest prototypes
according to DTW. The black dot indicates the starting point of the prototype. In the characters

“h”, the loop in the first downstroke has fully disappeared in the best DTW match. A similar
problem occurs in the character “n”, in this case the tiny loop at bottom left is misrepresented in

the DTW sample on the right. In the character “d”, hooks are introduced at the beginning and
end of the trajectory. Finally, in the character “l”, an existing hook has disappeared. All of the

errors can be explained by samples that are not covered by the used prototype database.

by DTW not being able to predict the direction of small loops. The occurrence and

size of loops can easily be detected from the graph representation of the trajectories.

And by using local curvature information in the case of small loops, these errors

can reliably be solved.

The advantage of this approach is that if a certain prototype is in the database,

DTW provides an excellent basis for retrieving particular allographs that corre-

spond to that prototype. Based on these results, we can conclude that DTW is

a promising way to achieve the goal of this study: To develop techniques through

which forensic experts can search for the occurrence of characters with a particular

shape.

3.6. Semi-automatic extraction and verification

To be able to use our trajectory extraction algorithm in a practical application, we

plan to implement it into the Wanda system6. Given the findings that DTW can



IJPRAI: R. Niels, L. Vuurpijl and L. Schomaker (June 9, 2006 12:32)

Automatic allograph matching in forensic writer identification 17

produce human-congruous matches and that our trajectory extraction algorithm

can produce the trajectories necessary for this, the Wanda Allograph Matcher38

(see Section 1.1) could be turned into a practical application. It could then be used

to search in an indexed database for prototypical allograph shapes occurring in a

questioned document. In cases where our trajectory extraction algorithm encounters

difficulties, e.g., in cases where the thinning algorithm introduces artefacts or where

the combination of DTW and local curvature is not able to generate a correct

trajectory, an interactive user session could be started. In such session, the user

can for example be asked to copy draw the problem case or to select the correct

trajectory from a list of theories yielded by the algorithm. This way, DTW can be

provided with the correct trajectory so that it can search through the database.

4. Conclusion

This research is part of the Dutch NWO-funded Trigraph project, which pursues

the development of forensic writer identification techniques based on expert knowl-

edge from forensic experts, automatically derived image features computed from

a scanned handwritten, and information based on allographic character features.

In this paper, we have explored the use of DTW techniques for human-congruous

allograph matching and for verification of the extracted allograph trajectories from

offline images. Two experiments were conducted. In the first, we asked 25 subjects

to indicate which of a set of retrieved allographs matched the shape of a certain

query character. The results show that allographs retrieved by DTW were selected

significantly more frequently than allographs retrieved by HCLUS. In the second ex-

periment, we used a randomly selected set of characters from the UNIPEN database

to assess four different trajectory extraction techniques: length, average curvature,

local curvature and DTW. We have argued that the use of such datasets allows for

a quantitative assessment of the technologies and that this approach is still fairly

unknown. Our results show that DTW can significantly improve the quality from

trajectory extraction when compared to traditional techniques. Furthermore, as a

spin off of this process, the best matching prototype to the extracted trajectory can

serve as an index to the scanned document, like: “This particular allograph occurs

in this document”.

However, a number of considerations must be taken into account. First, due to

the limited number of prototypes, there is no complete coverage of all details in

possible character shapes. Note that trying to cover all variations in handwriting is

an ill-posed problem, since it has been shown that handwriting is individual33 and

thus, that each new writer adds new shapes42. We are currently pursuing a better

coverage of character shapes by prototypes in two ways. The first elaborates on

the experiments presented in this paper by using more data. Statistical information

about the trajectories that are incorrectly extracted can subsequently be used to

add new prototypes or re-shape existing ones. The second way is to exploit top-

down expert knowledge provided by forensic experts, building a taxonomy of most
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prominent allographic shapes and corresponding sub-allographic features. Based on

the current results, we can already conclude that sub-allographic features like small

loops cause a major part of the errors. To resolve these cases, we have provided a

hint to estimate the direction of small loops via local curvature estimates.

The second consideration concerns the computational aspects of our approach. It

is well-known that Dynamic Time Warping is computationally expensive. Therefore,

it is unrealistic to assume that, given the power of currently available systems, this

technique can be used in an online setting, where all processing steps have to be

performed on large databases of scanned documents. However, in our envisaged

system, we intend to employ our techniques for the batch-wise indexing of such

databases. Subsequently, querying for the occurrence of particular allographs boils

down to the comparison of the query characters to the set of prototypes and using

the labels of the best-matching prototypes to search in the pre-indexed databases.

Our current research within the Trigraph project is focused on these two issues.

Furthermore, we are involving expertise and knowledge about particular allographs

and sub-allographic features from forensic scientists. Eventually, the developed tech-

nologies will be integrated in the Wanda workbench and tested in writer identifica-

tion tasks and usability studies with forensic experts.
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