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Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule

or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of

computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here,

we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically cate-

gorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks

cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry.

We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also

known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays

aiming at uncovering the dynamic cause of cell division phenotypes.

[Supplemental material is available online at http://www.genome.org.]

High-content image-based screening is a powerful technology for

gene function studies or drug profiling. This technology is char-

acterized by the combination of automated microscopy to rapidly

acquire high-content images of treated cells and sophisticated

computational methods to extract quantitative information in an

automatic and unbiased way.

Quantitative studies have been performed based on pop-

ulations of cells to analyze high-throughput RNAi (Wheeler et al.

2004; Neumann et al. 2006; Goshima et al. 2007), protein over-

expression (Harada et al. 2005), or drug profiling screens (Perlman

et al. 2004; Loo et al. 2007). Such studies require methods for

segmentation and feature extraction, and classification if different

object classes are considered. Publicly available software platforms

like CellProfiler (Carpenter et al. 2006) can be applied. For pop-

ulation-based studies, however, results are often limited to general

features of entire cell populations at certain time points.

By contrast, following single cells over time allows studying

the inherent dynamics of cellular and molecular processes more

accurately and is consequently widely used in state-of-the-art cell

biology. To make time-lapse imaging of single cells applicable for

high content screening, additional methods for tracking of cells

throughout image sequences and recognition of their phenotypic

changes are required. Tracking approaches have been used, e.g., to

quantify the level of fluorescently tagged proteins over time (e.g.,

Sigal et al. 2006; Gordon et al. 2007) or to quantify cell–cell in-

teractions and cell migration dynamics (e.g., Chen et al. 2009).

Automated classification methods have also been used on static

images to distinguish different phenotype classes, providing in-

formation on the structure and location of subcellular phenotypes

at a single cell level (e.g., Conrad et al. 2004; Huang and Murphy

2004; Chen et al. 2007; Hamilton et al. 2007).

Combining classification and tracking methods to study the

temporal behavior of different cell classes at a single cell level

enables a detailed analysis of the kinetics of a phenotype and al-

lows putting different phenotypes in a causative order. This is ideal

for many dynamic biological processes such as, the cell cycle.

Automatic determination of cell cycle phases has been performed

using phase-contrast (Yang et al. 2005; Li et al. 2008) and fluores-

cence (Chen et al. 2006; Wang et al. 2007, 2008; Padfield et al.

2009) microscopy image sequences. There, cells were classified

into a maximum of four phases based on two-dimensional (2D)

multicell images. However, none of these previous studies deter-

mined cell cycle phase lengths and abnormalmorphologies, which

are required for fully automated annotation of aberrant mitotic

phenotypes.

Here, we have overcome this limitation and present a fully

automatic approach to determine morphological and temporal

phenotypes by accurately computing and analyzing the lengths of

normal and, if present, abnormal mitotic phases and their tem-

poral correlation. Our approach is based on three-dimensional

(3D) multicell confocal microscopy image sequences of un-

synchronized cell populations expressing fluorescent markers of

chromosomes. To analyze these images, we introduce an approach

that is based on a multislice 2D strategy and consists of the fol-

lowing main steps: Segmentation and tracking of chromosome

sets, extraction of static and dynamic image features, classification,

phase length determination and parsing the cell division cycle by

a finite state machine.

We validated our approach on two sets of proof-of-principle

experiments. First, we characterized the detailed cell division
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behavior of a human cell line (HeLa) with fluorescently marked

chromosomes. Then, we compared this behavior to cells where

mitosis was perturbed with low doses of the spindle poison

nocodazole or by RNAi depletion of CKAP5 (also known as ch-

TOG), a microtubule-associated protein (MAP) involved in spindle

organization in diverse organisms (Gard and Kirschner 1987;

Cullen et al. 1999). Our approach performed with comparable

accuracy as very time-consuming manual annotation and allowed

quantitative and detailed statistical analysis of the effects of drug or

siRNA perturbations on cell division. In addition, we successfully

applied our approach to images of a different cell line (NRK, nor-

mal rat kidney) and from a different screening platform. Thus, our

approach is applicable to fully automated analysis of cell division

in movies from living cells and can be applied on a large scale or

adapted to other biological processes.

Results

Automated determination of mitotic phase lengths

and phenotypes

We developed an approach for automatically quantifying the mi-

totic phase lengths, which consists of five major steps: (1) seg-

mentation of chromosome sets, (2) tracking, (3) extraction of

features, (4) classification, and (5) phase length determination,

including cell cycle parsing (Fig. 1A).

To show the efficiency of our approach, we developed a live-

cell imaging assay for controlled perturbation of microtubules us-

ing nocodazole. Alternatively, we used RNAi depletion of the MAP

CKAP5 to perturb microtubules. In prometaphase, all chromo-

somes must be attached, bi-oriented, and congressed into an

equatorial metaphase plate by spindle microtubules. When mi-

crotubules were perturbed by either assay we expected chromo-

some congression defects resulting in a delay or even arrest in

a prometaphase-like state (Musacchio and Salmon 2007) (for

simplicity and because of similar morphology, this state was la-

beled as prometaphase). If these defects persisted beyond pro-

metaphase, chromosomal abnormalities occurred: lagging chro-

mosomes and segregation defects during anaphase, appearance of

micronuclei with diverse shapes, sizes, and intensities during late

anaphase, as well as telophase, and multinucleated and/or abnor-

mally shaped, nonspheroidal interphase nuclei (Fig. 1C). For both

assays 3D image sequences were acquired on a confocal laser

scanning microscope with a time lapse of 7 min and three optical

sections per time step.

In the first step of our approach, we applied maximum in-

tensity projection (MIP) at each time step of the 3D image se-

quences and performed segmentation of the projected images by

a region-adaptive thresholding approach suited to handle mor-

phologically abnormal chromosome sets (Supplemental Fig. S1; for

details, see Methods). Our segmentation approach reached an ac-

curacy of 98.1% (based on four image sequences including 14,596

chromosome sets; Supplemental Table S1). Next, chromosome sets

were tracked by exploiting the smoothness of trajectories to de-

termine correspondences. To detect mitotic events and connect

the trajectories of mother and daughter cells we used different

morphological, as well as intensity-based properties. Divisions into

two daughters, as well as abnormal divisions into more than two,

could be accurately detected (Fig. 1B). Our scheme was able to

determine 99.8% of the correspondences correctly and thereby

tracked 95.4% of occurring mitoses correctly (208 of 218, de-

termined in 22 image sequences from five independent experi-

ments with different treatments; Supplemental Table S2). For each

chromosome set we computed many static features, such as shape

and texture, as well as dynamic features computed as differences of

static features e.g.,mean intensity and object size over time. Shape-

related features were computed based on the projected images,

while texture-related features were computed based on the most

informative image slice. A support vector machine (SVM) classifier

was used to classify the chromosome sets automatically into 12

classes: seven normal cell division cycle phases (interphase and the

six mitotic phases: prophase, prometaphase, metaphase, early

anaphase, late anaphase, and telophase), four abnormal phases

(abnormal interphase, abnormal early and abnormal late anaphase,

and abnormal telophase), and one cell death class (apoptosis) (Fig.

1C; Supplemental Fig. S2). To determine the classification accuracy

we manually annotated 16 time-lapse sequences from the noco-

dazole and four sequences from the RNAi experiments, which

served as ground truth (Supplemental Table S3). Using fivefold

cross validation we achieved an overall classification accuracy of

93.9% for the nocodazole data (Table 1) and 94.7% for the RNAi

data (Supplemental Table S4). Finally, we trained one SVM classifier

with the annotated nocodazole data and another SVM classifier

with the annotated RNAi data, and applied each of the classifiers to

previously unseen test data consisting of 20 sequences for noco-

dazole and eight sequences for RNAi experiments, respectively.

To measure the mitotic phase lengths based on the classifi-

cation results we introduce a finite statemachine which represents

the syntax of the cell cycle. The finite state machine models the

progression of mitotic phases (Fig. 1D), checks the consistency of

phase sequences, corrects illegal phase transitions, and, at the same

time, determines individual cell cycle phase lengths. Using this

approach the length of each phase was measured for all cells

throughout the processed image sequences (Fig. 2; Supplemental

Fig. S3).

Automatically determined prometaphase length as a sensitive

readout of drug and RNAi perturbation of mitosis

To prove that our automatic system is able to determine changes

of mitotic progression accurately, we analyzed the effect of

perturbations of the assembly of the mitotic spindle on the

length of mitotic phases with particular attention to prom-

etaphase. Our automated quantitative analysis allowed us to test

whether prometaphase in perturbed cells was significantly lon-

ger than in controls, as well as to determine the dose response of

three different nocodazole concentrations (low, medium, and

high).

Our automatic comparison of the prometaphase length dis-

tributions of nocodazole treated and control cells revealed a highly

significant prometaphase prolongation for all nocodazole con-

centrations (Table 2A). A nocodazole concentration of 12 nM

(high) showed a stronger prolongation (;1276 26 min) of higher

significance (P = 4.2 3 10�12, Mann-Whitney U test) compared to

10 nM and 8 nM (medium and low), respectively. The medium

concentration produced more cases of strong delay than the low

concentration, showing a dose response, but the low concentra-

tion datasets gave a higher proportion of delayed cells. Regarding

prometaphase duration however, medium and low concentration

of nocodazole were not significantly different. The automatic

analysis and statistical evaluation furthermore showed that cells

treated with CKAP5 siRNA had an even more dramatic increase

of prometaphase duration of ;218 6 25 min (P = 2.3 3 10�12,

Mann-Whitney U test) compared to control cells treated with
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Figure 1. Phase length determination. (A) Image analysis workflow. Steps from top to bottom: (1) maximum intensity projection resulting in 2D image
sequences, (2) segmentation and tracking, (3) determination of 2D regions-of-interest in the projected images and 3D regions-of-interest in the original
3D images, (4) computation of image features on the projected images for 2D regions-of-interest, computation of image features on themost informative
slices for 3D regions-of-interest, (5) combination of both feature sets, (6) classification to determine the mitotic phases, (7) consistency check and phase
length determination for resulting phase sequences. (B) Tracking result for several dividing cell nuclei (left) and for a nucleus that divides into three
daughter nuclei (right). (C ) Sample images to illustrate the considered 12 classes, including seven normal cell cycle phases (black), four morphological
phenotype classes, and a cell death class (red). n is the total number of processed samples per class. (D) Finite state machine (FSM) to check and correct
phase sequences. The phases are modeled by the states of the FSM, the possible phase transitions are represented by the state relations. If an illegal phase
transition occurs, the FSM passes into the respective error state. For clarity not all relations of the error states E1–E12 are displayed.

Automatic analysis of dividing cells
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Figure 2. Automatically computed phase lengths. (A) Phase length histograms for automatically annotated data. X-axis, phase length (min); y-axis,
relative frequency. Histograms are displayed for a maximum length of 140 min (20 time steps). (B) Mean phase lengths (min.) for the automatically
annotated data for all treatments and controls. The shaded regions indicate the standard deviations.
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scrambled (scr) siRNA (Table 2A). This analysis can be summarized

in a compact manner by plotting the mean cell division phase

lengths on a biological time axis according to the normal sequence

of mitotic phases (Fig. 2B). This plot reveals at one glance that the

perturbations are specific to prometaphase and that the increasing

strengths of the phenotypes are caused by rising doses of nocodazole

and CKAP5 RNAi. These results agree very well with the manually

annotated data as we found no significant differences between the

distributions of manually and automatically annotated data (Fig.

3B,C; Supplemental Table S5).

Automatic temporal correlation of early and late mitotic

phenotypes

To test whether prometaphase delays were linked with chromo-

some segregation and nuclear shape abnormalities in later stages

ofmitosis, we performed a temporal correlation analysis. First, we

determined the percentage of prolonged prometaphases in the

different spindle perturbation experiments (Supplemental Fig.

S4). As a threshold for normal prometaphase length we used

the mean plus twice the standard deviation of prometaphase

duration in the control cells (mean; 156 11min; Supplemental

Table S6). To calculate the probability of the occurrence of

chromosome segregation problems after prometaphase, we di-

vided the number of time steps with abnormal morphologies

occurring after prometaphase by the total number of time steps

after prometaphase for each dividing cell. This analysis showed

that prolonged prometaphases, caused by chromosome con-

gression and alignment defects, resulted in a higher number of

aberrant latemitotic phenotypes, which was reflected by a higher

probability compared to normal prometaphases (Supplemental

Table S7).

Next, we determined Spearman’s correlation coefficient be-

tween prometaphase length and late phenotype probability. We

obtained highly significant values of r = 0.38 for the automatically

annotated nocodazole data, and r = 0.57 for the automatically

annotated RNAi data, respectively, consistent with the manual

annotation (Table 2B). This temporal correlation of different phe-

notypes shows quantitatively and with statistical significance that

even mild perturbations of the spindle that result in transient

prometaphase delays cause chromosome segregation defects and

thus allows us to put different events in a causal order in time. (For

more details on the statistical analysis results, see Supplemental

Results.)

Application to images of different cells and from a different

screening platform

To demonstrate the applicability of our approach for different ex-

perimental settings we further analyzed images of a different cell

line and images acquired with a different microscopy screening

platform.

In a first study, we used a different cell line, namely NRK cells,

which were imaged using the same screening platform (LSM 510

point-scanning microscope) as for the previously analyzed HeLa

cells (Supplemental Fig. S9). We applied our image analysis ap-

proach to six image sequences of nontreated NRK cells including

about 4000 chromosome sets. Our approach could be directly ap-

plied without changing any parameter value except for the maxi-

mum displacement. Since NRK cells have a higher motility than

HeLa cells, for tracking we increased the parameter value for the

maximum displacement. Our evaluation showed that we yielded

high accuracies for segmentation (99.3%) and tracking (99.7%

correspondence finding, 87.5% mitosis detection) (Supplemental

Tables S16, S17). For classification we obtained an overall accuracy

of 92.9% using fivefold cross validation on all six image sequences

(ground truthwas generated bymanual annotation; Supplemental

Table S18). Finally, we determined the cell cycle phase durations

based on the automatically classified chromosome sets (Supple-

mental Fig. S10).

Table 2. Results for statistical tests

(A) Mann-Whitney test on prometaphase length distributions, one-sided test
with alternative hypothesis: ‘‘True shift is greater than 0’’

Nocodazole RNAi

Low control Medium control High control Medium-low High-medium High-low Treated control

Manual
n1, n2 44, 57 68, 57 120, 57 68, 44 120, 68 120, 44 29, 27
P-value 4.55 3 10�12 2.57 3 10�13 2.20 3 10�16 0.98 3.34 3 10�7 2.12 3 10�2 8.03 3 10�9

Auto
n1, n2 37, 180 21, 180 45, 180 21, 37 45, 21 45, 37 115, 66
P-value 1.07 3 10�7 4.08 3 10�7 4.21 3 10�12 0.70 9.09 3 10�3 1.06 3 10�2 2.25 3 10�12

(B) Spearman correlation coefficient r for prometaphase length and late phenotype probability after excluding cases
with a late phenotype probability of zero, and P-values for significance tests

Nocodazole RNAi

Manual Automatic Manual Automatic

n 110 136 15 69
Spearman

r 0.51 0.38 0.73 0.57
P-value 7.81 3 10�9 2.52 3 10�6 9.44 3 10�4 2.07 3 10�7

n1, n2, and n are the sample numbers.
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In a second study, we used a different microscopy screening

platform, namely the LSM 5 LIVE line-scanning microscope with

a charged coupled device, which allows faster image acquisition,

but provides half of the resolution in the x–y direction compared

to the LSM 510 Meta point-scanning microscope with a photo-

multiplier. We acquired image sequences of nontreated HeLa

cells (see Methods, Live-cell Imaging) and applied our approach

to four image sequences including about 9100 chromosome sets.

To analyze the images from the different platform (LSM 5 LIVE,

line-scanning microscope) we only changed a few parameter

values (maximumdisplacement, window size,minimumnucleus

size, and maximum fragment distance), which were straightfor-

wardly obtained by linearly scaling the values according to the

change in resolution. From the evaluation, we found that we

yielded accuracies of 99.8% for segmentation and 99.9% for

tracking (using ground truth from manual evaluation, Supple-

mental Tables S19, S20), and 97.8% for classification (using

fivefold cross validation based on manually annotated ground

truth; Supplemental Table S21). Again, we successfully de-

termined the cell phase durations automatically for all sequences

(Supplemental Fig. S11).

Experimental comparison with other segmentation

and tracking approaches

We also performed a quantitative experimental comparison of our

segmentation and tracking approaches with other approaches

(based on four image sequences [control, low, medium, and high

concentrations] of HeLa cells including 14,596 chromosome sets).

For segmentationwe applied two other often used approaches

for cell nucleus segmentation, namely global Otsu thresholding

and K-means clustering (using three clusters, which is the optimal

setting for the considered data), which are included in the public

domain software ImageJ (http://rsb.info.nih.gov/ij/). We used the

same preprocessing (i.e., Gaussian filtering) and post-processing

(i.e., hole-filling) steps as for our approach. From the evaluation

study we found that global Otsu thresholding yielded an accuracy

of 68.9% and K-means clustering an accuracy of 73.9%, while our

approach resulted in 98.1%. One main reason why our approach

yields a significantly better result is that we cope with the issue of

merging detached chromosomes. In contrast, global Otsu thresh-

olding and K-means clustering lead to a relatively high number of

oversegmentations, as can be seen from Supplemental Table S22.

Figure 3. Prometaphase prolongation for different treatments. (A) Sample image sequences with the automatic annotation result for the three different
nocodazole experiments (for the same images of the RNAi-depletion experiment, see Supplemental Fig. S5). The first occurrence of morphological
aberrations is marked for each image sequence by a red arrow. (B) Cumulative histogram of prometaphase length for all concentrations of the auto-
matically (manually) annotated nocodazole experiments. (C ) Cumulative histogram for the automatically (manually) annotated scr control and CKAP5
RNAi experiments. (Solid lines) Automated annotation; (dashed lines) manual annotation. The prometaphase length is given in minutes.

Automatic analysis of dividing cells
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For tracking we used the cell tracking algorithm provided in

CellProfiler (Carpenter et al. 2006), as well as the often used ImageJ

pluginMTrack2 (http://valelab.ucsf.edu/;nico/IJplugins/MTrack2.

html). As input for tracking we used the segmentation results from

our segmentation approach. Note that both tracking algorithms

cannot handle splitting events. From the analysis it turned out that

for CellProfiler, as well as for MTrack2, the percentage of correct

correspondences was slightly lower than the result for our ap-

proach (99.6% vs. 99.8%). More importantly, the two approaches

cannot handle splitting events, while a main advantage of our

approach is the detection of mitosis events and the tracking of cell

divisions.

Discussion

We developed a fully automated image analysis approach to

quantify the temporal evolution of morphological phenotypes

from time-lapse sequences of living cells. We applied our method

for the analysis of cell division under normal and perturbed con-

ditions.While we obtained high overall classification accuracies of

93.9% and 94.7%, the accuracy for the morphologically abnormal

phenotypes was generally lower than for the morphologically

normal cells. Reasons for this are the high variability within ab-

normal classes together with the low sample number for abnormal

morphologies. Also, the differences to normal morphologies can

often be subtle, and slightly abnormal phenotypes may be mis-

classified as normal. However, by increasing the number of train-

ing samples these accuracies could be further increased.

In comparison to recent work (Chen et al. 2006; Wang et al.

2007), our approach allows classification of chromosome sets into

normal and abnormal mitotic phases induced by spindle pertur-

bations. Our image analysis methods are adapted to capture ab-

normal morphologies, for example, by segmentation of detached

chromosomes together with the main chromosome set, or by de-

tection of abnormal mitotic events, like, e.g., cell divisions into

multiple daughter chromosome sets. Furthermore, our scheme

automatically performs per-cell measurements of cell cycle phase

durations and thus allows detection of even subtle kinetic delays

during mitosis that do not cause morphological aberrations. This

detailed single cell kinetic analysis allows automatic and quanti-

tative annotation of the development of aberrant phenotypes

during the cell cycle.

An important feature of single cell kinetic analysis is that

correlations between subsequent events can be tested statistically

and events can therefore be put into a causal order. For example,

the automatically analyzed nocodazole data showed a significant

positive correlation between the prolongation of prometaphase

and the incidence of subsequent chromosome segregation defects

in the daughter cells. Incomplete chromosome attachments

caused by a perturbed mitotic spindle were expected to trigger the

spindle checkpoint, causing delays or arrests in prometaphase

(Musacchio and Salmon 2007). However, the relatively low con-

centrations of nocodazole we used allowed cells to eventually enter

anaphase. Interestingly, this often occurred without congression

of every chromosome to a tight and normal metaphase plate, in-

dicating the ability of HeLa cells to bypass the spindle checkpoint

after prometaphase delays. This premature mitotic exit induced

many chromosome segregation errors resulting in multinucleated

daughter cells. Our method automatically provided a direct and

quantifiable link between these early and late mitotic phenotypes.

Our image analysis approachwas applied to a large amount of

image data of more than 140,000 cell images in different phases of

the cell cycle. After training of the classifier to recognize the desired

morphological classes no manual interactions or adaptations were

necessary throughout the analysis process. Our approach can

therefore, in principle, be applied for high-throughput analysis of

large-scale screening data of libraries of drug or RNAi perturbations

if adequate training ensures that all encountered morphologies

can be classified with sufficient accuracy. The image analysis

workflow presented here is composed of fast algorithms to allow

high-speed processing of large data sets. In addition, our software

can be run on computer clusters allowing a highly parallelized

processing of large-scale data.

We also showed that our approach can be readily applied to

images acquired under different experimental settings. Using im-

ages of a different cell line and images acquired on a different

microscopy platform we found that our approach yielded com-

parably high accuracies. However, we note that our approach, in

particular, the segmentation approach is adapted and optimized

for fluorescence microscopy images of cell nuclei. Thus, for ana-

lyzing images from a very different type of microscope (e.g., phase

contrast microscope) it might be advantageous to plug in a better

adapted segmentation approach.Moreover, with our approach it is

possible to include additional analysis steps into the workflow if

necessary. For example, to deal with spatial positioning issues that

may occur in live-cell imaging, a registration step can be included

into the analysis pipeline, as we have done in one of our earlier

studies (Kim et al. 2007).

In conclusion, we report for the first time an automated image

analysis approach that provides a quantitative profile of single cell

cycle progression and phenotypes. We show that the extracted

data can be mined statistically to search for the underlying causes

of temporal and morphological phenotypes. Due to the flexibility

of our approach it can also be used to analyze other time-resolved

cellular and subcellular changes in different experimental settings.

Methods

Live-cell imaging

To image chromosome dynamics during the cell cycle, HeLa

(Kyoto) cells stably expressing core histone 2B tagged with en-

hanced green fluorescent protein (H2B-EGFP) (Hirota et al. 2004)

were cultured in #1 LabTek chambers (Nalge Nunc) and imaged at

37°C on the microscope stage. Images were acquired with cus-

tomized LSM 510 Meta or LSM 5 LIVE confocal microscopes using

a 633 Plan-Apochromat 1.4 N.A. oil objective (Carl Zeiss) for the

LSM 510 Meta, and a 403 Plan-Neofluar 1.3 N.A. oil objective for

the LSM 5 LIVE. Multiposition 4D imaging with autofocus was

implemented as described (Rabut and Ellenberg 2004). Typical

stacks of 10243 1024 pixels3 3 slices were acquired for up to 21 h

(xyzt resolution: 0.14 3 0.14 3 3.0 mm 3 7 min) on the LSM 510

Meta, and stacks of 512 3 512 pixels 3 5 slices (xyzt resolution:

0.33 3 0.33 3 2.5 mm 3 5 min) on the LSM 5 LIVE. Phototoxicity

and photobleaching were stringently minimized as described

(Mora-Bermúdez and Ellenberg 2007). Cell density was optimized

to provide the largest number of cells per field, while minimizing

confluency in the culture at the end of each experiment (2–4 d

after plating, in nocodazole and RNAi, respectively).

Generation of segregation defects with nocodazole and RNAi

To test the accuracy of our methodology we used two types of as-

says. First we developed a pharmacological assay using defined

doses of the standardmicrotubule-depolymerizing drug nocodazole
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(Calbiochem). Prewarmed solutions were rapidly, but gently, added

to the cell culturemediumon themicroscope stage between the first

and second rounds of image acquisition. The final concentrations

were 8 (low), 10 (medium), or 12 (high) nM, or the equivalent of

solvent (DMSO) in controls. Second, to validate our methodology

for RNAi assays, we used an established RNAi protocol (Hirota et al.

2004) to deplete the microtubule-associated protein CKAP5. The

high incidence of mitotic and nuclear structure defects confirmed

the efficiency of both types of perturbation.

Image analysis workflow

To analyze the acquired image data, we developed an automatic

image analysis approachbased on a complexworkflow (Fig. 1A). To

optimize processing speed, the workflow was designed to perform

most image analysis operations in 2D using a multislice strategy.

Therefore, segmentation and tracking were performed on maxi-

mum intensity projection (MIP) images generated at each time

step. Image features were computed based on the projected images

and based on the most informative image slice for each cell nu-

cleus. After classification, the resulting phase sequences were

checked for consistency, and mitotic phase lengths were de-

termined using a finite state machine.

Segmentation of chromosome sets

Cell segmentation and tracking are essential steps for biological

image analysis, and thus have been used in various applications.

Recent methods for cell and cell nucleus segmentation in the

context of large scale image analysis are based on certain as-

sumptions, e.g., that cells are roughly blob-shaped or that the

morphology does not change significantly (e.g., Fenistein et al.

2008; Chen et al. 2009). However, since in our application we are

facing very diverse and strongly changing morphologies, we can-

not make such assumptions about the morphology of the objects,

and thus rely primarily on the image histogram, which is largely

independent of object morphologies.

For segmentation we developed a region-adaptive thresh-

olding approach based onOtsu’smethod (Otsu 1979) to determine

local thresholds. Prior to segmentation we smoothed the images

with a Gaussian filter (s = 2.5). For region-adaptive thresholding

a quadratic sliding window (93 9 pixels) was used. The automatic

computation of the local thresholds was performed in a larger re-

gion around the sliding window with an edge length of approxi-

mately thewidth of an average interphase nucleus (813 81 pixels).

Using such overlapping regions significantly improved the seg-

mentation result in comparison to using nonoverlapping regions.

A local threshold was only computed if the variance within the

region was higher than a defined threshold. Else, the global Otsu

threshold (computed for the whole image) was used. This strategy

significantly reduced the computation time since local threshold

computations were only performed in image regions including

fluorescent objects. The approach produced satisfying results for

chromosome sets with normal morphology. However, for accurate

segmentation of abnormal morphologies an extension was nec-

essary. For example, dim micronuclei attached to a bright normal

nucleus were only partially segmented since the automatically

determined local threshold was affected by the bright nucleus. To

improve the result we used the incomplete segmentation result as

a mask for the images and automatically set the masked pixels to

a lower intensity value based on the mean value of the whole

image. Region-adaptive thresholding was performed again on the

masked images, and the results from the first and second runs were

combined to determine the final segmentation. Finally, hole-fill-

ing was performed. To merge single detached chromosomes to

their corresponding chromosome set we included a post-process-

ing step by which small objects were connected to chromosome

sets in their close neighborhood. To this end, a line was inserted

connecting the centers of gravity of both segmented objects

(Supplemental Fig. S1). The size threshold for small objects to be

connected was chosen significantly below the average size of a late

anaphase nucleus, which is the smallest occurring regular chro-

mosome set (minimum nucleus size 2000 pixels). The neighbor-

hood was defined by a maximum Euclidean distance between the

centers of gravity of the segmented objects (maximum fragment

distance) of 85 pixels (or 11.9 mm).

We evaluated the accuracy of our segmentation scheme based

on manually determined ground truth. To this end, we used four

image sequences (by randomly picking one for each nocodazole

concentration and one control). We quantified the occurrence of

undersegmentations (cosegmentation of neighboring objects as

one object) and oversegmentations (decomposition of one ob-

ject into multiple objects) for all chromosome sets at all time

points. It turned out that we obtained an overall accuracy of

98.1%, where the segmentation errors of 1.9% were due to 3/4

undersegmentations and 1/4 oversegmentations (Supplemental

Table S1).

Tracking of chromosome sets

Due to the strong temporal changes of the object morphologies

in our application, our tracking approach cannot rely on mor-

phological features for correspondence finding as in previous

work on cell tracking (e.g., Chen et al. 2009). Moreover, the al-

gorithm has to deal with splitting objects as cells divide. Active

contour-based methods are well-suited for tracking highly de-

formable cells and can also handle cell divisions (e.g., Dufour et al.

2005). However, the computation time for active contours is typ-

ically relatively high and a requirement is that an overlap of the

tracked contours in consecutive image frames exists. This, how-

ever, is often not the case in our application, particularly not when

cells divide. Thus, for tracking dividing cells we developed a two-

step approach. First, initial trajectories are determined using a

feature point tracking algorithm (Chetverikov and Verestoy 1998)

where the centers of gravity of the segmented chromosome sets

are used as feature points. For each frame of an image sequence

this algorithm considers the predecessor and successor frame and

establishes object correspondences by searching for trajectories

with maximum smoothness within a defined Euclidean distance.

In the second step, mitotic events are detected to connect the re-

spective trajectories. Here, only chromosome sets without a pre-

decessor that are located within a limited Euclidean distance to the

potential parent are considered. The decision for a mitosis event is

based on two criteria: (1) both potential daughter chromosome sets

have to be smaller than the average size of a nucleus (computed

for the whole sequence) multiplied by a factor of c1 and (2) the

Euclidean distance between the potential daughter cells has to be

smaller than the average nucleus radius multiplied by a factor of c2
(in our case we used c1 = 0.6 and c2 = 3.2). If (1) and (2) are fulfilled,

a measure for the likelihood of a mitosis event Lm is computed.

The mitosis likelihood measure can be written as
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where d1, d2 represent the daughter chromosome sets at time step t,

and p the parent cell nucleus at time step t� 1, Id1,t and Id2,t are the

mean intensities of d1 and d2, Ad1,t and Ad2,t are the areas (i.e.,

number of pixels) of d1 and d2, Iall;t is the mean intensity of all

chromosome sets at time step t, and �Aall is the mean area of all

chromosome sets in the whole sequence. Each term yields a max-

imum value of 1, and the three terms are weighted by w1, w2, w3

(with w1 + w2 + w3 = 1). In our application we used values of w1 =

0.5, w2 = 0.2, w3 = 0.3 which were empirically determined. To find

suitable values for c1, c2, and w1, w2, w3, we tested a wide range of

parameter values using a large number of images.We validated the

values for c1 and c2 considering feature distributions over the

whole population of ground truth data (Supplemental Note 1).

If Lm is sufficiently high, the respective case is considered as

a mitotic event and the corresponding tracks are connected. Note

that the number of daughter cells corresponding to a parent cell is

not restricted to two and thus also abnormal divisions into more

than two daughter cells can be tracked (Fig. 1B).

The tracking accuracywas determined based on the same four

sequences as already used to determine the segmentation accuracy

(Supplemental Table S2).We found that for a total number of about

16,900 matches, 40 mismatches occurred, yielding an overall ac-

curacy of 99.8%. Twenty-nine of the 40 mismatches were caused

by segmentation errors, nine by mitosis detection errors, and only

two were actual tracking errors. Thus, the error of the correspon-

dence finding is very low (0.01%). The mitosis detection accuracy

was determined based on 22 sequences with three sequences for

each nocodazole concentration, six sequences for the nocodazole

controls, and four sequences for the RNAi experiments. Our mi-

tosis detection scheme yielded an overall accuracy of 95.4% and

a positive predictive value of 92.0%. Here, the 18 observed false-

positives were caused by abnormal morphologies such as detach-

ing micronuclei.

Feature extraction

Features for cell image classification have been studied for many

years, in particular, for classification of subcellular structures (e.g.,

Boland et al. 1998; Boland and Murphy 2001; Conrad et al. 2004;

Huang and Murphy 2004). In Boland and Murphy (2001) a stan-

dard feature set for subcellular location characterization was in-

troduced and extended to a large set of 2D and 3D image features

(Huang and Murphy 2004). Also in other fields of microscopy

image classification, a wide range of image features has been stud-

ied (e.g., Ronneberger et al. 2002; Lindblad et al. 2003; Rodenacker

and Bengtsson 2003; Pincus et al. 2007). A general overview of

commonly used image feature types is given, e.g., Theodoridis and

Koutroumbas (1999).

Here, we used a feature set that is an extension of a previously

used feature set (Conrad et al. 2004). Features for each cell nucleus

were computed based on the MIP images and based on single im-

age slices of the original 3D images. In the latter case, we selected

for each nucleus the most informative slice based on maximum

total intensity. The reason for using the original image slices for

feature extraction is that fine textures, which are important for the

classification of certain phases (e.g., prophase), can be blurred in

the projected images. On the other hand, the projected images

were also required because the selected slice did not necessarily

contain the entire object, e.g., detached chromosomes often were

located in other slices. Consequently, to exploit the maximum

possible information we computed features related to texture, like

Haralick texture, granularity, grayscale invariants, or wavelet fea-

tures based on the most informative slices, and features primarily

related to object shape, e.g., size, circularity, Feret’s diameter,

contour length, or Zernike moments based on the projected im-

ages (Supplemental Table S9; Supplemental Note 2). Our choice of

using a combined feature set that includes features based on the

projected, as well as the most informative slice, was supported by

experimental comparison of classification accuracies for the dif-

ferent feature sets. Supplemental Table S10 shows relatively similar

results for each alternative, but the combined feature set yielded

slightly higher overall and average classification accuracies, and

yields the best result for most of the classes, which indicates an

advantage of this method.

In addition to these static features we used dynamic features

representing the temporalmorphological changes of chromosome

sets. These features were computed as differences of six basic fea-

tures (i.e., object size, mean intensity, standard deviation of in-

tensity, circularity, minimum and maximum diameters) in the

current frame to its predecessor and its successor frame based on

the tracking result. In total 376 features were extracted and used for

automated classification.

Automatic classification of chromosome sets

To automatically classify chromosome sets into 12 classes (in-

terphase, prophase, prometaphase, metaphase, early anaphase, late

anaphase, telophase, abnormal early and late anaphase, abnormal

telophase, abnormal interphase, and cell death) (Fig. 1C; Supple-

mental Fig. S2), we applied support vectormachines (SVMs) (Vapnik

1998) with a Gaussian radial basis function (RBF) kernel. The mul-

ticlass classification problem was solved with a one-against-one

approach (CChang andC-J Lin, http://www.csie.ntu.edu.tw/;cjlin/

libsvm). For k classes this method constructs k(k � 1)/2 binary

classifiers and trains each classifier for two classes. To optimize the

penalty parameter C and the kernel parameter g, we performed

threefold cross validation with varying parameters on the training

set (model selection) prior to the actual training of the classifier.

We performed classification experiments using the original

feature set and reduced feature sets. For feature reduction we ap-

plied principal component analysis (PCA) using different numbers

of principal components and compared the results with the result

using all original features. It turned out that for the reduced feature

sets of 5, 10, 20, 30, 50, and 100 principal components, we

obtained lower classification accuracies than for the original fea-

ture set (Supplemental Fig. S7). For 50 and 100 principal compo-

nents we obtained classification accuracies of 92.6% and 92.3%,

respectively, in comparison to 94.0% for the original feature set.

Additionally, we performed experiments using independent

component analysis (ICA). Fifty and 100 independent compo-

nents resulted in very similar results as for PCA (92.4% and 92.3%,

respectively). Therefore, we used the original feature set for clas-

sification in this work. Note that the experiments for feature re-

duction were performed using a combined classifier trained with

data from both the nocodazole and the RNAi experiments. We

found that the combined classifier performed similar to the sepa-

rate classifiers (Supplemental Table S11).

To obtain a more balanced data set and reduce the computa-

tion time for the training of the classifier we limited the number of

interphase samples to 1000 per sequence. This strategy yielded

better results than using weighted support vector machines (Sup-

plemental Note 3).

Consistency check and error correction

To ensure the consistency of the resulting phase sequences and to

determine the phase lengths we developed a finite state machine

(FSM), which models the cell cycle and accepts only biologically

plausible phase sequences. Valid phases are represented by states

of the FSM and possible phase transitions by state relations.
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Additionally, the FSM includes error states for all regular states that

handle illegal phase transitions by correction or resetting (Fig. 1D;

for clarity only the most important relations are displayed).

The FSM processes phase sequences sequentially and the first

phase defines the start state.While the input phases stick to allowed

phase transitions the FSM changes into the respective states and

at each state the number of occurring phases is counted. If an ille-

gal phase transition occurs, the FSM takes the corresponding error

state. As soon as the error state is left, the erroneous phases are

corrected retrospectively depending on the current state. If the error

state cannot be left after two time steps, the FSM resets the current

state to the respective state of the last input phase to avoid being

stuck in the error state. After processing of the whole sequence,

a corrected list of phases with all phase durations is returned.

We quantified the improvement in accuracy obtained by the

error correction step. To this end, we trained a classifier based on 12

sequences of the nocodazole ground truth data set and used the

remaining four nocodazole sequences for testing (the test se-

quences included one sequence for each treatment concentration

and one control sequence). We applied the FSM twice on the

classification result for the test sequences and compared the result

to the true classes and to the classification result before FSM pro-

cessing. It turned out that the overall classification accuracy of

80.2% improved to 81.0% using the FSM. We note, however, that

the primary goal of the error correction step is not to improve the

overall accuracy, but to recover the consistency of the determined

phase sequence. A consistent phase sequence is particularly im-

portant for the subsequent statistical analysis of the cell cycle

phase durations. This can be illustrated by an example. Assume

a sequence of 100 classification results covering several cell cycle

phases of a cell, and suppose that all classifications are correct

except one error in the middle of a certain phase. Correcting this

single error improves the overall classification accuracy by only

1%, however, the accuracy for quantifying the phase length for the

considered phase is improved by 50% (the reason is that since the

error occurs in the middle of the phase and therefore the consis-

tency is broken, we obtain for the phase length a value that is half

of the correct length). Using our automatic approach all in-

consistencies have been corrected (up to a certain length). How-

ever, not all inconsistencies have been corrected in agreementwith

the ground truth data, since partially there are multiple possibili-

ties for correction.

After applying the FSMwe post-processed the corrected phase

sequences to combine phases that were split by longer errors and

caused a resetting of the FSM. In addition, biologically implausible

multiple alternations between interphase and abnormal in-

terphase were combined into one phase. In essence, this post-

processing step yields an improved phase sequence to derive the

most biologically plausible sequence.

Implementation

Our software was developed on a Linux platform and the algo-

rithms for segmentation, tracking, feature extraction, as well as

phase sequence parsing were implemented in C/C++. The soft-

ware is freely available at http://www.bioquant.uni-hd.de/bmcv/

genomeresearch. For SVM classification we used the publicly

available C++ library LIBSVM (http://www.csie.ntu.edu.tw/;cjlin/

libsvm). The average computation time for one image with 512 3

512 pixels and about 20 cells per image was 1.9 sec for segmenta-

tion (including preprocessing and post-processing), 1.1 sec for

tracking, 15.0 sec for feature extraction (384 features per cell), 0.6

sec for classification, and <0.1 sec for phase sequence parsing (us-

ing an AMD Opteron processor with 2.2–2.4 GHz). Note that for

feature extraction the computation time can be significantly re-

duced by hardware acceleration using graphics processing units

(GPUs), e.g., in our recent work in Gipp et al. 2008 an acceleration

of a factor of about 30 was achieved.

Statistical analysis

To check whether the extracted phase lengths were normally dis-

tributed we performed Shapiro-Wilk tests for all experiments

(Supplemental Table S8). Since for almost all of the experiments

a normal distribution could not be assumed we used non-

parametric statistics, in particular, the Mann-Whitney U test for

not paired data to test whether significant shifts between phase

length distributions existed (Table 2A; Supplemental Table S5).

To compute correlation coefficients we used nonparametric

statistics, in particular Spearman’s r. To ensure that the determined

correlations did not occur due to a random effect, we performed

significance tests with the alternative hypothesis: ‘‘True r is greater

than zero’’ (Table 2B). For all statistical tests we used a significance

level of a = 5%.
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