
Washington University School of Medicine Washington University School of Medicine

Digital Commons@Becker Digital Commons@Becker

Open Access Publications

2015

Automatic analysis (aa): Efficient neuroimaging workflows and Automatic analysis (aa): Efficient neuroimaging workflows and

parallel processing using Matlab and XML parallel processing using Matlab and XML

Rhodri Cusack
Western University

Alejandro Vicente-Grabovetsky
Donders Institute for Brain, Cognition and Behaviour

Daniel J. Mitchell
MRC Cognition and Brain Sciences Unit

Conor J. Wild
Western University

Tibor Auer
MRC Cognition and Brain Sciences Unit

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation Recommended Citation

Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J.; Wild, Conor J.; Auer, Tibor; Linke,

Annika C.; and Peelle, Jonathan E., ,"Automatic analysis (aa): Efficient neuroimaging workflows and

parallel processing using Matlab and XML." Frontiers in Neuroinformatics. 8,. 90. (2015).

https://digitalcommons.wustl.edu/open_access_pubs/3706

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker.
For more information, please contact vanam@wustl.edu.

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3706&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu

Authors Authors
Rhodri Cusack, Alejandro Vicente-Grabovetsky, Daniel J. Mitchell, Conor J. Wild, Tibor Auer, Annika C.
Linke, and Jonathan E. Peelle

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/
open_access_pubs/3706

https://digitalcommons.wustl.edu/open_access_pubs/3706
https://digitalcommons.wustl.edu/open_access_pubs/3706

TECHNOLOGY REPORT ARTICLE
published: 15 January 2015

doi: 10.3389/fninf.2014.00090

Automatic analysis (aa): efficient neuroimaging workflows
and parallel processing using Matlab and XML

Rhodri Cusack1*, Alejandro Vicente-Grabovetsky2, Daniel J. Mitchell 3, Conor J. Wild 1, Tibor Auer 3,
Annika C. Linke1 and Jonathan E. Peelle4

1
Brain and Mind Institute, Western University, London, ON, Canada

2 Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
3 MRC Cognition and Brain Sciences Unit, Cambridge, UK
4 Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA

Edited by:

John Van Horn, University of

California, Los Angeles, USA

Reviewed by:

Daniel Gardner, Weill Cornell

Medical College, USA

Andrei Irimia, University of Southern

California, USA

*Correspondence:

Rhodri Cusack, Brain and Mind

Institute, Western University,

London, ON N6A 1W8, Canada

e-mail: rhodri@cusacklab.org

Recent years have seen neuroimaging data sets becoming richer, with larger cohorts

of participants, a greater variety of acquisition techniques, and increasingly complex

analyses. These advances have made data analysis pipelines complicated to set up and

run (increasing the risk of human error) and time consuming to execute (restricting what

analyses are attempted). Here we present an open-source framework, automatic analysis

(aa), to address these concerns. Human efficiency is increased by making code modular

and reusable, and managing its execution with a processing engine that tracks what has

been completed and what needs to be (re)done. Analysis is accelerated by optional parallel

processing of independent tasks on cluster or cloud computing resources. A pipeline

comprises a series of modules that each perform a specific task. The processing engine

keeps track of the data, calculating a map of upstream and downstream dependencies for

each module. Existing modules are available for many analysis tasks, such as SPM-based

fMRI preprocessing, individual and group level statistics, voxel-based morphometry,

tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full

customization, and encourages efficient management of code: new modules may be

written with only a small code overhead. aa has been used by more than 50 researchers in

hundreds of neuroimaging studies comprising thousands of subjects. It has been found to

be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines

on hundreds of subjects. It is attractive to both novice and experienced users. aa can

reduce the amount of time neuroimaging laboratories spend performing analyses and

reduce errors, expanding the range of scientific questions it is practical to address.

Keywords: neuroimaging, functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), diffusion

weighted imaging (DWI), multi-voxel pattern analysis (MVPA), software, pipeline

THE NEED FOR EFFICIENT WORKFLOWS

The last two decades have seen enormous growth in the use

of magnetic resonance imaging (MRI) as a tool to understand

brain function, and in the size and complexity of the datasets

acquired. The number of participants in individual studies has

grown for many reasons, including: the increasing availabil-

ity of MRI scanners; a move from fixed- to random-effects

designs (Friston et al., 1999; Mumford and Nichols, 2008); a

demand for greater replication in neuroimaging (“The dilemma

of weak neuroimaging papers,” http://www.danielbor.com/

dilemma-weak-neuroimaging); the need to overcome statistical

noise in studies of individual differences, genetics, aging, devel-

opment or disease; large scale investments such as the Human

Connectome Project (Van Essen et al., 2012), Alzheimer’s Disease

Neuroimaging Initiative (Mueller et al., 2005) or Cambridge

Centre for Aging and Neuroscience (http://www.cam-can.org);

and a growth in open data sharing (Van Horn et al., 2001; Biswal

et al., 2010; Poldrack et al., 2013; http://www.xnat.org).

Furthermore, the neuroimaging data acquired from each par-

ticipant have become richer. Whereas in the past, researchers

frequently collected data using a single method, many now

acquire diverse MRI protocols, including structural (e.g., T1,

T2, PD), functional (echoplanar imaging; EPI), connectiv-

ity (diffusion-weighted imaging; DWI), fieldmaps (multi-echo;

gradient echo) and myelination (magnetization transfer ratio;

MTR) measurements in single studies. Accelerated sequences

using parallel imaging (SENSE, GRAPPA, and multiband

EPI) have allowed for finer temporal or spatial resolution

and increased the size of datasets by up to an order of

magnitude.

Alongside the increasing quantity of data, the palette of

analysis methods has also grown. In functional MRI (fMRI),

in addition to the standard preprocessing stages of motion

correction, slice-timing correction, warping-to-template (nor-

malization) and smoothing, denoising is now possible using tools

based upon independent components analysis (Calhoun et al.,

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00090/abstract
http://community.frontiersin.org/people/u/10951
http://community.frontiersin.org/people/u/22378
http://community.frontiersin.org/people/u/112439
http://community.frontiersin.org/people/u/185358
http://community.frontiersin.org/people/u/197911
http://community.frontiersin.org/people/u/8126
mailto:rhodri@cusacklab.org
http://www.danielbor.com/dilemma-weak-neuroimaging
http://www.danielbor.com/dilemma-weak-neuroimaging
http://www.cam-can.org
http://www.xnat.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

2009; Kundu et al., 2012; http://fsl.fmrib.ox.ac.uk/fslcourse/

graduate/icaprac/artdata/dim33.ica/report; http://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/FIX), modeling of noise components (Kay

et al., 2013), and image rejection (Power et al., 2012). Statistical

analyses are now often conducted both using standard univariate

methods and multi-voxel pattern analysis (MVPA) (Haynes

and Rees, 2006; Kriegeskorte et al., 2006; Norman et al., 2006).

Brain structure is often analyzed using voxel- (Ashburner, 2009)

and surface-based (Winkler et al., 2012) morphometry, and

gyrification indices (Schaer et al., 2008). Registration between

individuals can use relatively low-dimensional warping to a

template, or higher dimensional registration (Ashburner, 2007,

2009). Diffusion data can be analyzed with probabilistic or

deterministic methods, by summarizing parameters such as the

fractional anisotropy (FA) on a skeleton (Smith et al., 2006) or

by tracing tracts (Behrens et al., 2007). In addition to the sheer

number of useful analysis methods now available, many methods

are highly computationally intensive, such as searchlight MVPA

(Kriegeskorte et al., 2006), probabilistic tractography, and high-

dimensional image warping (Ashburner, 2007). Implementing

these complementary approaches commonly requires a combina-

tion of software packages, which follow diverse concepts and may

even use different file formats. The integration of results from

these different software packages (e.g., using fMRI activation

clusters as seeds for diffusion tractography) further increases the

complexity of an analysis workflow.

The increasing quantity of raw data and greater number of

computationally intensive analysis methods have led to two chal-

lenges. The first is an increase in the complexity of the workflows

required: There are a greater number of individual “chunks”

of processing, and more complex dependencies between these

chunks. Furthermore, even the best-run neuroimaging study does

not always proceed exactly according to plan, and there are

often idiosyncrasies that result from technical glitches, opera-

tor error, or participant non-compliance. Manual intervention

in this complex workflow leads to the potential for human

error.

The second challenge is an increase in computation time per

study. Many neuroimagers are already stretched by the need to

become multidisciplinary experts in the physics of neuroimaging,

the mathematics for analysis, the psychology of cognitive func-

tion, and the biology of the brain. They do not all necessarily

relish the additional challenge of becoming a programmer and

computer scientist so that they can make the most efficient use of

computing resources.

The many stages of analysis required to draw conclusions

from MRI data were once almost universally accomplished using

point-and-click interfaces, a practice many continue. However,

as the field matures, this sort of “manual” analysis is becoming

increasingly impractical and unattractive. Here, we present a soft-

ware package, automatic analysis (aa) (http://automaticanalysis.

org), which provides a simple but flexible way to specify com-

plex workflows, keep track of what needs to be done, and

facilitate parallel computing. aa is engineered so that even

when used by a “lazy” operator precise records are kept. It is

easily extendable, and code naturally becomes re-useable and

shareable.

EXISTING SOFTWARE

Once the decision is made to use a processing pipeline, there are

a number of options. Although the best solution depends a great

deal on individual preferences and priorities, we have engineered

aa to fill needs not met by other processing pipelines.

Neuroimaging benefits enormously from a dynamic software

development community, with new analysis tools frequently dis-

seminated by large teams. However, these packages focus pri-

marily on implementing specific tools, rather than managing

efficient workflows. aa provides access to many (though not all)

functions in the major neuroimaging packages of SPM, FSL,

and Freesurfer; other tools such as the Advanced Normalization

Tools (ANTs); and our own implementation of searchlight- or

ROI- based MVPA. In addition, although not discussed in this

manuscript, it also includes growing support for other modalities

including MEG, EEG, and ECoG.

DESIGN GOALS

EFFICIENT AND EASY-TO-READ SPECIFICATION OF COMPLEX

PIPELINES

As neuroimaging pipelines become increasingly complicated, it

becomes important to develop elegant ways of describing them.

With aa, we aimed to separate a high-level description of what

needs to be done (e.g., motion correction followed by slice-

timing correction) from the individual parameters that control

each stage. Furthermore, wherever possible, sensible default val-

ues are available for each stage, so that an analysis can be specified

as leanly and efficiently as possible, without the need to re-invent

the wheel each time. We make extensive use of XML markup lan-

guage to provide easy-to-read descriptions of tasklists (i.e., the list

of processing stages) and settings.

MODULAR DESIGN

To make it easier to identify the code that is responsible for a given

task, and to facilitate parallel computing, each stage of processing

is described by an encapsulated “module.”

SEPARATION OF METHOD AND DATA

A separation is enforced between the algorithms that should be

applied and the data (i.e., participants and sessions) on which

they should operate. This separation ensures that modules are

re-useable: once written in the context of one analysis, modules

may usually be re-used without modification in another analysis

of different data.

ONLY DO WHAT NEEDS TO BE DONE

Modules are never called directly by the user; instead, their exe-

cution is handled by the aa scheduling engine (aa_doprocessing).

The scheduling engine identifies whether a module has already

been run on a given piece of data, and whether the inputs to

a module have changed (e.g., a subject has been added) since

it was last run. If a module has already been run, it is not

repeated. Although simple, checking for completed stages pro-

vides three important practical benefits. First, it saves compu-

tational resources. Second, it makes debugging quicker: If an

analysis crashes partway through, then the next time it is re-run,

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 2

http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/ica_prac/artdata/dim33.ica/report
http://fsl.fmrib.ox.ac.uk/fslcourse/graduate/ica_prac/artdata/dim33.ica/report
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
http://automaticanalysis.org
http://automaticanalysis.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

all of the stages that lead up to the crashing stage will not be exe-

cuted. Third, it stops the user from needing to “comment out”

lines that have already completed when rerunning just one later

part again. As a result, in practice the final aa script will typically

recreate an analysis in its entirety.

Checking for previously-completed stages also facilitates com-

plex pipelines with multiple analysis pathways. For example, in

the case where all processing stages save one are identical (e.g.,

to compare preprocessing with and without slice-timing correc-

tion), aa can be informed about a branched tasklist and re-use

inputs that are common to both branches.

FACILITATE PARALLEL PROCESSING

As analyses become more computationally intensive, being able to

easily accelerate them across a cluster of machines is increasingly

important. Often, execution time determines what analyses a user

can bear. For example, even if an analysis runs in a single-threaded

manner in a practical amount of time (say 5 days), a user will be

highly discouraged from running it again to fix some small issue.

aa uses coarse-grained parallelization, meaning that where

possible, multiple modules, different EPI sessions, subjects, or

even analyses (e.g., groups of searchlights in an MVPA analy-

sis for a single module) are run in parallel. Modules themselves

are not written differently for parallel or single-threaded execu-

tion: parallelization is achieved entirely in the scheduling engine

(although individual modules can in principle be parallelized at a

finer-grained level).

KEEP TRACK OF WHAT HAS HAPPENED

A precise record of everything that has happened in an aa analysis

is saved and can be referred to in the future. It is stored as a Matlab

structure, which can be read back in to recreate the analysis, or

probed for parameter settings.

DIAGNOSTICS AND QUALITY CONTROL

One of the drawbacks of batch analysis is that a user may

be tempted to only look at the final results, and not inspect

the data at each stage of processing. However, complex analy-

sis pipelines can fail in a greater number of ways than simpler

pipelines. Some failures can be obvious (e.g., activation outside

the brain due to imperfect registration), while others are harder

to track down (e.g., weaker group activation detected due to high

between-subject variability caused by motion). Consequently,

inspection of data is as important as ever. Several existing solu-

tions generate some diagnostic data during the analysis (e.g., FSL’s

FEAT Pre-stats and Registration reports); however, the informa-

tion provided is limited, sometimes complicated to reach, and

almost never submitted to between-subject analysis (important

for the measurement of between-subject variance and outlier

detection).

To address this problem, many aa modules create diagnostic

results (e.g., plots of motions to be corrected, registration over-

lays, thresholded statistical parameter maps for first-level con-

trasts). In addition, aa also implements various quality control

tools (mostly SPM- and FSL-based). A dedicated module for low-

level quality control (tsdiffana) is also bundled with aa, which—

thanks to the flexible modular concept—can be employed before

or after various stages or even multiple times, which allows a user

to follow how the data change during the analysis. Conveniently,

these diagnostic results are collected into a central place in

a multi-level fashion, allowing a user to browse both verti-

cally (within-subject) and horizontally (between-subject). Where

applicable (e.g., motion correction), between-subject visual com-

parison and/or statistics are also provided.

SYSTEM AND SOFTWARE REQUIREMENTS

• aa is developed in a *nix environment and actively used on

machines running Ubunto, RedHat, and Mac OS X. It is not

currently supported on Windows.

• aa is Matlab-based and requires a base installation of Matlab.

Some functions may require additional toolboxes; for example

the Image Processing Toolbox. In general, though, aa is written

with the goal of minimizing use of Matlab toolboxes by using

versions of functions included in the base Matlab installation

or by recreating these functions.

• As a processing pipeline, aa does not include external software

(such as SPM, FSL, etc.), which must be installed separately and

placed in a user’s path.

SOFTWARE ARCHITECTURE

This manuscript describes aa version 4.2. Not all compo-

nents apply to earlier versions. The latest version is available

from: http://automaticanalysis.org/getting-started/download-

installation/. Here, we describe the components in the order a

typical user might encounter them, providing a description of

each and the motivation for the architecture. The earlier topics

will be needed by any aa user, while the later ones are likely to be

of more interest to experienced users.

USER SCRIPT

The core of an aa analysis is the user script, which describes what

processing should happen, and what data it should be applied to.

Almost all analyses will require the user to create a user script in

Matlab, typically by modifying an example script (found in the

“examples” folder distributed with aa). An example user script is

shown below:

% Example aa version 4 user script

%

% Note: For an example of a complete user script,

please see:

%

% http://automaticanalysis.org/getting-started/worked-

example/

%

% Define study specific parameters

aap=aarecipe(’aap_tasklist_typical_fmri.xml’);

% Directory for analyzed data

aap.acq_details.root=’/imaging/rhodri/camcan/cc_movie’;

% Sub-directory for analyzed data

aap.directory_conventions.analysisid=’data’;

% Define subjects, and EPI series number ordered as

aas_addsession lines

aap=aas_addsubject(aap,’CBU110000_*’,{6});

% One or more sessions

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 3

http://automaticanalysis.org/getting-started/download-installation/
http://automaticanalysis.org/getting-started/download-installation/
http://automaticanalysis.org/getting-started/workedexample/
http://automaticanalysis.org/getting-started/workedexample/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

aap=aas_addsession(aap,’movie’);

% How many dummies?

aap.acq_details.numdummies=3;

% (Note: for a full analysis events and contrasts need

to be added)

% Do processing

aa_doprocessing(aap);

This script executes a typical fMRI processing pipeline (discussed

more in the next section) on a single subject (CBU110000) for a

single session (imaging series 6, labeled “movie”).

The user script can set parameters, such as output paths, or

settings for modules. Here, three dummy scans are specified to be

ignored in the analysis by the line:

aap.acq_details.numdummies=3

Note that the entire analysis—comprising the set of tasks to be

run and the data they are to be run on—is described in a sin-

gle structure (the “aap” variable). It is initially constructed by the

aarecipe command. Because the analysis is fully specified by a sin-

gle structure (along with the codebase), it is trivial to keep a record

of the analysis, or to re-run it at a later date.

BASIC TASKLISTS

The tasklist is an XML format file that describes what should be

done. A number of tasklists are available, many of which are useful

without modification (Table 1).

Each tasklist describes a series of modules that should be exe-

cuted. In the example user script given above, the tasklist specified

was aap_tasklist _typical_fmri.xml. Figure 1 shows the processing

that will be run for this tasklist. Note that a subject’s structural

(T1) and fMRI (EPI) data go through a number of processing

stages, and some modules operate on the data together. The XML

code that underlies this tasklist is below.

<?xml version="1.0" encoding="utf-8"?>

<aap>

<tasklist>

<initialisation>

<module><name>aamod_checkparameters</name>

</module>

<module><name>aamod_evaluatesubjectnames</name>

</module>

<module><name>aamod_study_init</name></module>

<module><name>aamod_newsubj_init</name></module>

</initialisation>

<main>

<module><name>aamod_autoidentifyseries_timtrio

</name></module>

<module><name>aamod_get_dicom_structural</name>

</module>

<module><name>aamod_get_dicom_epi</name></module>

<module><name>aamod_convert_structural</name>

</module>

<module><name>aamod_convert_epis</name></module>

<module><name>aamod_realign</name></module>

<module><name>aamod_tsdiffana</name></module>

<module><name>aamod_slicetiming</name></module>

<module><name>aamod_coreg_noss</name></module>

<module><name>aamod_norm_noss</name></module>

<module><name>aamod_norm_write</name></module>

<module><name>aamod_smooth</name></module>

<module><name>aamod_firstlevel_model</name>

</module>

<module><name>aamod_firstlevel_contrasts</name>

</module>

<module><name>aamod_secondlevel_model</name>

</module>

</main>

</tasklist>

</aap>

There are two sections to this simple tasklist. The “initialisation”1

modules are run every time, for tasks such as checking the input

parameters, or expanding wildcards in the subject names. The

“main” modules are only run once on each piece of data, unless

an explicit re-run is requested.

Note also that the dependencies (that is, which pieces of data

act as the input to each module) are not usually explicitly specified

in the tasklist. Instead, the pipeline is automatically connected

up at the start of processing using information in each mod-

ule’s interface. This simplifies specification of tasklists, and allows

modules to be reordered with reduced potential for error. The

dependencies are reported at the start of an analysis.

OUTPUT FILE STRUCTURE

The example of an output file tree for an aa analysis is shown

in Figure 2. The path to which this structure gets written is

determined by the aa setting

aap.acq_details.root=’/imaging/rhodri/mypath’;

The name of the directory for the analysis is specified in:

aap.directory_conventions.analysisid=’myanalysis’;

Each module operates on data stored in a separate directory (e.g.,

aamod_realign_00001, aamod_smooth_00001). This differs from

the conventions with packages such as SPM where all analysis

stages are written to a single directory, often with different pre-

fixes or suffixes to distinguish the stages. There are a number of

practical benefits to aa’s directory separation. First, it reduces the

number of files within subdirectories, which makes them more

manageable, particularly for fMRI or DTI with a 3D data format

1British spellings are used throughout aa, reflecting its country of origin.

Table 1 | Example tasklists.

Tasklist Purpose

aap_tasklist_typical_fmri.xml fMRI preprocessing and first/second level

statistics

aap_tasklist_fmri.xml fMRI preprocessing and first/second level

statistics—variant using fieldmaps,

realignunwarp.

aap_tasklist_dartelvbm8.xml VBM with SPM8 and DARTEL

aap_tasklist_diffusion.xml Diffusion tractography with FSL

aap_tasklist_diffusion2.xml Nonlinear DTI and DKI

aap_tasklist_freesurfer.xml Structural processing with Freesurfer

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

FIGURE 1 | A typical fMRI pipeline comprising a set of aa modules (filenames prefixed with aamod_). Blue colors refer to modules processing the

structural, green colors processing the EPI, and red are general. This pipeline does preprocessing and first-level (individual) and second-level (group) statistics.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

FIGURE 2 | Example file structure for aa output. Each analysis comprises output directories organized by processing stage (here, for example, realignment

and smoothing) which are then each subdivided by subject, then session.

(e.g., one image per timepoint). Second, it makes it easier to see

at a glance what processing has happened, and to find a file when

browsing. Finally, it makes maintenance easier when, for example,

a user wishes to delete intermediate stages of analysis to save disk

space.

These ease-of-use and aesthetic advantages come along with

more fundamental benefits. Partitioning the workspace of mod-

ules into separate directories facilitates the encapsulation of data.

The aa engine is responsible for putting a module’s input data

into the directory in which it will execute. If a module does not

request a piece of data, it will not be there, and it cannot acciden-

tally be used. Similarly, the aa engine is responsible for picking

up outputs and passing them along the pipeline. If a module does

not explicitly declare an output, it will not be passed. Thus, direc-

tory separation allows the aa scheduling engine to maintain tight

control of data dependencies. This has a number of benefits. It

permits parallel processing with a reduced potential for conflicts

due to unexpected module behaviors. When executing on a clus-

ter, data transfer demands are reduced as a compute node does

not need to receive the whole analysis, but only the specific data

it is working on. Finally, the one-directory-per-module structure

facilitates branched tasklists, where an analysis forks, and is con-

tinued in two different ways (e.g., with a smoothing kernel of 8 or

12 mm).

Here, both modules had the suffix _00001. If either module

were present more than once in a tasklist (e.g., tsdiffana run before

and after a processing stage), this index would be incremented by

one for each subsequent entry.

Note that this architecture does not restrict the level at which

a module can operate. That is, if data for all sessions and sub-

jects are needed to complete an analysis, they will all be copied

to the appropriate directory. However, as this is more often

the exception than the rule, on the whole aa’s limited copy-

ing approach saves bandwidth and reduces opportunities for

error.

MODULES

At the heart of every aa analysis are the modules. A module per-

forms a single task, such as motion correction or smoothing.

Some examples are given in Table 2.

Each module requires two files: an XML interface (e.g.,

aamod_smooth.xml), and the corresponding Matlab source (e.g.,

aamod_smooth.m). Occasionally, an interface file may specify a

Matlab file with a different name to its source (e.g., aamod_

autoidentifyseries_ge.xml points to aamod_autoidentifyseries.m)

using an mfile_alias=‘. . . ’ attribute.

One of a module’s most important properties, specified

in this XML interface, is the “domain” at which it operates.

Modules with a domain of “study” are called just once (i.e.,

a single instance is created each time the module occurs in

the processing pipeline). Modules with a domain of “sub-

ject” are called once for each subject, while modules with a

domain of “session” are called once for each session of each

subject. These are the three most common module domains;

others include diffusion_session, meg_session, and hyperalign-

ment_searchlight_package. However, new domains can be easily

added to the aa engine, and user-written modules can make use

of new domains.

Instances of a module should restrict their processing to a par-

ticular set of input data (i.e., for a given session-domain module,

there might be an instance for subject 3, session 2). This instance

should take care to only attempt to process this portion of the

data, and should never attempt to write data outside its domain

(in this example, to another session).

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

Table 2 | Example aa modules.

Input data sorting

aamod_autoidentifyseries_timtrio

Scan input DICOM files to get series and acquisitions irrespective of

filenames, which are typically site-specific. Identify structural and

fieldmap series numbers.

Anatomy

Basic structural

aamod_get_dicom_structural

Find all DICOM files corresponding to the structural acquisition.

aamod_coreg_extended_1

Coregister an individual’s structural to a standard space template using a

rigid body transformation, which improves robustness of later

normalization stage.

aamod_norm_noss

Estimate nonlinear warp that will transform an individual subject’s space

into a standard template space (SPM normalization).

aamod_norm_write

Apply normalization parameters derived from structural to EPIs.

DARTEL-VBM

aamod_biascorrect_segment8

Run New Segment (introduced in SPM 8) and save bias-corrected image

(e.g., for segmenting).

aamod_segment8

Tissue class segmentation using New Segment (SPM 8).

aamod_structuralstats

Retrieve total tissue class volume and TIV from segmented images.

aamod_dartel_createtemplate

Use DARTEL to create a template.

aamod_dartel_normmni

Write DARTEL-warped images to MNI space.

aamod_normalizebytotalgray

Divide segmented images by total gray matter (proportional scaling).

aamod_norm_write_dartel

Apply normalization parameters derived using DARTEL to other

modalities (e.g., EPI, contrasts, DWI, ROIs).

aamod_dartel_denorm

Transform images in standard MNI space (e.g., atlas labels) into native

space based on normalization parameters derived using DARTEL

(multimodal).

Freesurfer surface extraction

aamod_freesurfer_initialise

Prepare for a Freesurfer analysis.

aamod_freesurfer_deface

Defaces structural (T1) and produces a mask.

aamod_freesurfer_deface_apply

Apply defacing mask to a co-registered image.

aamod_freesurfer_autorecon_all

Runs a Freesurfer pipeline with recon-all.

Anatomical processing from FSL

aamod_fsl_FAST

Use FAST (FSL) for segmentation.

aamod_fsl_FIRST

Use FIRST (FSL) to characterize structure shape.

(Continued)

Table 2 | Continued

ANTS software

aamod_ANTS_epi2template

Create transformation matrix for ANTS normalization to study template.

aamod_ANTS_warp_ROIs

Apply inverse warp to ROIs.

aamod_ANTS_warp_cons

Apply warp to first level contrasts.

fMRI activation studies

fMRI preprocessing

aamod_get_dicom_epi

Find all DICOM files corresponding to the EPI acquisitions.

aamod_convert_epi

Convert the DICOM files to NIfTI format. Handles with multi-echo EPI

with various weighting schemes.

aamod_realign

Perform motion correction with SPM.

aamod_slicetiming

Slice timing correction with SPM.

aamod_coreg_extended_2epi

Applies to the EPIs the transformation derived from coregistering the

structural to a standard-space template (in aamod_coreg_extended_1).

Then, fine-tunes the registration of the EPI to the structural with a

further coregistration.

aamod_coreg_noss

Coregisters structural to mean EPI using SPM.

aamod_smooth

Smooth data.

Distortion correction

aamod_fieldmap_undistort

Use fieldmap (with phase and magnitude) to correct EPI distortions.

aamod_realignunwarp

Realign and unwarp from SPM.

aamod_pewarp_estimate

aamod_pewarp_write

Constrained nonlinear coregistration.

Statistics

aamod_firstlevel_model

Run first level statistical model. Simple specification of events in user

script.

aamod_firstlevel_contrasts

Run first level contrasts. Simple specification of contrasts.

aamod_secondlevel_model

Run a t-test across subjects for every first level contrast.

aamod_OneWay_ANOVA

Run repeated measures (across subjects) one-way ANOVA.

Networks

Connectivity matrices

aamod_fconnmatrix_seedseed

Calculate seed-to-seed connectivity matrix from relationship of

time-courses across seed regions.

PPI

aamod_vois_extract

Extract ROI timeseries after first level analysis.

(Continued)

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

Table 2 | Continued

aamod_ppi_prepare

Prepare PPI regressors based on ROI timeseries.

ICA

aamod_tensor_ica

Run individual or group tensor ICA.

Movie inter-subject correlation analysis

aamod_highpassfilter_epi

High-pass filter fMRI time series using discrete cosine model, like SPM.

aamod_meantimecourse

Calculate mean time course for each voxel across subjects.

aamod_moviecorr_meantimecourse

Calculate correlation of each subject’s timecourse with mean.

aamod_moviecorr_summary

Statistics to find which correlations are significant across subjects.

Diffusion

Basic processing

aamod_get_dicom_diffusion

Get a list of all of the DICOM files that correspond to the diffusion series

(typically, as identified by aamod_autoidentifyseries_timtrio).

aamod_convert_diffusion

Convert diffusion images from DICOM to NIfTI

aamod_3dto4d_diffusion

Convert diffusion images from 3D to 4D. The XML file is

’aamod_3dto4d_diffusion.xml’ which refers to the matlab file (using

mfile_alias) ’aamod_3dto4d.m’.

aamod_diffusion_eddycorrect

Use eddy_correct (FSL) to correct image distortions, head movements

using affine registration to a reference volume (T2 image).

aamod_diffusion_extractnodif

Use FSL to extract the reference(s) image(s) (T2 image with b-value of

0), called nodif.

aamod_bet_diffusion

Use FSL to extract the brain of the nodif image. Brain extraction toolbox.

Its “mfile” is aamod_bet.

Diffusion tensors

aamod_diffusion_dtifit

Use FSL to fit a diffusion tensor model at each voxel. Note that dtifit is

not necessary in order to run probabilistic tractography (which depends

on the output of BEDPOSTX).

aamod_diffusion_dkifit

Fit diffusion kurtosis parameters using linear model.

aamod_diffusion_dtinlfit

Fit diffusion tensor parameters using nonlinear model.

aamod_coreg_structural2fa

Coregister structural to diffusion image (dti_FA).

Probabalistic tractography

aamod_unnormalize_seeds

Use SPM to “unnormalize" the seeds (i.e., apply the inverse matrix to

transform the seed (MNI space) to diffusion space).

aamod_unnormalize_targets

Use SPM to “unnormalize” the targets (i.e., apply the inverse matrix to

transform the targets (MNI space) to diffusion space).

aamod_diffusion_bedpostx

Use FSL to apply bedpostx Monte Carlo modeling of PDFs of diffusion

parameters.

(Continued)

Table 2 | Continued

aamod_diffusion_probtrackx

Use FSL to apply probtrackx, which repetitively samples from the

distributions on voxel-wise principal diffusion directions, each time

computing a streamline through these local samples to generate a

probabilistic streamline or a sample from the distribution on the location

of the true streamline.

aamod_diffusion_probtrackxsummarize_indv

Get the results of probtrackx (diffusion space) of each participant, merge

the different splits and transform them to the MNI space.

aamod_diffusion_probtrackxsummarize_group

Averages the seed-to-target connectivity images across subjects, which

we have used for visualization.

MVPA

aamod_MVPaa_brain_1st

Runs an MVPA searchlight on a set of beta or t-values (typically in native

space).

aamod_MVPaa_brain_SPM

Convert results from searchlight into NIfTI images readable in SPM.

aamod_unnormalize_rois

Set ROIs from standard space into subject space.

aamod_MVPaa_roi_1st

Runs an MVPA analysis within an ROI, using a set of beta or t-values

(typically in native space).

Other important properties of a module are the type of data

(e.g., epi or structural) it requires as an input, and the type of data

it produces as an output.

An example interface file, aamod_smooth.xml, is shown below.

<?xml version="1.0" encoding="utf-8"?>

<aap>

<tasklist>

<currenttask domain=’session’ desc=’SPM

smooth’ modality=’MRI’>

<qsub>

<timeBase>0.5</timeBase>

<memoryBase>1</memoryBase>

</qsub>

<permanenceofoutput>2</permanenceofoutput>

<FWHM>10</FWHM>

<inputstreams>

<stream ismodified=’0’>epi</stream>

</inputstreams>

<outputstreams>

<stream>epi</stream>

</outputstreams>

</currenttask>

</tasklist>

</aap>

The domain is specified in the attributes of the “currenttask” line,

along with a description (which is displayed to the user) and the

modality of the data—here “MRI.”

The next two sections are of less focus here. The “qsub” fields

are estimates of the resources used by this module, for use by some

parallel schedulers. The “permanenceofoutput” field is used by

the garbage collection tool to delete less important, intermedi-

ate data prior to archiving. Higher numbers correspond to more

important data.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

More central to the function of this particular module, the

“FWHM” field describes a setting of this module—in this case,

the full-width half maximum of the smoothing kernel, in mil-

limeters. There is then a description of the sorts of input data (or

“streams”) that this module requires, here only “epi” data, and

the output data, again just “epi” for this module. The operation

of these is discussed more in the next section. The Matlab code

for a module implements the function.

CUSTOMIZING ANALYSIS PARAMETERS

In the aa user script, the aarecipe command sets the initial state of

the aap structure that describes the analysis:

aap=aarecipe(’aap_parameters_defaults.xml’,

’aap_tasklist_typical_fmri.xml’);

The values in this aap structure come from three sources:

1. The file aap_parameters_defaults.xml, which contains general

settings;

2. The tasklist XML file (here aap_tasklist_typical_fmri.xml);

3. The XML interface files for each of the modules in the tasklist.

The values returned by the aarecipe command are often cus-

tomized in the user script. Any parameter in aap may by modified.

Examples are:

aap.acq_details.numdummies=3;

aap.tasksettings.aamod_smooth.FWHM=8;

Alternatively, it is sometimes more convenient to create modified

XML files. XML tasklists may set parameters for an individual

instance of a module, with syntax like this:

<module>

<name>aamod_smooth</name>

<extraparameters>

<aap><tasklist><currenttask><settings>

<FWHM>8</FWHM>

</settings></currenttask></tasklist></aap>

</extraparameters>

</module>

It is also possible to create XML files that inherit the

parameters from the standard files, and override a few

of them. For example, one can create a site/study/spe-

cific version of aap_parameters_defaults.xml, such as

aap_parameters_defaults_CBSU.xml (specific for the MRC

Cognition and Brain Sciences Unit):

<?xml version="1.0" encoding="utf-8"?>

<aap xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="aap_parameters_defaults.xml"

parse="xml"/>

<local>

<directory_conventions>

...

</directory_conventions>

<options>

...

</options>

</local>

</aap>

in which most of the settings are imported from

aap_parameters_defaults.xml using XML Inclusion (http://

www.w3.org/TR/xinclude) and only the path-related settings are

redefined in the <local/> section.

SPM defaults are a special case. These can be modified in the

aap.spm.defaults structure.

SPECIFICATION OF STATISTICAL MODELS FOR fMRI

For users who wish to analyze fMRI data with aa, a simple set of

commands is available for the specification of first-level statistical

models. The format is:

aap=aas_addevent(aap,modulename,subject,session,

eventname,ons,dur,parametric);

where:

modulename=module(e.g.,’aamod_firstlevel_model’)

for which this event applies

subject=subject for whom this model applies

session=session for which this applies

eventname=name of the stimulus or response event

ons=event onset times (in scans). Does not need

to be sorted

dur=event durations (in scans), either a single

element (if all occurrences have the same

duration) or in order that corresponds to ons

parametric=parametric modulator (optional - can

omit)

For example,

aap=aas_addevent(aap,’aamod_firstlevel_model’,’*’,’*’,

’VisualStimulus’,[0:15:75],7.5);

specifies that every session of every subject was a block design,

with a regressor titled “VisualStimulus” with onsets every 15 scans

and a duration of 7.5 scans.

Using the “subject” and “session” fields, customized designs

for each subject and/or session may be specified.

A contrast may then be specified with

aap=aas_addcontrast(aap,modulename,subject,format,

vector,contype,automatic_movesandmeans)

where:

modulename= module (e.g.,’aamod_firstlevel_

contrasts’) for which this contrast applies

subject=subject for whom this model applies

format=format for contrast specification, one of:

* "sameforallsessions" - vector contains contrast

to be applied to all sessions

* "singlesession:[sessionname]" - vector contains

contrast for just one session, all other sessions

will be set to 0. [sessionname] should be

replaced with name of that session.

* "uniquebysession" - long contrast string that

separately specifies contrast for every session

contype="T" or "F" (defaults to "T")

automatic_movesandmeans=1 or 0, add means & moves

to contrast automatically?

For example,

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 9

http://www.w3.org/TR/xinclude
http://www.w3.org/TR/xinclude
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

aap=aas_addcontrast(aap,’aamod_firstlevel_contrasts’,

’*’,’sameforallsessions’,[1 -1]);

to contrast the first vs. the second column of every session in every

subject.

If the desired second level model is to run a simple t-test for

every contrast run in every subject at the first level, then the mod-

ule aamod_secondlevel_model may be added to the tasklist. It does

not require customization.

STREAMS

All data into and out of an instance of a module are managed

by the aa engine. Each type of data is referred to as a “stream.”

Common streams are “epi,” “structural,” and “dicom_header.”

Note that these descriptions are deliberately unspecific about the

state of the data—e.g., the data in the epi stream may be nor-

malized, or not—as subsequent modules (e.g., first level statistics)

often do not need to change their behavior to work on one kind

of data or another.

A module’s interface (XML file) describes the data streams that

it requires wants as an input:

<inputstreams>

<stream>epi</stream>

</inputstreams>

and what it produces as an output:

<outputstreams>

<stream>realignment_parameter</stream>

<stream>meanepi</stream>

<stream>epi</stream>

</outputstreams>

This information is then used to connect up the pipelines of

data from one module to the next. So, for example, if a tasklist

contains:

<module><name>aamod_realign</name></module>

<module><name>aamod_tsdiffana</name></module>

<module><name>aamod_slicetiming</name></module>

The module aamod_slicetiming requests an epi input. The quality

control module aamod_tsdiffana does not produce an epi out-

put, so aa looks further back up the tasklist (see Figure 1). It

finds that aamod_realign produces an epi ouput, and so it will

pass the epi output of aamod_realign to aamod_slicetiming. This

automatic connection of pipelines makes it straightforward to

rearrange modules.

A complexity that is largely hidden from the user is that depen-

dencies are calculated at the level of particular instances of a

module, and are affected by the domains at which the source and

target modules operate. Consider this fragment of a tasklist:

<module><name>aamod_norm_write</name></module>

<module><name>aamod_smooth</name></module>

Both aamod_norm_write and aamod_smooth operate on the

domain of single EPI sessions for single subjects. The instance

of the module aamod_smooth that processes subject 4, ses-

sion 2, only needs the data from the instance of the mod-

ule aamod_norm_write that has processed subject 4, session

2, and so only the corresponding data are is passed to the

module instance. Furthermore, when executing in parallel, each

aamod_smooth instance may execute as soon as the corresponding

aamod_norm_write module has completed, and it does not need

to wait for any others to finish. Although transparent to the user,

dependencies become more complicated when the domain of a

module that is the source of a given stream is different from the

domain of a module that is the target of that stream. The restric-

tion that is enforced is that any module may only write data at

the level of its domain or lower (i.e., not sideways or above in

Figure 2). However, modules may read from levels up toward the

trunk, but never sideways.

THE SCHEDULING ENGINE AND PARALLEL PROCESSING

The scheduling engine executes all analyses described within the

aap structure. The command included in every user script is:

aap=aa_doprocessing(aap);

This executes an aa analysis. To do this, it builds a map of all the

instances of all the modules that need to be executed, and the data

dependencies between them.

To test whether an instance of a module needs to be executed,

aa looks for a file named done_aamod_[modulename]_[index].

This file will be stored in the root directory of the instance: for

a session domain module, in the session directory. If it exists, that

instance is considered to have been completed, and will not be

re-run. The exception to this rule is an earlier module instance in

the pipeline needing to be rerun, on which this module instance

is dependent. This will cause the done_ flag to be deleted, and the

module will be re-run.

aa_doprocessing examines the field aap.options.wheretoprocess

to decide how to run these modules. If the field has a value

“localsingle” it will step through these modules one at a time,

in the current Matlab process (as implemented in the object

@aaq_localsingle). If it has the value “qsub” it will use the par-

allel computing toolbox component “createTask” to submit a job.

If it has the value “condor” it will compile the job and submit

it to a condor queuing system, using the shell script specified

in aap.directory_conventions.condor_wrapper. @aaq_matlab_pct

uses Matlab’s parallel computing toolbox.

Ultimately, regardless of the scheduling mechanism, instances

of modules are run by calls to the aa_doprocessing_onetask

function.

BRANCHED TASKLISTS

Neuroimaging studies frequently require data to be analyzed

in different ways. This might be because there is some uncer-

tainty on the ideal parameters or analysis strategy (for exam-

ple, whether motion correction should be performed before or

after slice timing correction, or what smoothing kernel should

be used). Alternatively, it might be because the data are to

be analyzed in a number of different ways—with ICA, with

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

conventional univariate fMRI, with MVPA, and with functional

connectivity2.

Traditionally, these scenarios would probably involve either

creating entirely independent pipelines, or processing to the

branch point, making a copy of the analyzed data in a different

directory, and then taking the new analysis forwards. By contrast,

aa provides a straightforward way of specifying branched tasklists,

as in the following fragment:

...

<module>

<branch>

<analysisid_suffix>_realign_then_slicetime

</analysisid_suffix>

<module><name>aamod_realign</name></module>

<module><name>aamod_slicetiming</name></module>

</branch>

<branch>

<analysisid_suffix>_slicetime_then_realign

</analysisid_suffix>

<module><name>aamod_slicetiming</name></module>

<module><name>aamod_realign</name></module>

</branch>

</module>

...

In this command, <analysisid_suffix> is included within each

branch, so that the two branches get separated into dif-

ferent directories. Although tidy, this is not strictly neces-

sary, as the duplicated modules will be suffixed with different

indices—e.g., in the first branch realignment will be output to

aamod_realign_00001 and the second to aamod_realign_00002.

FULLY QUALIFIED STREAM REFERENCES

By default, the input for a stream to a module comes from the last

module in the tasklist that outputs that kind of data. Often, this

is the desirable behavior. However, sometimes, an explicit earlier

reference may be desired. This can be achieved with a fully qual-

ified stream reference comprising [module-name].[stream-name]

as in this example:

<inputstreams>

<stream>aamod_realign_00001.epi</stream>

</inputstreams>

ADJUSTING DEFAULTS, AND SITE-SPECIFIC CONFIGURATION

There are at least two ways a user may customize aa for a

particular site. One way is to have a site-specific configuration

file, conventionally called aas_localconfig_[sitename]. This is then

inserted into the user script, soon after the recipe command, with

the line:

aap=aas_localconfig_[sitename](aap);

Another way is to create a customized

aap_parameters_defaults.xml file, typically by including the

2Of course, care must be taken when trying out multiple analysis options, and

exploration is best done on independent data so as not to bias the results. Our

point is that there are many instances in which researchers might reasonably

want to compare analysis strategies in a systematic way, which aa facilitates.

existing aap_parameters_defaults.xml file and then overriding

some parameters for this local installation, like this:

<?xml version="1.0" encoding="utf-8"?>

<aap xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="aap_parameters_defaults.xml"

parse="xml"/>

<local>

<directory_conventions>

<rawdatadir desc=’Subdirectories to

find raw MRI data’

ui=’dir_list’>/mridata/cbu:/mridata/csl:/mridata/

camcan</rawdatadir>

</directory_conventions>

</local>

</aap>

INPUT DATA FORMAT

A user must prepare raw data in a form acceptable for input to

aa. The easiest starting point is typically the raw DICOM data,

exported as a set of files from the scanner. One challenge we faced

in porting aa between sites was that the dumping of the raw

data out of DICOM database (PACS) systems led to idiosyncratic

filename and directory structures. aa will automatically scan the

data and structure it into acquisition series for Siemens and GE

scanners, provided all of the files from each subject can be iso-

lated into one directory (or a directory with subdirectories). No

particular naming convention is required, other than a consistent

filename extension for the DICOM files. The DICOM headers

are used to organize the files. The system may work also on data

from other scanner manufacturers, but we have not tested it.

In a user’s tasklist (or later, as a site-specific configuration) the

dicomfilter can be set, typically to one of:

aap.directory_conventions.dicomfilter=’*.dcm’;

% if DICOM files end in.dcm

aap.directory_conventions.dicomfilter=’*.ima’;

% if DICOM files end in.ima

aap.directory_conventions.dicomfilter=’*’;

% if only DICOM in raw data directories

For any tasklist, setting the first main module to

aamod_autoidentifyseries_timtrio for data from Siemens

scanners, or aamod_autoidentifyseries_ge with GE scanners, will

identify the DICOM files.

Provided researchers use a consistent name for their structural

scans, these scans can be automatically identified by setting:

aap.options.autoidentifystructural=true;

aap.directory_conventions.protocol_structural=’MPRAGE’;

The first line requests automatic scanning for the structural (the

default), and the second, which protocol should be sought. If a

user sometimes acquires more than one structural (for example,

if a subject moves) but always stops once they have a good one, it

is possible to specify that in this circumstance the last structural is

the one to be used:

aap.options.autoidentifystructural_chooselast=true;

A second alternative is to use data already converted into NIfTI

format. This is possible, either by using the aas_addinitialstream

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

command in the user script, or the aamod_epifromnifti module.

However, detailed instructions for doing so are beyond the scope

of this overview.

CONNECTING PIPELINES

It is often the case that a researcher will want to analyze a subset

of data from a larger database, or continue an analysis that exists

in a different location (i.e., a remote location). For example, a

lab might store and preprocess all their subject MRI data—fMRI,

structural images, and diffusion images—on a central server, but

one user might want to only analyze the fMRI data from a few

subjects on their local machine. aa allows a user to easily accom-

plish this by creating an analysis script that connects to the aa

pipeline on the central server; the user does not have to manually

copy and import any data. The new analysis does not replicate any

of the modules or data on the central server, but instead connects

the input streams of the local analysis to the data output streams

in the remote location. By default, the connection is made to the

terminal end of the remote pipeline (i.e., the final instance of each

output stream), but the user can easily specify a connection to an

earlier stage of processing (e.g., to take the EPI stream before the

normalization stage). Furthermore, every time the local analysis is

executed, aa will check to see if the remote data have changed, and

re-run any local modules that depend on those data. The ability to

connect pipelines facilitates data sharing within and between labs,

promotes good practices for organizing and storing data, reduces

data duplication, and simplifies the process of starting new anal-

yses on existing data sets. Detailed examples of this feature are

provided in the aa documentation.

COMMUNITY

aa has been used for hundreds of analyses covering many thou-

sands of participants. It is currently supported by a small but

active base of coders.

BRAIN AND MIND INSTITUTE, WESTERN UNIVERSITY, LONDON,

CANADA

Authors Rhodri Cusack, Annika C. Linke, Conor J. Wild and col-

leagues at the Brain and Mind Institute are actively developing for

aa, and use it for fMRI, DTI and structural data from a variety of

MRI scanners—Siemens 3T (Trio, Prisma), Siemens 7T, and GE

1.5 T (MR450w)—and EEG (EGI, Grass).

MRC COGNITION AND BRAIN SCIENCES UNIT, CAMBRIDGE, UNITED

KINGDOM

In addition to authors Tibor Auer and Daniel J. Mitchell a handful

of other coders in the Unit also actively participate in developing

aa modules. In the Unit, aa is the backbone of analysing fMRI,

DTI, MTR and structural data from Siemens 3T (Trio, Prisma)

MRI scanner, Elekta Neuromag Vectorview MEG scanner and

Brain Products BrainAmp EEG. New colleagues are introduced

to aa right from the start by means of workshops, which allow

them to perform analysis quite early on. A highlighted project, the

Cambridge Centre for Aging and Neuroscience, involving mul-

tiple sessions of hundreds of subjects, also employs aa, which

ensures both high consistency via standardized user scripts and

tasklists and high processing speed via parallelization. The Unit

also hosts a wiki (http://imaging.mrc-cbu.cam.ac.uk/imaging/

AA) complementing the aa documentation.

DONDERS CENTER FOR COGNITIVE NEUROSCIENCE, NIJMEGEN, THE

NETHERLANDS

Author Alejandro Vicente-Grabovetsky and colleagues in the

Doeller laboratory are actively developing for aa, and use it for

Siemens 3T and 7T fMRI analyses.

WASHINGTON UNIVERSITY IN ST LOUIS

Author Jonathan E. Peelle and his laboratory are developing

structural and functional MRI analysis for Siemens 3T data.

GITHUB SOURCE CONTROL, SUPPORT, AND

DOCUMENTATION

The codebase is maintained at: https://github.com/rhodricusack/

automaticanalysis.

There are two main branches: the master branch, which con-

tains a recent stable release, and the devel-share branch, which

contains the latest versions of the code published by each of

our sites. There are also occasional releases, under “tags,” which

contain frozen past versions of the code.

A website (http://automaticanalysis.org) contains the latest

documentation for the code, and an issues discussion forum

is used to report bugs or ask questions (https://github.com/

rhodricusack/automaticanalysis/issues).

OTHER DESIGN DECISIONS

Our software provides access to most functions of SPM, one

of the most commonly used neuroimaging tools worldwide, for

analyses such as fMRI modeling and voxel-based morphome-

try. For several diagnostics in general and DWI analysis we use

the well-established FSL functions, and for cortical-surface based

measures, Freesurfer.

LIMITATIONS

Every processing approach has limitations, and aa is no different.

Perhaps the biggest hurdle for novices is the requirement of know-

ing enough Matlab to organize analyses. The choice of Matlab as a

programming language grew out of the origins of aa as a pipeline

for SPM. There are clearly advantages and disadvantages to this

choice. Matlab is widely used in neuroimaging, other areas of

neuroscience, engineering and finance, and Matlab programming

is a skill that is transferrable to other disciplines. The language

provides an enormous library of high-level mathematical func-

tions that are well tested, and in most cases highly optimized.

It provides compact and elegant syntax for matrix math. It has

a mature integrated-development environment (IDE) including

line-by-line debugging, workspace inspection, computation time

profiling, and 2D/3D graphics. It is a well-supported product,

with regular updates and new features. A disadvantage is that

as a commercial product, it comes with substantial costs, and

is not open-source, reducing the potential for quality assurance

and innovation directly from the community. However, Matlab

does come with a compiler, allowing functions to be redistributed

freely (but not to be changed), and it has an active user software

exchange.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 12

http://imaging.mrc-cbu.cam.ac.uk/imaging/AA
http://imaging.mrc-cbu.cam.ac.uk/imaging/AA
https://github.com/rhodricusack/automaticanalysis
https://github.com/rhodricusack/automaticanalysis
http://automaticanalysis.org
https://github.com/rhodricusack/automaticanalysis/issues
https://github.com/rhodricusack/automaticanalysis/issues
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Cusack et al. Automatic analysis

Like most pipelines that serve as interfaces to other tools, aa

can be a bottleneck: one can only incorporate into a pipeline

those tools that are already “wrapped” into aa. For example,

there are currently no aa modules for AFNI tools. However, aa’s

open source nature and its easy extendibility allow the user to

implement the corresponding functionality and even to make it

available to others.

Another consequence of automated pipelines such as aa is that

they facilitate the processing of large datasets, in turn produc-

ing more data and increasing demands for file storage. Although

aa attempts to keep only necessary files through garbage collec-

tion, analyses can quickly take up large amounts of disk space if

not kept in check, which may prove to be a limitation in some

contexts.

Finally, there is always the danger when using automated batch

analysis pipelines that the researcher might try every possible

combination of analysis tools and parameters —so-called “exper-

imenter degrees of freedom”—to obtain the desired results. This

is not a new problem in neuroimaging, but aa at least provides a

way for researchers to keep track of different analysis approaches

through branched tasklists and detailed analysis logs.

Despite these possible limitations, we believe that aa is suc-

cessful in balancing the diverse needs of neuroimagers, and facil-

itating open, reproducible science on datasets of many sizes and

complexities.

ACKNOWLEDGMENTS

The aa team would like to thank the many people who have

contributed code that has been incorporated into, or inspired,

aa modules. These include Matthew Brett, Rik Henson, Jason

Taylor, and Adam Hampshire. Work reported here was supported

in part by NSERC/CIHR CHRP (201110CPG), NSERC Discovery

and the Canada Excellence Research Chair (CERC) in Cognitive

Neuroimaging, grants R01AG038490 and R01DC013063 from

the US National Institutes of Health, and The Dana Foundation.

We are grateful to the Organization for Human Brain Mapping

and the Seattle Local Organizing Committee from the 2013 con-

ference for their support.

REFERENCES
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.

Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Ashburner, J. (2009). Computational anatomy with the SPM software.

Magnetic Resonance Imaging, 27, 1163–1174. doi: 10.1016/j.mri.2009.

01.006

Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., and

Woolrich, M. W. (2007). Probabilistic diffusion tractography with multi-

ple fibre orientations: what can we gain? Neuroimage 34, 144–155. doi:

10.1016/j.neuroimage.2006.09.018

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).

Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.

107, 4734–4739. doi: 10.1073/pnas.0911855107

Calhoun, V. D., Liu, J., and Adali, T. (2009). A review of group ICA for fMRI data

and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45,

S163–S172. doi: 10.1016/j.neuroimage.2008.10.057

Friston, K. J., Holmes, A. P., and Worsley, K. J. (1999). How many subjects

constitute a study? Neuroimage 10, 1–5. doi: 10.1006/nimg.1999.0439

Haynes, J.-D., and Rees, G. (2006). Decoding mental states from brain activity in

humans. Nat. Rev. Neurosci. 7, 523–534. doi: 10.1038/nrn1931

Kay, K. N., Rokem, A., Winawer, J., Dougherty, R. F., and Wandell, B. A. (2013).

GLMdenoise: a fast, automated technique for denoising task-based fMRI data.

Front. Neurosci. 7:247. doi: 10.3389/fnins.2013.00247

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based func-

tional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868. doi:

10.1073/pnas.0600244103

Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M., and Bandettini, P. A. (2012).

Differentiating BOLD and non-BOLD signals in fMRI time series using multi-

echo EPI. Neuroimage 60, 1759–1770. doi: 10.1016/j.neuroimage.2011.12.028

Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al.

(2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s

disease neuroimaging initiative (ADNI). Alzheimer Dement. 1, 55–66. doi:

10.1016/j.jalz.2005.06.003

Mumford, J. A, and Nichols, T. E. (2008). Power calculation for group fMRI studies

accounting for arbitrary design and temporal autocorrelation. Neuroimage 39,

261–268. doi: 10.1016/j.neuroimage.2007.07.061

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond mind-

reading: multi-voxel pattern analysis of fMRI data. Trends Cognit. Sci. 10,

424–430. doi: 10.1016/j.tics.2006.07.005

Poldrack, R. A., Barch, D. M., Mitchell, J. P., Wager, T. D., Wagner, A. D., Devlin, J.

T., et al. (2013). Toward open sharing of task-based fMRI data: the openfMRI

project. Front. Neuroinform. 7:12. doi: 10.3389/fninf.2013.00012

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S.

E. (2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. Neuroimage 59, 2142–2154. doi:

10.1016/j.neuroimage.2011.10.018

Schaer, M., Cuadra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., and Thiran, J.-P.

(2008). A surface-based approach to quantify local cortical gyrification. IEEE

Trans. Med. Imaging 27, 161–170. doi: 10.1109/TMI.2007.903576

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.

E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise

analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505. doi:

10.1016/j.neuroimage.2006.02.024

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R.,

et al. (2012). The human connectome project: a data acquisition perspective.

Neuroimage 62, 2222–2231. doi: 10.1016/j.neuroimage.2012.02.018

Van Horn, J. D., Grethe, J. S., Kostelec, P., Woodward, J. B., Aslam, J. A., Rus,

D., et al. (2001). The functional magnetic resonance imaging data center

(fMRIDC): the challenges and rewards of large-scale databasing of neuroimag-

ing studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1323–1339. doi:

10.1098/rstb.2001.0916

Winkler, A. M., Sabuncu, M. R., Yeo, B. T. T., Fischl, B., Greve, D. N.,

Kochunov, P., et al. (2012). Measuring and comparing brain cortical

surface area and other areal quantities. Neuroimage 61, 1428–1443. doi:

10.1016/j.neuroimage.2012.03.026

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 18 September 2014; accepted: 22 December 2014; published online: 15

January 2015.

Citation: Cusack R, Vicente-Grabovetsky A, Mitchell DJ, Wild CJ, Auer T, Linke AC

and Peelle JE (2015) Automatic analysis (aa): efficient neuroimaging workflows and

parallel processing using Matlab and XML. Front. Neuroinform. 8:90. doi: 10.3389/

fninf.2014.00090

This article was submitted to the journal Frontiers in Neuroinformatics.

Copyright © 2015 Cusack, Vicente-Grabovetsky, Mitchell, Wild, Auer, Linke and

Peelle. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in other

forums is permitted, provided the original author(s) or licensor are credited and that

the original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply with

these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 90 | 13

http://dx.doi.org/10.3389/fninf.2014.00090
http://dx.doi.org/10.3389/fninf.2014.00090
http://dx.doi.org/10.3389/fninf.2014.00090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Automatic analysis (aa): Efficient neuroimaging workflows and parallel processing using Matlab and XML
	Recommended Citation
	Authors

	Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML
	The Need for Efficient Workflows
	Existing Software
	Design Goals
	Efficient and Easy-to-read Specification of Complex Pipelines
	Modular Design
	Separation of Method and Data
	Only do What Needs to be Done
	Facilitate Parallel Processing
	Keep Track of What Has Happened
	Diagnostics and Quality Control

	System and Software Requirements
	Software Architecture
	User Script
	Basic Tasklists
	Output File Structure
	Modules
	Customizing analysis parameters
	Specification of Statistical Models for fMRI
	Streams
	The scheduling engine and parallel processing
	Branched tasklists
	Fully Qualified Stream References
	Adjusting Defaults, and Site-specific Configuration
	Input Data Format
	Connecting Pipelines

	Community
	Brain and Mind Institute, Western University, London, Canada
	MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
	Donders Center for Cognitive Neuroscience, Nijmegen, The Netherlands
	Washington University in St Louis

	Github Source Control, Support, and Documentation
	Other Design Decisions
	Limitations
	Acknowledgments
	References

