AUTOMATIC ANALYSIS OF HYBRID SYSTEMS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Pei-Hsin Ho
August 1995

(© Pei-Hsin Ho 1995
ALL RIGHTS RESERVED

AUTOMATIC ANALYSIS OF HYBRID SYSTEMS

Pei-Hsin Ho, Ph.D.

Cornell University 1995

Hybrid systems are real-time systems that react to both discrete and continuous
activities (such as analog signals, time, temperature, and speed). Typical examples
of hybrid systems are embedded systems, timing-based communication protocols,
and digital circuits at the transistor level. Due to the rapid development of micro-
processor technology, hybrid systems directly control much of what we depend on
in our daily lives. Consequently, the formal specification and verification of hybrid
systems has become an active area of research.

This dissertation presents the first general framework for the formal specifica-
tion and verification of hybrid systems, as well as the first hybrid-system analysis
tool—HYTECH. The framework consists of a graphical finite-state-machine-like
language for modeling hybrid systems, a temporal logic for modeling the require-
ments of the hybrid systems, and a computer procedure that verifies modeled
hybrid systems against modeled requirements. The tool HYTECH is the imple-
mentation of the framework using C++ and MATHEMATICA.

More specifically, our hybrid-system modeling language, Hybrid Automata, is
an extension of timed automata [AD94] with discrete and general continuous vari-
ables whose dynamics are governed by differential equations. Our requirement

modeling language, ICTL, is a branching-time temporal logic, and is an exten-

sion of TcTL [ACD93] with stop-watch variables. Our verification procedure is
a symbolic model-checking procedure that verifies linear hybrid automata against
[cTL formulas, and is an extension of the symbolic model-checking procedure for
real-time systems in [HNSY94].

To make HYTECH more efficient and effective, we designed and implemented
model-checking strategies and abstract operators that can expedite the verification
process. To enable HYTECH to verify nonlinear hybrid automata, we also introduce
two translations from nonlinear hybrid automata to linear hybrid automata that
can be fed into HYTECH for automatic analysis. We have applied HYTECH to
analyze more than 30 hybrid-system benchmarks. In this dissertation, we show
the application of HYTECH to three nontrivial hybrid systems taken from the

literature.

Biographical Sketch

Pei-Hsin Ho was born January 31, 1965 in a Catholic family in Taipei, Taiwan,
Republic of China. He has wonderful parents and a cool younger brother who is
now doing a Ph.D. in Physics at U.C. Berkeley.

The first computer that Pei-Hsin had was an Apple clone that his father pur-
chased in 1981. Fascinated by the power of the wonderful machine (6502 CPU,
16K memory and a cassette recorder), he spent most of his time in the Pen-Chao
senior high school programming BASIC.

In 1983, Pei-Hsin ventured into mathematics at Chung-Yuan Christian Uni-
versity, where he was awarded the degree of Bachelor of Science four years later.
Inspired by the excellent faculty at Chung-Yuan Christian University, Pei-Hsin dis-
covered his love for applied mathematics and theoretical computer science. Most
importantly, he got to spend some time with a lovely classmate Chih-Ying Shih
who later became his wife in 1991.

Pei-Hsin started to pursue graduate studies in the Department of Applied
Mathematics at the National Chiao-Tung Univerity in 1987. He studied discrete
mathematics and the design and analysis of graph algorithms from a great profes-
sor Gerard J. Chang, who taught Pei-Hsin how to conduct academic research in
the area, and inspired Pei-Hsin to pursue a career in computer science.

To fulfill the military service requirement, Pei-Hsin attended Taiwan ROTC in

1

1989. He became an itinerary instructor officer in the Department of Defense of
Taiwan. In about two years, the young officer traveled the whole island with his
driver and Jeep to deliver lectures.

In the summer of 1991, Pei-Hsin moved to Ithaca, New York, to pursue his
Ph.D. degree at Cornell University. Faced with the Q-exam, he spent the two
coldest Christmas holidays in his life studying. Finally he managed to conquer the
nightmare of the Q-exam, with the second highest combined score on his second
shot. On January 30, 1994, Pei-Hsin and Chih-Ying got their little baby boy, Eric,
in Tompkins County Hospital beside beautiful Cayuga Lake. Pei-Hsin started to
work with Professor Thomas A. Henzinger on formal methods in the Spring of 1992.
Pei-Hsin received the Ph.D. degree in Computer Science from Cornell University

in August, 1995.

v

To my parents, Chao-Sin Ho and Cheng-Luan Chang,
to my wife, Chih-Ying Shih, and to my son, Eric Ho

Acknowledgements

Chapter 2 of this dissertation extends joint work with Rajeev Alur, Costas Cour-
coubetis and Tom Henzinger [ACHH93]. Chapter 3 is based on joint work with
Rajeev and Tom [AHH93]. Chapter 4 is evolved from joint work with Tom [HH95b].
Chapter 5, 6 and 7 are respectively based on the collaborations [HH95¢|, [HH95a]
and [HH95b] with Tom. I am indebted to each of my three coauthors for their
inspiration and contribution. Their influence can be felt throughout the entire
thesis.

I am most grateful to my advisor Tom Henzinger for his spiritual, technical and
financial support that carried me through the doctoral program. His clear vision
of the field led me to the most important and promising research problems. Tom
is always so generous with his time and ideas to me. For two years we met to
discuss the research work almost every day. Tom also made possible my fruitful
trips to conferences and summer schools in America and Europe. To me, Tom is
the best mentor as well as a great friend. Without his contribution, guidance and
encouragement, this dissertation would simply not exist.

[also thank my other committee members, Anil Neorde and Dexter Kozen, who
have both assisted me in many different ways throughout my time here. It has
been a great experience and pleasure to learn from Anil Nerode, who established

the most important work on the control of hybrid systems. The work of Chapter 6

vi

was actually inspired by a conversation with Anil. Many thanks go to Dexter,
who taught me how to deliver technical talks and gave me detailed comments on
various drafts of my thesis.

Thanks to my colleagues Peter Kopke and Howard Wong-Toi in Tom’s group
for their friendship and inspiration and the ideas they shared at numerous discus-
sions. [learned a lot from Howard about how to be a good researcher through our
collaboration on three papers. Howard also almost single-handedly implemented
the new version of HYTECH, which greatly improved the usefulness of the tool.

The Computer Science Department at Cornell has been an exciting place to
learn and work. I am indebted to many people who have taught and helped me.
Special thanks go to David Chang, Ashvin Dsouza, David Karr and Marcel Rosu,
who greatly enriched my life here. David Chang deserves my special gratitude for
his friendship and valuable counsel, especially in my early years at Cornell.

I had the fortune to spend a summer at the Cadence Berkeley Labs. Thanks
to my host Ken McMillan, who introduced me the Petri net model and patiently
answered all my questions about Petri net. I am also grateful for the enthusiastic
interest, help and advice that I received from colleagues in this field: Rajeev Alur,
Edmund Clarke, David Dill, Limor Fix, Insup Lee, Nancy Lynch, John Rushby,
Natarajan Shankar, Frits Vaandrager and Sergio Yovine. I also want to thank my
master-thesis advisor Gerard J. Chang who brought me into the field of computer
science six years ago.

Finally, I wish to express my deepest gratitude to my wife, Chih-Ying Shih, for
all the love, help and support she has given me, and especially for all the happiness

she has brought to me.

Vil

Table of Contents

1 Introduction

1.1 Hybrid Systems
1.2 Overview. oo e
1.2.1 Hybrid Automata
1.2.2 Integrator Logic Lo L
1.2.3 Symbolic Model Checking
1.2.4 Automatic Analysis Tool : HYTECH
1.2.5 Model-checking Strategies
1.2.6 Verification of Nonlinear Hybrid Systems
1.2.7 Case Studies.o
1.3 Related Work
1.3.1 Verification
1.3.2 Control

2 Modeling Languages

2.1 System Modeling Language: Hybrid Automata
2.1.1 Syntax e
2.1.2 Semanticsl
2.1.3 Composition
2.1.4 Example: Railroad Gate Controller
2.1.5 Decidability and Undecidability Results.

2.2 Property Modeling Language: Integrator Logic
221 Syntaxo e
2.2.2 Semantics
2.2.3 Example: Railroad Gate Controller

3 Symbolic Modeling Checking of Linear Hybrid Systems

3.1 Time and Transition Steps
3.1.1 Step Relations.
3.1.2 Precondition Operators

Viil

20
20
21
26
29
31
33
34
35
36
38

3.2

3.3

Symbolic Model Checking 53

3.2.1 The SMcC-procedure 53
3.2.2 Possibility %)
3.2.3 Inevitability o o 56
Implementation of the Symbolic Model Checking Procedure 62
3.3.1 Direct Implementation 62
3.3.2 Better Implementation 65

3.3.3 Symbolic Model Checking of the Railroad Gate Controller . 65

4 HYTECH : the Implementation of the Symbolic Model-checking

Procedure 68
4.1 Bounded-drift Linear Hybrid Automata 69
4.1.1 The Input Language, 70
4.1.2 Global Invariants for Modeling Urgent Transitions 76
4.2 Parametric Reachability Analysis 76
4.2.1 Reachability Analysis 76
4.2.2 Parametric Analysis oo 79
4.2.3 Abstract Interpretationo 80
4.2.4 Checking More Properties by Reachability Analysis 81
4.3 Geometric Implementation 82
4.3.1 Polyhedron-manipulation Library 82
4.3.2 Implementation using the Polyhedron-manipulation Library 85
4.4 More Examples Verified by HYTeECH 89
4.4.1 Timing-based Mutual Exclusion 89
4.4.2 Leaking Gas Burner 0. 92
4.4.3 Two Different Schedulers 93
5 Efficient Symbolic Model Checking 98
5.1 Example: Water Tank L. 100
5.2 Forward versus Backward Reachability Analysis 101
5.3 Convergence Acceleration through Abstract Operators 103
531 Convex Hull 104
5.3.2 Extrapolation L o 106
54 Two-way Iterative Approximation 110
6 Analysis of Nonlinear Hybrid Automata 113
6.1 Verification of Nonlinear Hybrid Automata 115
6.1.1 Examples of Nonlinear Hybrid Automata 116

6.1.2 Another Semantics for Hybrid Automata: Labeled Transi-
tion Systems Lo 117

X

6.1.3 The Emptiness Problem 118

6.2 Clock Translation 118
6.2.1 Solvable Automata L. 119

6.2.2 The Clock Translation Algorithm 120

6.2.3 Soundness, Completeness, and Decidability 123

6.2.4 6-approximate Clock Translation 128

6.2.5 Example: Railroad Gate Controller 130

6.2.6 Error Analysis. oL 130

6.3 Rate Translation 134
6.3.1 Bounded Automata oL 135

6.3.2 The Rate Translation Algorithm 135

6.3.3 Soundness 137

6.3.4 Example: Temperature Controller with Delays 137

6.3.5 Error Analysis. oL 138

6.4 Discussiono 144

7 Case Studies 147
7.1 A Distributed Control System with Time-outs 149

7.2 A Two-robot Manufacturing System 154
7.3 The Philips Audio Control Protocol 158

8 Future Work 164
A The Grammar of the HYTECH Input Language 167
B HyTEecH Input File Example 173
Bibliography 176

List of Tables

4.1
4.2
4.3

=1
—_

The timing-based mutual exclusion protocol 90
Coefficient size versus performance 92
Performance data (CPU time) 96
Verification of the audio control protocol 160

xi

List of Figures

1.1
1.2

oL

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

The architecture of HYTECH
Nerode and Kohn’smodel

Thermostat automaton
A trajectory segment of the thermostat automaton
Railroad gate controller

: T3 . . true
The time-precondition operator pre™°

The time-precondition operator prefs

The reactor core automaton
The control rod automata
The augmented control rod automata
Two representations of a convex polyhedron
Quantifier elimination: eliminating variable y
Time step e e
Reverse time stepo
Timing-based mutual-exclusion protocol
The Gas Burner Automaton
The priority scheduler, data version
The priority scheduler, control version
The round-robin scheduler

The water-tank automaton
The change of the water level y of the water-tank automaton

Exact forward and backward analysis.
Application of the naive and the refined convex-hull operators . . .
The robot automaton L L.
A trajectory of the robot automaton
Extrapolation operator
Results of the extrapolation operator and the widening operator . .
One-way approximative analysis

xii

5.10
5.11
5.12

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Two-way iterative approximative analysis 110

The bouncing-ball automaton 111
A trajectory of the bouncing-ball automaton 112
A railroad gate controller oo 116
Clock translation of the thermostat automaton 121
Clock translation and 0.1-approximate clock translation of the train

automatono 130
A temperature controller with delays 134
Rate translation of the temperature controller with delays 138
The nonlinear reactor core automaton 144
The clock-translated reactor core automaton 145
The 0.1-approximate clock-translated core automaton 145
The two sensors e e e 148
The scheduler. 149
The controller 151
The two-robot manufacturing system 153
Robot D 154
Box i . . . e 155
Robot G 156
The service stationo 156
The Manchester encoding 158
The input automaton L L 161
The sender automaton L. 162
The receiver automaton L. 163
The output automaton L oL 163

xiil

Chapter 1

Introduction

“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning” the king said, gravely,
“and go on till you come to the end: then stop.”

Lewis Carroll!

1.1 Hybrid Systems

This dissertation begins with the answer of the following question. What is a
hybrid system? Let us first look at the definitions of hybrid systems given by
some participants of the Workshop on Hybrid Systems held at Lyngby, Denmark
in October 1992:

Hybrid systems are interacting networks of digital and continuous de-
vices. Typically they occur in digital control systems, in business, in-
dustry and the malitary.

— Grossman, Nerode, Ravn and Rischel [GNRR93]

'The quotes like this in this dissertation were found in [Rok93] or [BH95.

[S)

Hybrid systems are reactive systems that intermix discrete and contin-
uwous components. Typical examples are digital controllers that interact

with continuously changing physical environments.

Manna and Pnueli [MP93]

A hybrid system consists of discrete programs within an analog enwvi-

Alur, Courcoubetis, Henzinger and Ho [ACHH93]

ronment.

All of the three definitions share the common point that hybrid systems contain
both digital and analog components. This dissertation aims at the hybrid systems
whose digital components are real-time computing systems and analog components
are controlled continuous activities in the environment. In other words, we use the
notion of hybrid systems to model the combined behavior of embedded real-time
computing systems and their physical environments.

Hybrid systems form an interdisciplinary topic that lies at the junction of Com-
puter Science and Control Theory. Traditionally, computer scientists consider
systems that consist of complex discrete programs and control theorists consider
systems that consist of complex continuous activities. But due to the rapid devel-
opment of microprocessor technology, more and more things that we depend on
in our daily lives are controlled by systems that consist of both complex discrete
programs and complex continuous activities. For instance, a modern automobile is
usually equipped with a small local-area network of embedded systems including
the fuel injection system, automatic cruise control system, anti-lock brake system
and air bag system. Thus we think it is the right time to investigate the systems
that consist of a nontrivial mixture of discrete programs and continuous activities;

that is, hybrid systems.

The correctness of hybrid systems in safety-critical machinery, for example, a
car or an airplane, is of obvious vital importance, and calls for software and math-
ematical tools that support the design and development of correct hybrid systems.
Inspired by the previous work on the formal specification and verification of real-
time and discrete systems, we present a general framework for the formal speci-
fication and verification of hybrid systems, as well as a software tool, HYTECH,
that can automatically analyze hybrid systems. The framework consists of (1) a
graphical language for modeling hybrid systems, which is easy for engineers to
understand and use, (2) a temporal logic for modeling the requirements of hybrid
systems, which is more precise than, yet close to, the traditional English require-
ment specifications, and (3) a computer procedure for verifying modeled hybrid
systems against modeled requirements, which is easier to use than the interactive
machine-proving techniques. HYTEcCH? is the implementation of this framework
using C++ and MATHEMATICA.

Based on the result of this dissertation, we plan to build an integrated envi-
ronment that supports the rapid prototyping of hybrid systems by facilitating the
specification, simulation, verification and analysis of the prototype. We expect
that the tool can help designers develop more reliable hybrid systems in shorter

turnaround time.

1.2 Overview

This section provides an overview of the dissertation.

2We thank HYTECH users James Corbett at University of Hawaii, Sanjai Narain at Bellcore,
Gino Labinaz at Queen’s University in Canada, Rudolf E. Klug at CWIin the Netherlands, Simin
Nadjm-Tehrani at Linkoping University in Sweden, Wang Yi and Paul Pattersson at Uppsala
University in Sweden, Kim Larsen at Aalborg University in Denmark, and Satoshi Yamane at
Shimane University in Japan for valuable feedbacks.

e

1.2.1 Hybrid Automata

We model the components of a hybrid system as a hybrid automaton. A hybrid au-
tomaton [ACHH93,ACH"95] is a generalized finite-state machine that is equipped
with continuous variables. The discrete actions of a program are modeled by a
change of the control locations. The continuous activities of the environment are
modeled by real-valued variables whose values change continuously over time ac-
cording to differential equations. This model for hybrid systems is inspired by the
phase transition systems of [MMP92] and [NSY93], and can be viewed as a gener-
alization of timed automata [AD94] with discrete and general continuous variables;
a similar model has been proposed and studied independently in [NOSY93].

For verification purposes, we first consider linear hybrid automata. In each
location of a linear hybrid automaton, the behavior of all variables are governed
by linear constraints on the first derivatives. Common examples of linear con-
straints are constant differential equations, rectangular differential inclusions, and
rate comparisons. We present decidability and undecidability results for the empti-

ness problem of linear hybrid automata.

1.2.2 Integrator Logic

Real-time requirements of systems can be specified in TcTL [ACD93], a branching-
time temporal logic that extends CTL [CES86] with clock variables. We introduce
Integrator Computation Tree Logic, ICTL, which strengthens TCTL in the style
of [BES93] by admitting integrator variables. An integrator is a stop watch that
can be stopped and restarted. While clocks suffice for the specification of time-
bounded requirements—such as “A response is obtained if a bell has been pressed
continuously for at least d seconds” —integrators are necessary to accumulate de-

lays, and are useful for specifying duration requirements—such as “A response is

ot

obtained if a bell has been pressed, possibly intermittently, for at least d seconds.”
We use ICTL to specify safety, liveness, time-bounded, and duration requirements

of hybrid automata.

1.2.3 Symbolic Model Checking

Model checking is a powerful technique for the automatic verification of systems. A
model-checking algorithm determines whether a mathematical model of a system
meets a specification that is given as a temporal-logic formula. For discrete finite-
state systems, model checking has a long history spanning more than a decade, and
has been successful in validating communication protocols and hardware circuits
[CES81,QS81,LP85,McM93]. In recent years, model-checking algorithms have also
been developed for real-time systems that are described by discrete programs with
real-valued clocks [AFH91,ACD93].

As the variables of a hybrid system range over the real numbers, the state
space is infinite, and state sets—so-called regions—must be represented symboli-
cally rather than enumeratively. A symbolic model-checking algorithm for verify-
ing TcTL-requirements of real-time systems is presented in [HNSY94]. We extend
this result and present a symbolic model-checking procedure for verifying ICTL-
requirements of linear hybrid automata.

Given an IcTL-formula and a hybrid automaton, we compute the target region
of states that satisfy the formula by successive approximation, as the limit of an
infinite sequence of regions. The approximation sequence is generated by iterating
boolean operators and weakest-precondition operators on regions. For linear hybrid
automata, all regions of the approximation sequence are linear in the sense that
they can be defined in the theory (R, <,+) of the reals with addition, whose

formulas are boolean combinations of linear inequalities.

HyTEcCH

Hybrid automata Tareet reei
N arget region

MATHEMATICA main program

IcTL formula ‘ ‘ | ‘ ‘

C++ subroutines

[1 1 1

Halbwachs’s polyhedral library

Figure 1.1: The architecture of HYTECH

1.2.4 Automatic Analysis Tool : HYTECH

The model-checking procedure has been implemented as part of the Cornell HY-
brid TECHnology Tool, HyTECH.? The first version of HYTECH uses the sym-
bolic computation system MATHEMATICA [Wol88] for manipulating and simplify-
ing (R, <, +)-formulas. In particular, the computation of weakest preconditions of
linear regions requires quantifier elimination in the theory (R, <,+).

We have improved the performance of HYTECH by representing and manipu-
lating linear regions geometrically: each data region is represented as a union of
convex polyhedra. The current implementation of HYTECH consists of a MATH-
EMATICA main program and a collection of C++ subroutines that make use of a
polyhedron-manipulation library by Halbwachs [Hal93,HRP94]. The architecture

of HYTECH is shown in Figure 1.1.

SHYTECH is available by anonymous ftp from ftp.cs.cornell.edu, cd “pub/tah/HyTech. See
also http://www.cs.cornell.edu/Info/People/tah /hytech.html.

-1

1.2.5 Model-checking Strategies

To make HYTECH more efficient and effective, we designed and implemented sev-
eral model-checking strategies for the reachability problem for hybrid automata.
The reachability problem for a hybrid automaton, an initial region, and a final re-
gion asks if the final region can be reached from the initial region by the trajectories

of the hybrid automaton.

Forward versus Backward Analysis

HYTECH can attack a reachability problem by forward analysis, or by backward
analysis or both. For a given reachability problem, one direction may perform
better than the other direction. In fact, one direction may terminate and the other
not. HYTECH can also iteratively refine the approximation in both directions until

sufficient precision is obtained.

Abstract Interpretation

To expedite the reachability analysis and to force the termination of the analysis,
HYTECH provides several abstract-interpretation operators [CC77,HH95¢], includ-
ing the convex-hull operator and the extrapolation operator. Our extrapolation
operator is similar to the widening operator of [CH78,Hal93].

An abstract-interpretation operator approximates a set of convex regions with
a single convex region. The convex-hull operator overapproximates a union of
convex regions by its convex hull. The extrapolation operator overapproximates
a directed chain R C f(R) C fQ(R) C --- of convex regions by a “guess” of the
limit of the computation. Either operator, or the combination of both operators,
may cause the termination of a forward or backward reachability analysis that
does not terminate otherwise. However, since the use of either operator results

in an overapproximation of the target region, the abstract analysis is sound but

not complete: if HY'TECH says the final region is not reachable from the initial
region, then the final region is indeed not reachable. But if HYTECH says the
final region is reachable from the initial region, the final region may or may not
reachable. In the latter case, we have to refine our approximation, by applying
fewer abstract-interpretation operators, or by using two-way iterative approxima-

tion[CC92,DWO5].

1.2.6 Verification of Nonlinear Hybrid Systems

HYTECH can be used to automate the verification of nonlinear hybrid systems
with the help of two algorithmic translations, the clock translation and the rate
translation [HH95a|, from nonlinear hybrid automata to linear hybrid automata.
Both translations are sound and, when it applies, the clock translation is also
complete (up to numeric errors). A by-product of the clock translation is a new

decidable class of hybrid systems.

1.2.7 Case Studies

We have applied HYTECH to analyze more than 30 hybrid-system benchmarks.
Besides some small examples, we show the application of HYTECH to three non-
trivial benchmark problems taken from the literature, rather than devised by us.
The first case study is a distributed control system introduced by Corbett [Cor94].
The system consists of a controller and two sensors, and is required to issue con-
trol commands to a robot within certain time limits. The two sensor processes are
executed on a single processor, as scheduled by a priority scheduler. This scenario
is modeled by linear hybrid automata with clocks and integrators. HYTECH auto-
matically computes the maximum time difference between two consecutive control
commands generated by the controller.

The second case study is a two-robot manufacturing system introduced by Puri

and Varaiya [PV95b]. The system consists of a conveyor belt with two boxes, a
service station, and two robots. The boxes will not fall to the floor iff initially
the boxes are not positioned closely together on the conveyor belt. HYTECH
automatically computes the minimum allowable initial distance between the two
boxes.

The third case study is the Philips audio control protocol presented by Bosscher,
Polak, and Vaandrager [BPV94]. The protocol consists of a sender that converts
a bit string into an analog signal using the so-called Manchester encoding, and a
receiver that converts the analog signal back into a bit string. The sender and
the receiver use clocks that may be drifting apart. In [BPV94], it was shown, by
a human proof, that the receiver decodes the signal correctly if and only if the
clock drift is bounded by a certain constant. HYTECH automatically computes
that constant for input strings up to 8 bits. In [HW95], Howard Wong-Toi and
the author applied HYTECH to verify the protocol with input strings of arbitrary

length. This result is not included in this dissertation.

1.3 Related Work

The research of hybrid systems has a short history and yet fruitful results in both
computer science and control theory. The related research of hybrid systems can
be classified into two categories: Verification and Control. The verification work
has benefit from the control-related research [HWT95]. On the other hand, as Anil
Nerode predicted in [Hub95], the process of extracting the control automata will
also be benefit from the verification techniques. A clear evidence of the trend is
shown in [MPS95], which shows that the verification techniques developed in this

thesis can be applied to extract controllers.

10

1.3.1 Verification

Both algorithmic approaches and deductive approaches have been used for the
verification of hybrid systems. The algorithmic approaches verify the modeled
systems automatically. The deductive approaches are often aided by machine
provers but still require human intelligence to verify modeled systems. On the
other hand, the deductive methods can usually verify a more general class of hybrid
systems. We divide the verification work on hybrid systems into eight classes. The
first three classes are algorithmic approaches and the last five classes are deductive

approaches.
Hybrid Automata

Most algorithmic approaches use the hybrid automaton model that we introduce
in this dissertation.

Hybrid automaton model. The first related work dated back in 1990, Alur
and Dill [AD90] investigated timed automata, an extensions of w-automata with
real-valued clocks, for expressing real-time systems. In parallel, Henzinger, Manna,
and Pnueli [HMP92,HMP94] also introduced timed transition systems to model real
time systems. Subsequently, Maler, Manna, and Pnueli [MMP92] and also Nicollin,
Sifakis and Yovin [NSY93] generalized the timed transition systems to hybrid phase
transition systems. On the other hand, we extended timed automata to hybrid
automata in [ACHH93]. In the same workshop proceedings, Nicollin, Olivero,
Sifakis and Yovine [NOSY93] independently proposed and studied a similar model.
Model checking. In [ACD93], Alur, Courcoubetis and Dill presented an enu-
merative model checking algorithm for verifying TCTL-requirements of timed au-
tomata. After a while, Henzinger, Nicollin, Sifakis, and Yovine [HNSY94| pre-
sented a symbolic model-checking algorithm for the same purpose. Later we

generalized this symbolic model-checking algorithm to become a symbolic model-

11

checking procedure for hybrid systems. In [HH95¢], we substituted the quantifier-
elimination operations in our symbolic model-checking procedure with more ef-
ficient polyhedron-manipulation operations provided in Halbwachs’s polyhedron
manipulation library [Hal93]. In [HRP94|, Halbwachs, Raymond and Proy also
applied Halbwachs’s polyhedron manipulation library to verify some hybrid sys-
tem benchmarks presented in [AHH93 HH95¢|.

Abstract interpretation. The abstract interpretation techniques [CC77] were
first applied to real-time systems and then hybrid systems. Halbwachs [Hal93] used
two abstract interpretation operators, the convex hull operator and the widening
operator for verifying real-time systems. Shortly after, Dill and Wong-Toi [DW93,
DW95] also applied the two-way iterative approximation method [CC92] to the
verification of timed automata. It was shown that all the above abstract interpre-
tation methods can be applied to hybrid systems in [HH95¢] and also in [HRP94]
in parallel. In addition, an extrapolation operator similar to the widening operator
was investigated in [HH95¢].

In CAV'94 (Conference on Computer Aided Verification), Olivero, Sifakis and
Yovine [OSY94] introduced translations (abstract interpretation operators) that
translate some classes of linear hybrid automata into timed automata. The trans-
lated timed automata can be verified by their symbolic model checker KRO-
NOs [DY95] based on [HNSY94]. Since the reachability problem and even the
TcTL model checking is decidable for timed automata, the by-product of this
work is some decidability results. Similar transformations were also studied by
Howard Wong-Toi in his dissertation [WT94].

Theory. There has been lots of theoretical work on hybrid automata. IKesten,
Pnueli, Sifakis and Yovine [KPSY93] introduced a class of decidable linear hy-
brid automata called integration graphs. In CAV’'94, Puri and Varaiya [PV94]

proved that the reachability problem for a class of linear hybrid automata is de-

12

cidable. Shortly after, this work was generalized by Henzinger, Kopke, Puri and
Varaiya [HIKPV95]. They introduced a translation from a even more general class
of linear hybrid automata to timed automata. The work thus implies a more
general decidability result. The same paper also finds a sharp boundary between
decidable and undecidable linear hybrid automata.

Henzinger and Kopke [HK95] investigated the hybrid automata that have fi-

nite mutual simulations. The finite mutual simulation is sufficient for reachability
analysis and thus this result leads to verification procedures as well as decidability
results. Other decidability and undecidability results can be found in [ACHH93,
KPSY93,AD9%4,BER94, MV94,BR95, HH95a, HHIK95].
Case studies. Corbett [Cor94] developed a hybrid-automaton-like model and a
formal verification tool to specify and verify timing properties of Ada programs.
In the paper, Corbett demonstrated his tool by modeling and verifying distributed
control systems in Ada. In Chapter 7, we apply HYTECH to verify a system of
the same kind. To compare the two tools, Corbett also wrote a translator that
translates his model to linear hybrid automata.

Bosscher, Polak and Vaandrager applied the notion of hybrid systems to specify
and verify a Philips audio control protocol [BPV94]. This timing-based protocol
was modeled by an extension of the timed I/O automata model [LV93,LV92], and
verified mathematically without computer support. Then we verified an instance of
this protocol in [HH95b] and the general protocol in [HW95]. Shortly after, Daws
and Yovine [DY95] applied KrRONOS, and Bengtsson, Larsen, Larsson, Pettersson,
and Yi [BLL"95,LPY95] applied UPPAAL to verify the same protocol. Based
on the model checking methodology for timed automata in [HNSY94], KrRONOS
and UPPAAL are symbolic model checkers for timed automata. Both tools are
applicable to the audio control protocol because the linear hybrid automata that

model this protocol can be translated into timed automata. The translation was

13

done by hand in [DY95] and automatically by a program called hs2ta in [BLL195].
Other case studies for verifying hybrid systems using hybrid automata can be
also found in [HHWT95a, HHWT95h].
Nonlinear hybrid automata. The first result on the algorithmic formal verifi-
cation of nonlinear hybrid automata was the clock translation and the rate trans-
lation in [HH95a] (Chapter 6). Subsequently, Henzinger and Wong-Toi [HWT95]
introduced the phase portrait approrimation method to translate nonlinear hybrid
automata to linear hybrid automata. The phase portrait approximation can be
made more accurate than the rate translation. However, a good phase portrait
approximation requires a seemly insight of the differential equations that govern

the continuous activities.

Symbolic Reduction

Another algorithmic approach is the symbolic reduction method introduced by
Kurshan and McMillan [KM91]. Kurshan and McMillan applied symbolic re-
duction to analyze a circuit modeled at the transistor level. The circuit at the
transistor level is essentially a finite-state machine with differential equations that
govern the analog behavior of the circuit. Kurshan and McMillan applied sym-
bolic reduction to obtain a conservative finite-state model of the circuit such that
any safety property verified in the finite-state model is true for the circuit. We
plan to adapt the symbolic reduction method to become a sound translation from
nonlinear hybrid automata to finite-state machines.

Martin and Seger [MS94] introduced trace automata to model linear or non-
linear hybrid systems. They modified the symbolic reduction method to translate

trace automata to finite-state machines. The translated finite-state machines can

be verified automatically using VOSS [Seg93], a BDD-based model checker.

14

Dynamical Systems

The third algorithmic approach is the dynamical system approach. Asarin, Maler
and Pnueli [AMP95] considered the reachability problem for a class of linear hy-
brid systems, namely the dynamic systems with piecewise-constant derivatives.
They presented a decision procedure for two-dimensional dynamic systems and an
undecidability result for three or more dimensions. Guckenheimer and others de-
signed and implemented the tool DSTOOL [Ner92,BGM93| for simulating two or
more dimensional hybrid dynamical systems. Zhang and Mackworth [ZM95] also

developed a semantic model, constraint nets, to model hybrid dynamical systems.
Duration Calculus

The first deductive approach that we survey is the duration calculus [CHRO1,
RRH93,CHS93, HHF 94, HPC95], which is an interval-based temporal logic de-
veloped by Chaochen and others. Duration calculus can be used to specify the
accumulated time that a state predicate holds, namely, the duration of the state
predicate. In the framework of the duration calculus, both the system and the
requirement are specified by duration calculus formulas. To verify if a system sat-
isfies a requirement, a deductive system for duration calculus is used to check the
validity of the duration calculus formulas.

Most decidability results for the duration calculus are negative. The most
recent good news is in [BLR95|; Bouajjani and others show that the verifica-
tion of a subclass of duration calculus properties can be reduced to reachability
problems for a subclass of integration graphs that can be analyzed using the al-
gorithm of [ACH93]. The reachability problems for integration automata is de-
cidable [KPSY93|. Consequently, this subclass of duration calculus properties is
decidable and can be automatically verified by HYTECH.

Lakhaneche and Hooman [LH95] extended metric temporal logic with durations

to specify and verify duration properties of hybrid systems using their proof system.
Phase Transition Systems

Manna and Pnueli [MP93] designed the phase transition system model for mod-
eling hybrid systems and also a proof rule for verifying phase transition systems.
Kapur, Henzinge, Manna and Pnueli [HMP93,KHMP94| introduced a proof sys-
tem for verifying phase transition systems against hybrid temporal logic (HTL)

specifications.
TLA+

TLA+ [AL92,Lam93,Lam94] is a general-purpose formal specification language
based on Temporal Logic in Actions, with no built-in primitives for specifying real-
time properties. Lamport [Lam93] used TLA+ to define operators for specifying
real-time and duration properties. These operators are used to specify and prove
a gas burner example (Section 4.4.2) in the paper. Both the system, F, and
the requirement, G, are specified by TLA+ formulas. The system F satisfies the
requirement G if all behaviors satisfy the formula F' = G, which can be proved or
disproved by a proof system for TLA+. In [Lam93|, the proof for the gas burner
example was done manually, but the proof could be also assisted by TLP [EGL92],

a system for mechanically checking TLA proofs.

Timed I/O automata

In [BPV94], Bosscher, Polak and Vaandrager extended the timed I/O automata
model [LV93,LV92] to specify linear hybrid systems. In the same paper, they ap-
plied the timed I/O automata model to specify and verify a Philips audio control
protocol. Both the system and the requirement are described by timed I/O au-

tomata. The correctness proof is done by the simulation mapping technique that

16

proves the inclusion of timed traces. The proof was done manually. According
to [BPV94], a system for mechanically verifying systems and requirements speci-

fied in the timed I/O automata model is being developed.

Hoare Logic

Hooman [Ho093] extended the classical Hoare triples with timing primitives to
specify hybrid systems. A compositional proof system is also introduced to verify

the specifications in Hoare triples.

1.3.2 Control

Both control theorists and computer scientists are advancing the techniques of
extracting hybrid-system controllers. We divide the work in the area into four

classes.

Nerode and Kohn’s Model

We first discuss the work of Nerode, Kohn, and others [GIKNY92,Ner93,NIK93b,
NK93a,KN93,KNRY95,LGKN95 KJNT95 GNKJ95].

A simple example of Nerode and Kohn's hybrid system model [KN93] is illus-
trated in Figure 1.2. The hybrid system consists of a continuous plant interacting
with a digital controller at times n - A. The digital controller is a finite automaton
that issues control command ¢, to the plant at times n - A, based on the state of
the control automaton and a measurement of the state of the plant. The plant runs
based on the control ¢, in the time interval [nA, (n + 1)A]. The digital command
issued by the controller is converted to analog actuation by the D/A converter.
The sensor supplies feedback to the digital control automaton through the A/D

converter.

17

M Analog Plant

Analog World

Digital World

Digital Control Automaton

Figure 1.2: Nerode and Kohn’s model

The continuos plant is described by an ordinary vector differential equation
&= f(x,e,d),

where x is the state of the plant, ¢ is the control function, and d is the disturbance
function. For any initial plant state x(0), and for any control function ¢(t) and
disturbance function d(t), the function x(¢) that satisfies the differential equation is
the trajectory of the plant. The challenge of the controller is to make the trajectory
of the plant stays within acceptable bounds.

The performance specification for the hybrid-system controller is expressed by
the value of a single non-negative cost function, Lagrangian, on the trajectory.
The integral of the Lagrangian is computed on the plant trajectories, the smaller
its value the better the performance. A trajectory is acceptable if the integral of
the Lagrangian along the trajectory is within € of the minimum. The goal is to
extract digital control automata that will control the plant to generate acceptable

trajectories only.

18

Kohn’s declarative control can be used for solving this problem. Basically, the
Lagrangian constraint on the trajectory can be translated into symbolic formulas
for desirable control automaton using the method. Kohn and Nerode [KNRGY4,
KNR95] suggested that the state space of a hybrid system should be considered as a
differentiable manifold, the carrier manifold. A point (state) of the carrier manifold
represents the state of all the digital and analog variables. The digital variables are
“continualized” to become analog variables; that is, view the digital variables as
finite real-valued piecewise constant functions of continuous time and then smooth
them. Every constraint on the system, including the Lagrangian constraint, is
incorporated into the definition of what points are on the carrier manifold. Then
we consider the feedback function y = F(x) of each point x on the carrier manifold.
The control problem can be reduced to the following problem: for each point z on
the carrier manifold, find a direction & to reach a state x at a specific direction
&1 = y1. The choice of the vector y = F(z) specifies that in what direction & =y
should go when the plant is in state x. So the control is determined by the feedback
function. IKohn and Nerode have shown how to formulate the feedback function
construction problem as a single relaxed variational problem, and how to solve the
latter problem for the required controls.

To implement appropriate adaptive controller handling unmodeled dynamics
and other uncertainties, sometimes it is necessary to compute and install a new
finite control automaton to replace the old one on the fly when performance speci-
fications for the system are violated. IKohn and Nerode also introduced the concept
of an autonomous agent to accomplish this task. An autonomous agent monitors a
hybrid system like the example in Figure 1.2. The agent looks for non-compliance
with specifications and uses this and other historical information to compute, and
occasionally install, a new finite control automaton.

This concept can be generalized to a set of distributed cooperating agents. The

19

idea is as follows. In addition to the global Lagrangian for the whole hybrid system,
each agent is assigned a local Lagrangian based on the evolution of the continuous
process it monitors. The distributed agents cooperate through message passing.
The messages received by an agent are symbolic terms that are used to modify
that agent’s current Lagrangian. Each agent autonomously extracts a control
automaton for its monitored process to force the monitored process to produce a
trajectory approximately minimizing that agent’s local Lagrangian. The definition
of a successful cooperation is that the local and global Lagrangians are designed
so that choosing a control automaton that lowers an individual agent’s Lagrangian
also lowers the global Lagrangian.

This multi-agent architecture can be used to control the hybrid systems for
which a single agent can not possibly meet the performance requirement. Appli-
cations include the national distributed multi-media systems, interactive video-
audio-text on demand, manufacturing processes, virtual enterprises, distributed

interactive simulation, and traffic control.

Fixpoint Computation

In [MPS95], Maler, Pnueli and Sifakis show that the synthesis of hybrid-system
controllers can be done by the computation of fixpoints of the precondition oper-
ators that we developed for the symbolic model-checking algorithm (Chapter 3).
From this result, our symbolic model-checking efforts for hybrid automata can be

applied to the synthesis of hybrid-system controllers.
PATH

The California PATH project [Var93] uses the notion of hybrid systems to develop
more efficient highway systems. Besides the theoretical work of Puri and Varaiya

like [PV94,PV95b] that we mentioned earlier, the PATH hybrid control papers

20
include [DV95b.DV95a.PV95a].
Other Results

Other well-known results of extracting hybrid-system controllers in the framework

of control theory include [GL93,LSA93,AS1.93,GL95,Bra95,LA95].

Chapter 2

Modeling Languages

By relieving the mand of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems, and in effect increases
the mental power of the race.

— Alfred North Whitehead

We now introduce the system modeling language, hybrid automata, and the

requirement modeling language, ICTL.

2.1 System Modeling Language: Hybrid
Automata

Informally, a hybrid automaton is a labeled multigraph (V, E') with a finite set ¥ of
real-valued variables. The real-valued variables are used to model the continuous
environment activities. The edges E represent discrete actions and are labeled
with nondeterministic guarded assignments to &. The vertices V' represent different

control modes of the system and are labeled with constraints on the derivatives

[v

turnoff

turnon

r=1

Figure 2.1: Thermostat automaton

of #. The state of the automaton changes either through instantaneous system
actions or, while time elapses, through continuous activities.

For example, the hybrid automaton of Figure 2.1 models a thermostat that
controls the temperature of a manufacturing plant. The variable x models the plant
temperature. In control location on, a heater is turned on; in control location off ,
the heater is turned off. The variable x follow the differential equations © = —x+4
in location on and © = —x in location off. Thus the plant temperature follows
exponential functions with negative exponents. Initially, the temperature is 2
and the heater is turned on. If a thermometer detects that the plant temperature
reaches 3, the heater is turned off. If the thermometer detects that the temperature
falls to 1, the heater is turned on. The two variables y and z are auxiliary variables:
y, a stop watch, records the accumulated time that the heater is turned on, and z,

a clock, records the total elapsed time.

2.1.1 Syntax

Now we introduce the formal definition of hybrid automata. Let i be a vector
of real-valued variables. A linear term over § is a linear combination of variables
from 3. A linear inequality over 3 is an inequality between linear terms over . A
(closed) convex linear formula over i is a finite conjunction of (nonstrict) linear
inequalities over . A linear formula over j is a finite boolean combination of

linear inequalities over ¢. Every linear formula can be transformed into disjunctive

23

normal form, that is, into a finite disjunction of convex linear formulas.

A hybrid automaton A consists of the following components:

Data variables A finite vector ¥ = (x1,...,x,) of real-valued data variables.
The size n of ¥ is called the dimension of A. The thermostat automaton in
Figure 2.1 has the vector (x,y,z) of data variables. The dimension of the

thermostat automaton is thus 3.

A data state is a point § = (sy,...,sy) in n-dimensional real space R" or,
equivalently, a function that assigns to each data variable z; a real value s; €
R. A convex data region is a convex polyhedron in R"”. A data region is a
finite union of convex data regions. A (convex) data predicate is a (convex)
linear formula over #. The (convex) data predicate p defines the (convex)
data region [p] C R", where § € [p] iff p[Z := 5] is true. The data region S

is (convex) linear if there is a (convex) data predicate that defines S.

For each data variable x;, we use the dotted variable #; to denote the first
derivative of x;. A rate predicate is a conjunction of inequalities between
linear terms over & & i and differentiable functions f(&) over . A rate
predicate is linear if it is a convex linear formula over & 7. A rate predicate
is uniform if it is a convex linear formula over the set i of dotted variables

only.

A differential inclusion is a connected region in R"™. A rate predicate r
maps each data state § € R” to the differential inclusion [r](5) C R", where
ie [r](5) iff r[@:= 3, = ;] is true. A linear rate predicate maps each data
state to a differential inclusion that is a convex polyhedron in R”. A uniform
rate predicate maps every data state to the same differential inclusion that

is a convex polyhedron in R"”. A differential inclusion is bounded if it is

contained in an open ball with finite radius.

24

For each data variable x;, we use the primed variable 2! to denote the new
value of x; after a transition. An action predicate is a convex linear formula
over the set 7@ i of data variables ¥ and primed variables &' = (2/,...,2}).
The action predicate ¢ maps each data state § € R™ to the convex data

region [¢](5) C R", where §' € [¢](3) iff ¢[7 := 5,7 := §] is true.

The data or action predicate p is (real-valued) integral if all constants that
occur in p are (real-valued) integral respectively. Notice that any data pred-
icate containing a rational coefficient is equivalent to an integer data predi-
cate. The hybrid automaton A is (real-valued) integral if all data and action
predicates that specify the invariants and actions of A are (real-valued) in-

tegral.

Control locations A finite set V of vertices called control locations. The ther-

mostat automaton has the control locations on and off.

A state (v,§) of the automaton A consists of a control location v € V' and
a data state § € R". A region R = U,cy(v,Sy) is a collection of data
regions S, C R", one for each control location v € V. A state predicate
¢ = Upey(v,py) is a collection of data predicates p,, one for each control
location v € V. The state predicate ¢ defines the region [¢] = U,ev (v, [po])-

The region R is linear if there is a state predicate that defines R.

We write (v, S) for the region (v,S) U U, 2,(¢".0). and (v.p) for the state
predicate (v, p) U U+, (v', false). When writing state predicates, we use the
location counter (, which ranges over the set V' of control locations. The
location constraint { = v denotes the state predicate (v,#rue). The data
predicate p, when used as a state predicate, denotes the collection (J,cy (v, p).
For two state predicates ¢ = Uyey (v,p,) and ¢/ = U,ey(v,p)), we define

o = U'UGV(“? _'pv)v A% qb/ = U'UEV('vav \/p/v), and ¢ A Qb/ = U'UGV(U7P’U /\p;)-

A state predicate is integral, rational, or real-valued if it contains only inte-

gral, rational or real-valued data predicates, respectively.

Location invariants A labeling function inv that assigns to each control location
v € V a convex data predicate inv(v), the invariant of v. The invariants are
used to enforce the progress of a system from one control location to another,
because the control of the automaton A may reside in the location v only
as long as the invariant inv(v) is true. In the thermostat automaton, the

invariants of the locations on and off are x < 3 and x > 1, respectively.

The state (v, §) is admissible if § € [inv(v)]. We write ¥4 for the set of
admissible states of A, and ¢4 for the state predicate U,cy (v, inv(v)) that

defines the set of admissible states.

Continuous activities A labeling function dif that assigns to each control loca-
tion v € V' a rate predicate dif (v) that maps every data state in inv(v) to
a bounded differential inclusion. The rate predicate constrains the rates at
which the values of data variables change: when the state of the automaton

is (v, s), the first derivatives of all data variables stay within the bounded

differential inclusion [dif (v)](5).

The data variable x is linear if for all locations v € V', the rate predicate
dif (v) is uniform; otherwise, x is nonlinear. The integral hybrid automaton
A is linear if all data variables in 7 are linear; otherwise, A is nonlinear. In
the thermostat automaton, dif (on) = & = —x +4 Ay=1A 2 =1 and
dif (off) =4 = —x AN y=0 A 2 =1. The data variables y and z are linear
and z is nonlinear. Thus the thermostat automaton is a nonlinear integral

hybrid automaton.

Transitions A finite multiset E of edges called transitions. Each transition (v, v")

26

identifies a source location v € V' and a target location ' € V. For each

location v € V', there is a stutter transition e, = (v,v).

Discrete actions A labeling function act that assigns to each transition e € E
an action predicate act(e), the action of e. If the automaton control proceeds
from the location v to the location v via the transition e = (v,0'), then the
values of all data variables change nondeterministically from § to a point in

the data region [act(e)](5). For example, a transition with the action label
1 <3 A 3§;17'1§5 A xé:;zrg A 1‘;’3:1:14—1

can be traversed only when the value of z; is at most 3. The transition
updates the value of 21 to a real number in the interval [3, 5], the value of x
remains unchanged, and the new value of x3 is 1 greater than the old value
of x1. All stutter transitions are labeled with the action predicate @’ = Z.
In the graphical representation of actions, if the primed variable ’ occurs
only in the conjunct 2/ = z, then we usually omit that conjunct. In the

thermostat automaton, act(on,off)ise =3 A’ =ax Ny =y N 2/ ==z,

Synchronization labels A finite set L of synchronization labels and a labeling
function syn that assigns to each transition e € E a label from L. The
set L is called the alphabet of A. The synchronization labels are used to
define the parallel composition of two automata: if both automata share
a synchronization label a, then each a-transition of one automaton must
be accompanied by an a-transition of the other automaton. The stutter
transition e, of location v is labeled with v. In the thermostat automaton,

label(on, off) is turnoff and label(on, off) is turnon.

The convexity restriction to invariants, activities, and actions does not limit the

expressiveness of hybrid automata, because nonconvex invariants and activities

27

can be modeled by splitting locations (see Chapter 3), and nonconvex actions can
be modeled by splitting transitions.

The data variable x of the hybrid automaton A is a clock if dif (v) implies
© =1 for all locations v of A; that is, each clock always increases with the rate at
which time advances. The data variable x of the hybrid automaton A is a skewed
clock if dif (v) implies & = ¢ for all locations v of A, where ¢ is a nonnegative
integer. The data variable = of the hybrid automaton A is an integrator if dif (v)
implies # = 1 or & = 0 for all locations v of A. An hybrid automaton A is a n-rate
automaton if all data variables of A are skewed clocks that proceed in n different
rates. An hybrid automaton A is an integrator automaton if all data variables of
A are integrators.

Another special case of a linear hybrid automaton is a timed automaton [AD94].
An atomic data predicate is sgmple if it has the form x < c or x > ¢, for some ¢ € R;
an atomic action predicate is semple if it is a simple atomic data predicate or
has the form 2/ = ¢ or 2/ = 2. The data variable x of A is simple if in all
initial conditions, invariants, and actions of A, and 2’ occur only in atomic data
and action predicates that are simple. The hybrid automaton A is simple if all
data variables of A are simple. A simple rational hybrid automaton A is a timed

automaton if all data variables of A are clocks.

2.1.2 Semantics

At any time instant, the state of a hybrid automaton specifies a control location
and values for all data variables. The state can change in two ways: (1) by an
instantaneous transition that changes both the control location and the values
of data variables, or (2) by a time delay that changes only the values of data
variables in a continuous manner according to the rate predicate of the current

control location.

28

A data tragectory (6, p) of the hybrid automaton A consists of a nonnegative
duration 6 € R>g and a differentiable function p: [0, 6] — R"™. The data trajectory
(6, p) maps every real t € [0,6] to the data state p(t). The data trajectory (8, p) is

admassible if there is some location v of hybrid automaton A such that
Invariants for all reals t € [0,06]. p(t) € [tnv(v)]; and
Activities for all reals ¢ € (0,0), ﬂfﬁf—) € [dif (v)](p(1)).

Consider two reals] and t» with 0 < ¢} < ¢y < 6. We write p[t;, t2] for the
data trajectory (&', p') with &' = to — t1, and p/(t) = p(t + t1) for all t € [0,].
The data trajectory (6, p) is linear if there is a constant rate vector § € R such
that d":,—(:) =5 foralte (0,6). The data trajectory (6, p) is piecewise linear
if there are finitely many reals t1,...,t. € [0,6] such that the data trajectories
pl0,t1], plt1,t2], ..., pltr, 6] are linear.

A trajectory T of A is an infinite sequence

(vo.60,p0) — (v1,61.p1) — (v2,62,p2) — (v3,03.p3) — ---

of control locations v; € V' and admissible data trajectories (6;, p;) in location v;
such that for all ¢ > 0, there is a transition e¢; = (v;,v;y1) € E with p;41(0) €
[act(ei)](pi(6:))-

A position of the trajectory 7 is a pair (7, €) that consists of a nonnegative inte-
ger ¢ and a nonnegative real € < ;. The positions of 7 are ordered lexicographically:
the position (7, 6) precedes the position (7j, €), denoted (i,6) < (j,€), iff eitheri < j,
or i = j and ¢ < e. The state at position (i,€) of 7 is 7(i,e) = (v;, pi(€)) (notice
that all states of 7 are admissible). The time at position (i,€) of 7 is the finite

sum t-(i,€) = (Yo<j<i 0;) + €. The duration of the trajectory 7 is the infinite sum

6r = Dj50 ;.

29

The trajectory 7 diverges if 6; = oo. The trajectory 7 is linear if all data
trajectories (6;, p;) of 7 are linear. By [A] we denote the set of trajectories of the
automaton A. If 7 is a set of trajectories, 7" is the set of divergent trajectories
in 7, and 7y, is the set of linear trajectories in 7 .

Counsider two positions 71 = (v, €1) and m = (vj,€2) of the trajectory 7. We

write 7[m, m2] for the trajectory fragment

(vi.piler, 6i]) — (vig1, bip1, pig1) — - — (v5, p;[0, €2]),

and 7[m, o] for the trajectory

(vi, piler, &) — (Vig1,0it1, piv1) — (Vig2, bix9, piya) —

The trajectory set [A] is closed under suffixes (if 7 € [A] and 7 is a position
of 7. then 7|7, 00] € [A]); stuttering (if 7 € [A] and 7 is a position of 7, then
(7](0,0), w]r[m,oc]) € [A]); fusion (if 7,7" € [A], 7 is a position of 7, 7’ is a
position of 7/, and 7(7) = 7'(7’), then (7[(0,0), 7]7'[7", >]) € [A]); and limits (if
for all positions 7 of 7 there is a trajectory 7/ € [A] and a position 7’ of 7’ such
that 7[(0,0), 7] = 7'[(0,0),#'], then 7 € [A]). Notice that fusion closure asserts
that the future evolution of a hybrid automaton is completely determined by the
present state of the automaton. Also notice that the suffix, stutter, and fusion
closures of a trajectory set 7 are inherited by the subsets 7% and Tp,. If T
is closed under limits, then so is 7j;,, and 7% is closed under divergent limits
(“divergence-safe”) [HNSY94].

The hybrid automaton A is nonzeno if for every admissible state ¢ of A there is
a divergent trajectory 7 of A such that 7(0,0) = o. In other words, A is nonzeno iff
every finite prefix of a trajectory is a prefix of a divergent trajectory. Notice that if
A is nonzeno, then the states that occur on divergent trajectories of A are precisely

the admissible states ¥ 4. We restrict our attention to nonzeno hybrid automata.

30

3 ‘ =
2.5 ="

2 -
1.5 e —

1 — _—

- 7

0.5

0

0 0.5 1 1.5 2 2.5

Figure 2.2: A trajectory segment of the thermostat automaton

In [HNSY94] it is shown how a timed automaton may be turned into a nonzeno
automaton with the same divergent trajectories; this is done by strengthening the
location invariants, and applies to many hybrid automata also.

Figure 2.2 illustrates a segment of a trajectory of the thermostat automaton
from Figure 2.1. The thick grey curve represents the temperature x; the dashed
straight line represents the clock z; and the piecewise-linear solid line represents

the stop watch y.

2.1.3 Composition

A hybrid system typically consists of several components that operate concurrently
and communicate with each other. We describe each component as a hybrid au-
tomaton. The component automata coordinate through shared data variables that
model shared memories, and through synchronization labels that model message-
passing coordinations. The hybrid automaton that models the entire system is
then constructed from the component automata using a product operation.

Let A; = (&, V1, invy, dif |, E1, acty, L1, syny) and Ay = (@9, Va, tnva, dif 5,
E5, acty, Ly, syns) be two hybrid automata of dimensions nj and ns9, respectively.
The product Ay x As of Ay and As is the hybrid automaton A = (&1 U Z2, V] X
Vo, v, dif , E, act, L1 U Lo, syn):

31

e Each location (v,v") in V] x V5 has the invariant inv(v,0') = invi(v) A
inva(v') and the activity dif (v,v") = dif {(v) A dif o(v'); that is, an admissible
state of A consists of an admissible state of A; and an admissible state of A,
whose shared parts coincide, and whose rate vector obeys the differential

inclusions that are associated with both components locations.
. . . _) 3 y/ W .
e FE contains the transition e = ((vy, v2), (v}, v5)) iff

1) vy = v} and there is a transition es = (v9,v)) € FE9 with
1 2,
syny(e2) & Ly; or
2) there is a transition e = (vy,v}) € Eq with syn,(e;) € Ly, and
» U1 yny
vy = vh; or
3) there is a transition e; = (vy,v}) € Ey and a transition ey =
SESRS|

(v2,v5) € Ey such that syn(e1) = synqy(ez).

In case (1), act(e) = (Npez\z, ' =) A acty(ez) and syn(e) = syny(ez). In
case (2), act(e) = acti(e1) A (Npew\z, @' =) and syn(e) = syn(e1). In

case (3), act(e) = acty(e1) A acta(ez) and syn(e) = syn (e1) = syny(ez).

Since the two component automata A; and Ay may share data variables, the
dimension of A lies between maz(ny,n2) and ny + n2. According to the definition
of F, the transitions of the two component automata are interleaved, provided that
there is no label in L1 N Ls. Labelsin L N Ly must be synchronized, and cause the
simultaneous traversal of component transitions. Notice that, in cases (1) and (2),
the stutter transitions of the component automata result in stutter transitions of

the product automaton.

32

2.1.4 Example: Railroad Gate Controller

We model a control system for a railroad crossing using hybrid automata. The
system consists of three processes—a train, a gate, and a gate controller.

The variable x represents the distance of the train from the gate. The dotted
variable X represents the first derivative of the variable x with respect to time;
that is, the velocity of the train. Initially, the train is far from the gate and always
moves at a speed that varies between 48 and 52 meters per second. When the
train approaches the gate, a sensor that is placed at a distance of 1000 meters
from the crossing detects the train and sends the signal app to the controller. The
train then may slow down to a speed between 40 and 52 meters per second. If
the controller is idle upon receipt of the approach signal app, it requires up to
5 seconds to send the command lower to the gate; the delay of the controller is
modeled by the clock z. If the gate is open, it is lowered from 90 radius degrees
to 0 degrees at the constant rate of 20 degrees per second; the position of the gate
in degrees is represented by the variable y. A second sensor placed at 100 meters
past the crossing detects the leaving train and signals ezt to the controller, which,
after another delay of up to 5 seconds, sends the command raise to the gate. We
assume that the distance between consecutive trains is at least 1500 meters, so
when the sensor detects a leaving train, the next (or returning) train is at least
1500 meters from the crossing.

The controller must accept arriving app and exit signals at any time, and the
gate must always accept controller commands. For fault tolerance considerations,
we design the controller so that an ezt signal is ignored if the gate is about to be
lowered, while an app signal always causes the gate to be lowered.

The three hybrid automata that model the train, the gate, and the controller

are shown in Figure 2.3. In the graphical representation of the automata we use

33

Figure 2.3: Railroad gate controller

“superlocations” to save on edges. In particular, the gate automaton has four
locations—up (“being raised”), open, down (“being lowered”), and closed. We
suppress invariants of the form true, conjuncts of the form = = 0 for activities,
conjuncts of the form 2’ = x for actions, and we suppress stutter transitions.
The location up of the gate automaton has the invariant 0 < y < 90, the activ-
ity y = 20, and two outgoing transitions; the transition to the location open has
the activity y = 90 A 3/ = y, and no synchronization labels; the transition to down
has the activity y’ = y and the synchronization label lower. The synchronization
labels model signals (from the train to the controller) and commands (from the
controller to the gate). For instance, when the train automaton changes location
using an edge labeled with app, the controller automaton is required to traverse

an edge with the same label.

34

2.1.5 Decidability and Undecidability Results

Define the Muller accepting condition for a hybrid automaton A to be a collection
of location sets final(A) C 2V A Muller accepting trajectory T of A is a trajectory
of A such that 7 € final(A), where 7 is the set of locations that are visited
infinitely often during 7.

The design of verification algorithms for hybrid automata is impaired by the
fact that the Muller emptiness problem (“Does a hybrid automata have an Muller
accepting trajectory?”) is undecidable already for very restricted classes of hybrid
automata. On the positive side, the Muller emptiness problem for timed automata

(only clock variables) is PSPACE-complete [AD94]. On the negative side, we have

the following undecidability result.

Theorem 1 The Muller emptiness problem is undecidable for 2-rate automata and

for simple integrator automata.

Proof. The first part of the theorem follows from the undecidability of the halting
problem for nondeterministic 2-counter machines (NCMs). Given any two distinct
clock rates, a 2-rate automaton system can encode the computations of an NCM.
Suppose we have three clocks of rate 1 and two skewed clocks x1 and xy of rate 2.
Then we can encode the values of two counters in the i-th machine configuration
by the values of x; and x2 at accurate time ¢: the counter value n is encoded by
the clock value 1/2".

The clock y is reset whenever it reaches 1 and thus marks intervals of length 1.
It is obvious how a counter can be initialized to 0 and tested for being 0. Hence
it remains to be shown how a counter can be incremented and decremented. To
increment the counter represented by the skewed clock x from time ¢ to time ¢+ 1,
start an accurate clock z with x in the interval [i — 1,7] and reset z when it

reaches 1; then nondeterministically reset x in the interval [i, i4+1] and test x = = at

time i+ 1. To decrement the counter represented by the skewed clock x from time i
to time 7 4 1, nondeterministically start an accurate clock z in the interval [i — 1,]
and test ¥ = z at time i; when z reaches 1 in the interval [i,i + 1], reset x.
Given an NCM M, we can so construct a 2-rate timed system that has a Muller
accepting trajectory iff M halts. (Indeed, using acceptance conditions, we can
construct a 2-rate automaton that has a Muller accepting trajectory iff a counter
is 0 infinitely often along some trajectories of M; this shows that the emptiness
problem is ¥{-complete for 2-rate automata [HPS83].)

The second part of the theorem follows from an undecidability result for timed
systems with memory cells [Cer92]. m

We point out that the Muller emptiness problem is decidable for simple n-
rate automata. This is because any simple n-rate automaton can be transformed
into a timed automaton by factoring and scaling the rate of the skewed clocks
into the same clock rate. An analogous result holds for real-time temporal log-
ics [WME92]. More recent decidability and undecidability results can be found

in [AD94, KPSY93,BER94,MV94,PV94 BR95 HKPV95].

2.2 Property Modeling Language: Integrator
Logic

The formulas of the Integrator Computation Tree Logic 1CTL for a given hybrid
automaton A contain two kinds of variables—data and control variables of A, and
integrators. An integrator is a stop watch that can be stopped and restarted. We
adopt the notation of [BES93] to generalize the clock reset (“freeze”) quantifier of
TPTL [AH94| to a reset quantifier for integrators. While the clock reset quantifier
z. introduces (binds) the clock z and sets its value at 0, the integrator reset

quantifier (z: U). ¢ introduces (binds) the integrator z, declares its type to be U,

36

and sets its value to 0. The type U C V of z is a set of locations from A. The
value of an integrator of type U increases with the rate at which time advances
whenever the automaton control is in a location in U, and its value stays unchanged
whenever the automaton control is in a location in V\U. In particular, a clock

variable is an integrator of type V.

2.2.1 Syntax

The formulas of IcTL are built from integral state predicates using boolean op-
erators, the two temporal operators 34 (“possibly”) and VI (“inevitably”), and
the reset quantifier for integrators. Intuitively, the formula ¢392 holds in the
automaton state o if along some automaton trajectory that starts from o, the
second argument g9 holds in some state of the trajectory, and the first argument
©1 holds in all intermediate states. The formula ¢Vl @y asserts that along ev-
ery trajectory that starts from o, the first argument ¢; is true until the second
argument ¢y becomes true.

Let A be a hybrid automaton with the data variables ¥ and the control lo-
cations V', and let Z be a vector of real-valued variables called integrators. A
Z-extended data predicate of A is a formula over ¥WZ. A Z-extended state predicate
of A is a collection of Z-extended data predicates, one for each location in V. The

A-formulas of 1CcTL are defined inductively by the grammar
p u= o |mp eV | p13Ups | o1 VUpa [(2:U). ¢

where ¢ is an integral Z-extended state predicate, U C V is a set of locations,
and z is an integrator from Z. The IcTL-formula ¢ is closed if every occurrence of
an integrator in ¢ is bound by a reset quantifier. We restrict ourselves to closed
formulas of IcTL. We also assume that different reset quantifiers in ¢ bind different

integrators, which can be achieved by renaming bound variables.

37

We also use location predicates to denote the type of an integrator. A location
predicate is a boolean combination of equalities of the form ¢ = v, where (is
the location counter. For the railroad gate controller example, (= (far, open, idle)
denotes the location set {(far, open, idle)}, and (= true denotes the whole location
set U. We also write ([i] for the i-th component of the program counter ¢, so for
the railroad gate controller example, ([1] ranges over the locations of the train
automaton, etc. Thus ([2] = closed denotes the set of all the locations whose
second component are closed.

If all integrators in ¢ have the type U, then ¢ is a formula of TcTL [ACD93].
An IcTL-formula that does not contain any integrator is a CTL-formula [CESS86].
When writing IcTL-formulas, we suppress the integrator type U, and we use
boolean combinations of location constraints for defining integrator types. Typi-
cal abbreviations for [cTL-formulas include the standard temporal operators Vo,
10y, and ¢1IWea, for trueVidp, VO, and @13 po V 01, respectively. We
also use time-bounded temporal operators [ACD93] such as VO« ¢, which stands

for the IcTL-formula . VO(2 <5 A), that is, (2 : U). (trueVlU(z <5 A ¢)).

2.2.2 Semantics

Every closed A-formula ¢ of IcTL defines a region [¢/] 4 of the automaton A. The
region [¢] 4 is called the characteristic A-region of ¢, and is defined in three steps.
First, we extend A to an automaton A- with data variables 7 & Z. Second, we
interpret ¢/ over the states of the extended automaton A:. Third, we relate the
states of A to the states of A.

Let Z = (z1,...,2n) be the vector of integrators that occur in the formula v,
and let Uy,...,U, be the corresponding types (as specified by ¢). From the
n-dimensional hybrid automaton A = (Z,V, v, dif, E, act, L, syn) we construct

the (n 4+ m)-dimensional Z-extension of A as the hybrid automaton Az = (¥ &

38

2V, inw, dif', E, act’, L, syn):

e For each integrator z; in 7, and each location v € V, if v € U; then dif'(v) =

dif (v) A Z; = 1; if v € U; then dif'(v) = dif (v) A 2 =0.

e For each integrator z; in Z, and each transition e € E, act’(e) = act(e) A 2} =

.
e

Each data state § € R"™™ of A: consists of an Z-projection 5|z € R™, which is a
data state of A, and a Z-projection §]> € R™, which assigns to each integrator in
7 a real value. Each state ¢ = (v, §) of Az, then, consists of a state o|z = (v, §]z)
of A, and an integrator valuation ¢|> = 5|z In particular, ¥4, = ¥4 x R™,

The projection operation |z is extended to regions and trajectories in the nat-
ural way: the Z-projection of the A:region R is the A-region that contains the
Z-projections of all states in R; the Z-projection of the data trajectory (6, p) of A=
is the data trajectory of A that maps every real t € [0, 6] to the data state p(t)]|z;
the Z-projection of the Axtrajectory 7 is the A-trajectory that results from 7 by
replacing all data trajectories with their Z-projections. Notice that each trajec-
tory 7 of Az is completely determined by the trajectory 7|z of A, and the initial
integrator valuation 7(0,0)|> € R™.

Given a set 7T of A-trajectories, the Z-extension Tz consists of all Ax-trajectories
whose Z-projections are in 7. For a state o of Az, the satisfaction relation o =7 ¢

is defined inductively on the subformulas of
o= o ift o€ [o];
o =1 e it o T g

olET 1V iff 0=7@1oroEr e

39

o =7 p13Upy it for some trajectory 7 € Tz with 7(0,0) = o, there is a
position 7 of 7 such that 7(7) =7 ¢2, and for all positions #’ of 7, if @ < 7

then 7(7') =1 91V 92;

o =1 01VUpy iff for all trajectories 7 € 7z with 7(0,0) = o, there is a position
7 of 7 such that 7(7) 7 @2, and for all positions 7’ of 7, if 7 < 7 then

(7)) =7 @1 V s

o =7 (2:p).¢ iff oz :=0] Er ¢, where o[z := 0] is the state that differs from

o at most in the value of z, which is 0.

The disjunctions in the definitions of the temporal operators 3 and VI account
for the possibility that the second argument @9 may hold throughout a left-open
interval of a trajectory [HNSY94].

We write [¢)]7 for the Azregion of all states o such that ¢ =7 . Since ¢
is closed, if o =7 ¢ and 0|z = 0’|z, then o/ =7 ¥; that is, [V]7 = ([V]7)]z ¥
R™. The characteristic A-region [¢)] 4 is defined to be the Z-projection of the Ax-
div

region [¢][[A]]dm. Recall that [A]*" is the set of divergent trajectories of A. The

state o of the automaton A satisfies the formula ¢ if o € [¢] 4.

2.2.3 Example: Railroad Gate Controller

The hybrid automaton A meets the requirement specified by the A-formula ¢ of
IcTr iff all admissible states of A satisfy ¢; that is, [¥]4 = X 4.

To illustrate the use of ICTL as a specification language, recall the railroad gate
controller from Section 2. The initial condition of the system is given by the state
predicate

oo: = (far,open,idle),

which asserts that the train is far from the gate, which is open, and the controller

40
is idle. We require the following properties of the controller. The safety property
¢9 — VO(x <10 — [([2] = closed)

asserts that whenever a train is within 10 meters of the gate, the gate must be
closed. Since the safety requirement is met by a controller that keeps the gate

closed forever, we add the liveness (response) property
¢p — YOVO(([2] = open)

that the gate will always open again. Indeed, this eventual liveness requirement
may not be satisfactory (imagine you are in a car waiting to cross at a closed gate!),

so we may wish to require instead the stronger time-bounded response property
init — VOVO<33 (([2] = open)

that the gate will always open within 33 seconds.

To demonstrate the use of integrators, we consider the additional requirement
that within any time interval longer than an hour, the gate must be open at least
80% of the time. This duration (utility) property can be expressed in ICTL by the

formula
¢9 — VO(z1: true). (z2: ([2] = open).¥VO(z; > 3600 — 10z9 < 8z21).

Here 21 is a clock that measures the length of a time interval, and 29 is an integrator
that measures the accumulated time that the gate is open during the interval

measured by zj.

Chapter 3

Symbolic Modeling Checking of
Linear Hybrid Systems

You should not put too much trust in any unproved
conjecture, even if it has been propounded by

a great authority, even if 1t has been propounded by
yourself. You should try to prove it or disprove it ...

— George Polya

We present the symbolic model-checking procedure that verifies if a linear hy-
brid automaton satisfies an ICTL formula. The correctness of the symbolic model-

checking procedure is proved.

3.1 Time and Transition Steps

The state of a hybrid automaton A can change to another state by either a time
step that reflects a time delay that changes the value of data variables according
to the rate predicate of the current control location, or a transition step that

reflects a transition of A that changes both the control location and the value

41

42

of data variables according to the action predicate of the automaton transition.
The hybrid automaton A thus also determines an infinite-state transition system
S where the state set of S is ¥ 4 and the transition set of S consists of all the time
steps and transition steps of A.

In this section, we formally defines the time steps and the transition steps and
then we show how to compute the weakest preconditions of reaching a region of A
with respect to a time step or a transition step. The computation of the weakest

preconditions forms the basis of the symbolic model-checking procedure.

3.1.1 Step Relations

We now define the time-step and transition-step relations. Let Q) = U, (v, Q) be

a region of A.

Time step For all states 01 = (vy, §1) and g2 = (v2, §2) of A, 0y A oo ifv=1v =

v9, and there exists an admissible data trajectory (6, p) in v such that

(1) p(0) = 51 and p(6) = Fy;
(2) for all reals t € [0,6], pi(t) € [inv(v)] N Q..

In other words, (’v,é’l)g(v,é'z) iff in location v, starting from the data
state §1, it is possible to reach the data state §5 by letting time pass, with-
out leaving the region). In this case, we call (¢, p) the witness for the
time step (v, §1) A (v, §2). We define o Q*h'n o9 if there is a piecewise-linear
witness for oy 2 o9; and o gl 09, if there is a linear witness for oy g 09.

3,
Clearly, Q’l C glin - 2 For simplicity, we write — for =2 .

Transition step For all states o1 and o9 of A, o &02 if 01,09 € ¥4 N, and

there exists a transition e € E such that o9 € [act(e)](o1).

43

The binary relation g on the states of A is Q-reflexive if (1) o4 gaz implies
01,09 € Y4 NQ, and (2) for all ¢ € ¥4 N Q, we have Uga. The time-step
relation LA is ()-reflexive because of witness trajectories with duration 0, and the
transition-step relation A is (Q-reflexive because of stutter transitions.

We now show that for linear regions () the time-step relation A and the
piecewise-linear time-step relation qu coincide. For this purpose, we need a

lemma and a few definitions.

Lemma 1 Let A be a linear hybrid automaton, let v be a location of A, and let
S be a convex data region contained in [inv(v)]. If there is an admussible data
trajectory (p,6) of A such that p(0) = §; € S and p(6) = §2 € S, then there is a
admissible linear data trajectory (p',8) of A such that p/'(0) = 51, p'(6) = 5, and
P(t) €S foralltel0,d].

Proof. Suppose that p(0) = § and p(6) = §». We define a continuous function

P [0,6] — R™ such that p'(t) = § + ¢ - (‘? —=L). Then p'(0) = &1, p/(6) = 5, and

W) = 2251 for all £ € (0,6).

Suppose that the rate predicate dif (v) has the form A;—; 7. Let r; = (¢ ~
- #) be a conjunct of dif (v), where ~€ {<,<} and ¢- i is the inner product of
a constant vector & and vector i. Since (6, p) is an admissible data trajectory, for

all time instants t € [t;, t;41],

2 dp(@)(t)
e
Integrating both sides of the above inequality from 0 to 6, we get ¢o(6) ~ & (52—351);

that is,
59— 5

S
co~C-

— —

Since dp’(ﬁ)(t) = 229 for all t € (0.6), we know that W € [ri], for all

€ (0,6). Moreover, since r; is an arbitrary conjunct of dif (v), we can conclude

44

that @ € [duf (v)] for all t € (0, 6).

In addition, p is linear. and both of its endpoints, 51 and 5, are in some convex
data region S, so p/(t) € S for all t € [0,6]. This proves our claim that (6, p') is an
admissible linear data trajectory such that p'(0) = p(0), p/(8) = p(6) and p/(t) € S
for all t € [0,6]. m

We now extend the result to non-convex data regions. Let p be a data predicate. A
closed convex covering of p is a set {p1,...,pr} of closed convex data predicates p;
such that [p] C Uj<i<i[pi]. A closed convex covering of p can be easily constructed
from the disjunctive normal form of p. Assume that p = pyV...Vp; is in disjunctive
normal form, with each disjunct p; of the form A;(e; ~ ¢;), where ¢; is a linear
term and c; is an integer constant. We define the data predicate transformer close
such that the data predicate close(p) results from the data predicate p by replacing
each strict inequality e; > ¢; or ¢; < ¢; by the corresponding nonstrict inequality
e; > ¢jor ej < ¢, respectively. Then {close(p;), ..., close(pr)} is a closed convex
covering of p.

If {p1,...,pr} is a closed convex covering of the data predicate p, then the set
C ={p1 Ap,...,pr Ap} of convex data predicates is an exact convex covering of p;

that is, [p] = Ui<i<r[pi Ap]. We call each convex data region [p; Ap] a patch of C'.

Theorem 2 Let A be a linear hybrid automaton, let Q = U,(v,Q,) be a region
of A, let v be a location of A, and let §1 and §5 be two data states of A. If (),
is linear, then (v, §)) A (v, 52) iff (v,51) Q’lm (v,82). If Qy is convex linear, then

(v,51) = (v, 2) off (v, 51) =1 (v, 52).

Proof. It is clear that (v, §}) Q’lin (v, §2) implies (v, §1) A (v,§2). We show that
(’U,é’l)g(v,é'g) implies (v, §1) glm (v,52). We say a data trajectory is trivial if
its duration is 0. If § = §5, then a witness of (1:,5’1)2(0,52) is trivial, and

thus (v, §1) qu (v,52). So assume that §| # §», and therefore, every witness for

(v,351) A (v, §5) is not trivial. Since (), is linear, there is a data predicate p, such
that [p,] = Q.. Let C = {p1,...,pr} be an exact convex covering of p, A inv(v).
We define a finite crossing sequence of a nontrivial data trajectory (4, p) on C' to
be a time sequence (0 = to,t1,t2,...,t,, = 06) with tg < t; < t2 < --- < t,, such
that (1) for each 1 < ¢ < m — 1, p(t;) is in two distinct patches of C', and (2) for
each 0 <7 < m—1, both p(¢;) and p(t;41) are in the same patch of C'. Notice that
although the two endpoints p(t;) and p(t;41) of the data trajectory p[t;, t;y1] are
in the same patch, say [p;], of C, the interior points of p[t;,#;11] may not all be
in [p;]. Since C'is finite, every nontrivial data trajectory (6, p) must have a finite
crossing sequence.

Consider a finite crossing sequence (tg = 0,ty,...,t,, = ¢) of a witness (6, p)
for (1/,5})2 (v,89) on C. For each i € {0,...,m — 1}, p[t;,ti+1] is a data tra-
jectory such that both data state p(t;) and p(t;4+1) are in the convex data re-
gion [p; A inv(v)], where [p;] is a patch of C. By Lemma 1, there is a linear
data trajectory (t;11 — t;, pi) such that p;(0) = p(t;), pi(tix1 — t;) = p(tiy1) and
pi(t) € [pj A tnv(v)] for all t € [0,¢;11 — t;]. So the concatenation of these lin-
ear data trajectories (t1,pg), (t2 —t1,p1)s. -+, (0 —tm—1, pm—1) is a piecewise-linear
witness for (v, §) A (v, §2), and thus (v, §) qu (v, §9).

On the other hand, if @), is convex, then C' = {p, A inv(v)} is an exact
convex covering of p, A inv(v). Then it follows immediately from Lemma 1 that

(v,51) kA (v, §2) if and only if (v, §1) ;Qq (v,52). m

3.1.2 Precondition Operators

Let @ and R be two regions of the hybrid automaton A, and let g be a @-
reflexive binary relation on the states of A. The g -precondition preg(R) of R is
the region of A from which a state in R can be reached in a single g -step; that is,

o € pre (R) if there is a state ¢/ € R such that ¢ % . Since 2 is ()-reflexive,

46

the precondition operator pre_, is monotonic on the subregions of ¥ 4 N (); that is,
for all regions R C ¥4 N, we have R C preg(R) CYXaNnaQ.

We will define the time-precondition operator pre_. and also the transition-
precondition operator pre, ., and show that if both regions () and R are linear,
then so are the preconditions preg(R) and preg(R). This is done by constructing
from the state predicates ¢ and y that define () and R, respectively, two state
predicates pre? (y) and pre? (\) that define pre? (R) and pre@ (R), respectively.
We then define the A-precondition preg(R) to be the union pre? (R) U pre® (R).
If ¢ defines (), and Y defines R, then preg(:R:) is defined by the state predicate

prey(x) = pre?.(x) V prel (v).

In the following, suppose that @ = U, (v, @Q,) and R = U, (v, R,). Let ¢ = U,(v, ¢,)
be a state predicate such that for each location v of A, [¢,] = @Q,, and let y =

U, (v, 1) be a state predicate such that for each location v of A, [r,] = R,.
Time Precondition

We write pre@‘(v; R,) for the data region such that from any state in the region
(v, pre@e(v; R,)) a state in the region (v, R,) can be reached in a single g—step.
We show that the data region pre@r (v: Ry) is linear by constructing from ¢, and
re a data predicate pre? (v;r,) that defines the data region pre@r(v; R,). Then
20 = U (v pre®(v;r,)).
veV

The construction of pre?s(v;r,) proceeds in two steps. First we construct a data
predicate pre'™(v;r,) such that [pre™¢(v;r,)] = prel™ @y R). Then we

true

apply the precondition operator pre”™¢ repeatedly to construct the data predicate

pred(viry).

47

Lemma 2 Let A be a linear hybrid automaton, let v be a location of A, and let r,

be a data predicate of A. Define

pre™(vir,) = inv(v) A (36 > 0. Ad. dz'f(v)[; = (l_] A (ry A ino(v))[T = f—i—é-cﬂ).

—

Then [pret™(v;r,)] = prelimv(@)](y: [ro])-

tr ue

Proof. The quantified formula in pre¢(v;r,) specifies that a data state 7 satis-

fies pre!™¢(v;r,) iff the following four conditions hold:

1. #isin [inv(v)] (the leading conjunct inv(v));

2. there exist a duration 6 and a slope vector d that constitute a linear witness

[[('UJ'/W(@))]]
—)

trajectory (6,p(t) = &+t - I) for a single 1 step (the quantified

variables ¢ and d);

3. the slope vector d satisfies the rate predicate dif (v) of location v (the conjunct

dif (v)[F := d]); and
4. p(8) is [r] N [inv(v)] (the conjuncts (r A ino(v))[Z = &+ 6 - d]).

Since [inv(v)] is convex, by Theorem 2, we know that the time-step relation

[(v,inv(v))] . . [[(’U,’l”IL’U(’U))]]
R is equivalent to —

. Thus Condition 2 only consider linear wit-
nesses. In addition, since the witness is linear, and since both p(0) and p(6) are
in [inv(v)], Condition 1 together with Condition 4 implies that p(t) € [inv(v)] for
all t € [0,6]. Now according to the definition of the time-step relation [[("U’m—vgyv))]]l \

it is clear that [pre!™(v;r,)] = prel(vino(v) (U R,).m

The formula pre!™¢(v;r,) of Lemma 2 contains the vector 6- d of variable products,
which gives rise to nonlinear terms. We therefore replace the vector 6 - d of variable
products by a vector ¢ of new quantified variables. Let ¢ - dif (v) be the rate

predicate that results from multiplying each constant of the rate predicate dif (v)

48

Ty preZ(viry) prellt(viry)

fori=1Ay=2 for 1<z <2A1<y<2

Figure 3.1: The time-precondition operator pre!7

by the variable 6. For example, if r is the rate predicate 21 < 329 +6 A 13 = 1,
then 6 - r is the rate predicate 1 < 329 + 66 A x3 = 6. Then the formula

—

inv(v) A (38> 0.3d. dif (V)[F == d] A (ry A inw(v))[:=F+6-d))
is equivalent to the formula

mo(v) A (36> 0.32.(8 - dif ()& == A (ro A inw(v))[Z:= T+ d).
The next proposition follows.

Proposition 1 Let A be a linear hybrid automaton, let v be a location of A, and

let v, be a data predicate of A. Define
pre™(vir,) = inw(v) A (36 > 0.3 (6-dif (v) [1 = A (ry ANino(v))[T = T+7]).
Then [[pretrue (1’,; r@)]] — pre[[““’ [[Tu]]

The formula pre'™¢(v;r,) is a formula of the first-order theory (R, <, +) of the
reals with addition. Since this theory admits quantifier elimination, the formula
pre!™¢(v;r,) is equivalent to a data predicate. The quantifier-elimination proce-
dure used by an earlier version of HYTECH is discussed later in this chapter.

Example. Let us consider two simple examples of computing the data predicate

true (

pre!™¢(v; r,) using Proposition 1. First, suppose that the linear hybrid automaton

49

A has two data variables, z and y, the invariant wnv(v) = (y > 0), and the
activity dif (v) = (& =1 A y = 2) for the location v. Consider the data predicate
rp, =(1 <2 <2A2<y<3) (see the left of Figure 3.1). Then, according to

Proposition 1,

pre (vir) =

(y>0A(36>0.3cr,c0.c0 =0 Nca=20 AN1<24+c;<2AN2<y+ec<3)).
Eliminating the two existential quantifiers inside out, we obtain

pre™(vir,) = (Y>0A(6>01<ac+6<2A2<y+25<3))
and, finally, the data predicate

pre(uiry) = (1 <2A0<y<3A-2<y—20<1)

(see the center of Figure 3.1). Second, suppose that the activity dif (v) of the
location vis 1 <2 <2 A1 <y <2. Then, according to Proposition 1,

pre™(viry) = (y > 0A
(3620.361,62.5S61 <20N0< <20 N1<ax4c1<2A 2§y+62§3)).
Eliminating the two existential quantifiers, we obtain

pre™(vir,) = (Yy>0A(F6>0.1—2 <26A2—y<26AN6<2—xA6<3—y))

and the equivalent data predicate

pref™(vir,) = (2 <2AN0<y<3A2r—y<2A2y—x<5)

—

(see the right of Figure 3.1). m

50

We show the reduction from the construction of the data predicate pre?: (v, r,) to
a sequence of applications of the precondition operator pre/¢ defined in Proposi-
tion 1. We proceed in three steps. First, let v/ be a new, fictitious location with

the invariant inv(v') = (inv(v) A ¢,) and the activity dif (v). Then
preg” (v;Ry) = preﬂi”“(f”')]] (V'3 Ry).

The invariant inwv(v'), however, may not be convex, in which case we cannot com-

true

pute a data predicate pre™¢(v'; r,) using Proposition 1.

So, second, we split the location v/ into several locations with convex invariants.
Let C' = {p1,...,pr} be an exact convex covering of the data predicate inv(v').
We split " into the set V' = {v],....v}} of new, fictitious locations v} such that
for all 1 < i < k, the invariant v (v}) is p;, and the activity dif (v}) is dif (v). Let

1! \ [inv(v)]/, 3
pre (ViR = |J prel™0Ils).
eV

Then the data predicate pre_ (V';r,) that defines the data region pre_ (V'; R,)
can be constructed using Proposition 1 and disjunction.

A single g—step, however, may proceed from the data region preg”(v; R,) to
the data region R, through more than one of the patches of C'. Since there are
k different patches of C, it will suffice to iterate the precondition pre_ (V'; R,)
k times. So, third, we define a sequence of k data regions, Sy to Si, such that
Sp = Sy and for all 1 < j < k, S; = pre_(V':S;_1). Let sg,...,s; be the
sequence of corresponding data predicates; that is, for all 0 < j < k, [s;] = S;.
The next proposition shows that S; = pre[[ﬁw('”l J (v'; R,). Thus the data predicate

pre?e (vir,) = s;, defines the data region pre@r(v; R,).

Proposition 2 Let A be a hybrid automaton, let v be a location of A, and let g,

and r, be two data predicates of A. Let {p1,...,pr} be an exact convexr covering

Ty

ri P2

S0 51 59

Figure 3.2: The time-precondition operator pre??

of the data predicate inv(v) A q,. Let V' = {v],... v} be a set of locations such
that for all 1 < i <k, inv(v}) = p; and dif (v}) = dif (V). If Sy = [rys] and for all
1<j<k S;=pre_(V';S; 1). then S = preltl(v; [r,]).

Proof. Since dif (v)) = dif (v') and Vo inv(vl) = inv(v'), by definition, S defines
the set of data states that can reach a data statein R, by k& — steps. According to
the definition of pre_ (v'; R,), St C pre_(v'; Ry). On the other hand, since inv(v')
has an exact convex covering {pi,...,pr}, the proof of Theorem 2 implies that
the time-step relation (v',§) — (’11’,57) must have a piecewise-linear witness that
consists of k linear data trajectories. In other words, (v/,§) — (v/, ,57) implies that

for some 0 < j < k, we have (v/,5) —17(v/, s'). Consequently, pre_(v'; Ry) C Si.

Thus pre_ (v'; R,) = Si.. m

Example. Let us consider an example of computing the data predicate pre?:(v;r,)
using Proposition 2. Suppose that the linear hybrid automaton A has two data
variables, x and y, the invariant inv(v) = (0 < 2 <4 A0 < y < 3) and the activity
dif(v) = (& =1 A y =1) for the location v. Consider the data predicates

2= ((0<2<2A0<y<1)V(2<2<4A0<y<3)
and 1, = (3 <2 <4 A 2<y<3). The new location v' has the invariant

mo(v) = (0<2<2A0<y<1)V(2<e<4A0<y<3).

Since inv(v') is not convex, and
{p1,p} = {0<2<2A0<y<1,2<e<4N0<y<3}

is an exact convex covering of inv(v'), we split the location v’ into two locations

V' = {v1,v2} such that inv(v) = p; and inv(va) = pa. Then

50 = Ty = 3<r<4Nn2<y <),

s; = pre_(Vlisg) = 2<2<4AN0<y<3A1<2—y<3),

so = pre_(Vlis;)) = (2<2<4AN0<y<3Al<z—y<3)V
(1< <2A0<y<TIALLS2—y))

Transition Precondition

We write pre® (v; R,) for the region of states from which a state in (v, R,) can
be reached in a single A _step. We show that the region pre® (v; R,) is linear by
constructing from ¢ and r, a state predicate pre?. (v; r,) that defines the region
pre® (v: R,). Then

pre? () = U pred (vir,).
veV

The next proposition constructs pre?_(v; ry) as a formula of the theory (R, <, +),

from which a data predicate can be obtained by quantifier elimination.

Proposition 3 Let A be a linear hybrid automaton with the transition set E, let
v be a location of A, let ¢ = J,(v,q,) be a state predicate of A, and let r, be a
data predicate of A. Define

pre? (vir,) = U @\ gu Ainv(d') A (3,1?’ act(v', v) A (ry A gy Aino(v))[T 1= ;’]))
(v'w)eE

Then ﬂpre,‘i(v; ry)] = pre,[[ﬁf]](v; [ro])-

53

Proof. For each location v/, the quantified formula in pre? (v;r,) specifies that a

state (v/,) satisfies pre? (v;r,) iff the following three conditions hold:
1. the data state @ is in g A inv(v")] (the conjuncts ¢ A inv(v'));

2. there is a state (v, 2') that is reachable from state (', @) by taking a single

— step through transition (¢v/,v) (the conjunct act(v/,v)); and
3. 2 isin [ry A gy A inv(v)] (the conjuncts (r, A g A inv(v))[T = 27]).
According to the definition of the transition-step relation IQ), the proposition
holds. m

Example. We show an example of computing the state predicate pre? (v;r,)
using Proposition 3. Suppose that the linear hybrid automaton A has two data
variables, and y, and only one non-stutter transition, e = (v, v), with the target
location v. Suppose that act(e) = (# <3 A 2/ >5 Ay =x), and that ¢, = ¢, =
inv(v) = inv(v') = true. Consider the data predicate r, = (z > 6 A y < 2). Then,

according to Proposition 3,

pre? (viry) = (U, (3. o <3A T >5A Y =x Al >6 Ay <2)) A
(v, (T Ty =Ny =yAna’>6ANy <2))

(the first conjunct corresponds to the transition e, and the second conjunct corre-
sponds to the stutter transition of v). Eliminating the two existential quantifiers

inside out, we obtain
preﬁ(v;rv) = (W, (T <3N >IN >6AN2<2)A

(0. (B! =2 A 26 A y<2)

and, finally, the state predicate

pre? (viry) = (W, 2 <2)A (v, 2>6Ay<2).m

54
The concluding theorem follows from Propositions 1, 2, and 3.

Theorem 3 Let A be a linear hybrid automaton, and let ¢ and x be two state

predicates of A. Then [[prei(x)]] = pre{[f]] (IxD-

3.2 Symbolic Model Checking

Given a nonzeno linear hybrid automaton A, and a closed A-formula ¢ of IcTL, the
model-checking problem (A,) asks to compute the characteristic A-region [¢7] 4,
by providing a state predicate ¢ that defines the answer [¢] 4; that is, [¢] = [¢] 4.
The state predicate ¢ is called a characteristic predicate of (A,v'). In general, a
characteristic predicate may not exist, and it is undecidable if a given state pred-
icate is a characteristic predicate of (A,v) [ACHH93,KPSY93]. In [HNSY94], a
symbolic model-checking algorithm, SMc, is presented for computing a character-
istic predicate of (A, 1)) in the case of a timed automaton A and a TcTL-formula 1.
We extend the SMc-algorithm and obtain a semi-decision procedure that, provided

it terminates, returns a characteristic predicate of (A,) in the general case.

3.2.1 The SMmc-procedure

The SMmc-procedure approximates a characteristic predicate of (A, ¢’) by a sequence
of state predicates. If the successive-approximation sequence converges in a finite
number of steps, then the SMcC-procedure terminates and returns a characteristic
predicate of (A,). The successive-approximation sequence, however, may diverge,
in which case the SMc-procedure does not terminate.

Let Z be the vector of integrators that occur in the formula 1, together with
a new clock zy, vy, for each subformula p1Vidpy of ¢ (i.e., 2 is different from the
data variables of A and the integrators of v/). The SMc-procedure uses the hybrid

automaton Az, which extends A with the integrators from Z (see Section 2.2.2),

and the precondition operator pre 4. on state predicates, which was introduced

and computed in Section 3.1.2.

Procedure SMmc:

Input: a nonzeno linear hybrid automaton A;
a closed A-formula ¢ of IcTL.
Output: a characteristic predicate || of (A4,).
Recall that ¢4 = U,ey (v, nv(v)). The characteristic predicate || is computed

inductively on the subformulas of 1

9] == & A b

=l = —lel;

lo1 Vol o= 1| V |2l

lp13Upa| == VisgXi, where
X0 = |p2| and

e
Xit1 = Xi V pre‘j{; ()

(i.e., compute the sequence Yo, X1, X2, ... of state predicates until the state

predicate y; & ;41 is valid!);

lp1VUpa| == Vi>q xi. where
\0 = Il and
Xit1 = XV 2o v, (0D 3U((01 VXD V 2pviug, > 1))
|(z: U).¢| = |¢|lz:=0] (i.e., replace all occurrences of z in |p| by 0). m

The Smc-procedure operates on the Z-extended automaton Az, and all interme-

diate results are Z-extended state predicates. First, observe that if the given au-

'As the state predicates are quantifier-free formulas of the theory (R, <,+), validity can be

decided.
2Qr any positive integer. This choice may effect the number of iterations.

56

tomaton A is nonzeno, then so is the Z~extension Az, and that ¢ 4. = ¢ 4. Second,
observe that a characteristic predicate of (Az 1) can always be simplified to a
characteristic predicate of (A,1), because [¢)| does not constrain the integrators

from Z.

3.2.2 Possibility

Let ¢1 and ¢2 be two Z-extended state predicates, and consider the region R =
Ya. N [o1V do] of Az, The Smc-procedure computes the characteristic region

[¢13UUd2] 4. as the least solution X of the equation f(X) = X, where
F(X) = [oo] Uprelyr? (x)

is a monotonic function on the subregions of K. This is justified by the following

proposition.

Proposition 4 Let B be a linear hybrid automaton, and let ¢y and ¢2 be two

state predicates of B. Then [o13Ub2] g is the least solution of the equation X =
H1V

[6o] U prely @1 (x).

Proof. We define the function f: ¥ — Y p such that f(X) = ﬂgbg]]Upr@%lv%]](‘Y).
We first prove that [¢13Ud2] p is a fixpoint of the function f; that is,

[013Ud2] B = f([o13US2] B)

. Since the precondition operator pre%b1 Mol s monotonic on the subregions of
Sp, [613Us]p C prely™V) ([613U62]). Thus [613Ues] s C f([613Ubs] 8).

On the other hand, let ¢ be a state in preﬂl;mv@ﬂ([[qbﬁlblqﬁg]]g). By definition,
there is a state o’ in [¢13U¢2] p such that either (1) o [o1veal o o (2) o [oyveal 1
In either case, by the definition of trajectories of a linear hybrid automaton and

the definition of 13U p9, state o is in [¢1IUG2] p. Thus pre%lv@]l([[qbﬂ[/l@]]g) C

57

[013U2] 5. Moreover, by the definition of ¢13U b2, [d2] C [¢13Ud2] . Therefore,
f(le13Uea]B) C [013US] 5.

Now we show that [¢;3Ud2] p is the least fixpoint of f. Let () be a fixpoint
of f; we claim that [¢13Ud2]p C (. Let o be a state in [¢13U¢d2]p. Then
there is a trajectory 7 € [B]%* and a position (i1,) of 7 such that 7(0,0) = o,
7(i1,0) € [¢2], and for all positions (j,€e) < (i1,06), 7(j,€) € [o1 V ¢2]. Since
[o2] C Q, 7(i1,6) € Q. By the definition of the precondition operator pre%l\/@L
we know that 7(i; — 1,0) € f(Q). Since @ is a fixpoint of f and thus f(Q) = @,
we conclude that 7(i; —1,0) € Q. Similarly, 7(i; — k,0) € Q forall 1 <k <ij. In
particular, ¢ = 7(0,0) € @, which implies that [¢1FUP2]p C Q). m

The SMc-procedure computes the least solution of the equation f(X) = X as the
limit of the successive-approximation sequence (), f(0), f2(0), f3(9), ... of regions,
which, unlike in the case of timed automata, may not converge in any finite number

of steps. The SMc-procedure, therefore, may not terminate.

3.2.3 Inevitability

The computation of the characteristic region for Vi{/-formulas is more involved,
because the time-step and transition-step relations are reflexive [HNSY94]. We
proceed in two steps. First we reduce inevitability VI/ (for nonzeno automata)
to an iteration of time-bounded inevitability. Second, we reduce time-bounded
inevitability (over divergent trajectories) to possibility 31/, which we know how to

compute.

Reduction to Time-bounded Inevitability

Let B be a linear hybrid automaton, and let ¢ be a nonnegative integer. We
define the time-bounded inevitability operator VU<, on regions such that for all

state predicates ¢1 and @9, [01]VU<. [¢2] = [61VU<, 2] p. Given two regions)

58

and R of B, the region QVlU<. R contains all states ¢ such that on all divergent
trajectories of B that start in o, the region () is not left until, within ¢ time units,
a state in R is reached; that is, 0 € QVU<, R if for all divergent trajectories 7 of B
with 7(0,0) = o, there is a position 7 of 7 such that 7(7) € R and t-(7) < ¢, and
for all positions @’ of 7, if 7’ < 7 then 7(7’) € Q U R. Notice that for nonzeno B,
the VU< -operator is monotonic in its second argument on the subregions of ¥ 4;

that is, for all regions (), R C ¥4, we have R C QVU<, R C X 4.

Proposition 5 Let B be a nonzeno linear hybrid automaton, let ¢ and ¢o be two
state predicates of B, and and let ¢ € Nxg be a positive integer constant. Then

[01YUG2] is the least solution of the equation X = [o2] U ([o1V d2] VU<, X).

Proof. We define the function f: ¥ — Tp such that f(X) = [¢2] U ([¢1V
02]VU< . X'). We first show that [¢1VUdo] p is a fixpoint of f; that is, [01VU 2] p =
f([01YUp2] p). Since the precondition operator pre[[g)lva@]] is monotonic on the
subregions of Yp, [01YUGs]p C [b1 V 0] VU< [01YUG2]p Thus [¢1VUG2]p C
f([o1VU o] B).

On the other hand, let o be a state in [¢1 V ¢2]Vl<, [01VU®2] p. By the defini-
tions of f and the Vi<, -operator, for all divergent trajectories 7 of B with 7(0,0) =
o, there is a position 7 of 7 such that 7(7) € [¢1VU@2]p and t-(7) < ¢, and
for all positions 7" of 7, if 7/ < 7 then 7(7') € [¢1 V ¢2] U [01VUP2]p. By
the definition of ¢|VlUps, we know that o € [o1VUp2]p, which implies that
[01V 2] VU< [01VUG2] C [61VU 9] p. Furthermore, by the definition of ¢,V bo,
[02] C [01VUB2] . Therefore, f([o1VUG2]B) C [o1VUG2] B.

Now we show that [¢1 VU po] g is the least fixpoint of f. Let @ be a fixpoint of f;
we claim that [¢;VU¢do]p C Q. Assume that there is a state o9 € [¢1VUP2] 5\ Q;

we will show a contradiction.

59

We construct inductively an infinite sequence of states o; € [¢01VU 2] 5\ @,

for ¢« € N. Suppose that we have had o; and we show how to construct ;1.

Since 0; ¢ (and Q@ = f(Q), we know that o; € f(Q) = [¢1 V ¢2]VlU<. Q. Since
B is nonzeno, there is a trajectory 7; € [B] %" with 7;(0,0) = 0y, and a position ;

of 7; with t,,(m;) = ¢, such that either

1. for some position 7 < m; of 75, Ti(7) &€ [P1 V ¢2] and for all positions 7’ < 7

of 7, (7)) & Q; or
2. for all positions 7 < 7; of 7, Ti(7) € [é1 V 2]\ Q-

But since 0; € [p1VU®2] p and [¢2] C @, Condition 1 cannot happen. Condition 2
together with the assumption o; € [Vl d2] p\Q implies that

3. for all positions 7 < m; of 7;, 7;(7) € [o1 VUG \Q.

So 1i(m;) € [01YU»2]\Q and thus we pick ;41 to be 7;(7;).
Now consider the trajectory 7 that results from concatenating the trajecto-

ries 7;(0,0), m;] for all i > 0:
7 = 70[(0,0). m] — 71[(0,0),m] — 72[(0,0). m] — ---.

The trajectory 7 diverges, because ¢ > 0. Since [B]%" is fusion-closed and
divergence-safe, 7 € [B]%". Furthermore, 7(0,0) = ¢ and, by Condition 3, 7(7) &
() for all positions 7 of 7. Because [¢2] C @, we conclude that o¢ & [¢1VU 2] B,

which is a contradiction. m

Reduction to Possibility

For linear arguments, the formula ¢;Vl<. @2 is definable by the Jl-operator.
Roughly speaking, the condition ¢ must inevitably become true within ¢ time

units iff it is not possible that ¢9 remains false for ¢ time units.

60

Proposition 6 Let B be a linear hybrid automaton, let ¢y and ¢o be two state
predicates of B, let ¢ € N be a nonnegative integer constant, and let z be a new

clock (i.e., z is different from the data variables of B). Then
[01]VU< [92] = [z ((md2)FU(=(P1V ¢2) V 2 > ¢))]B.

Proof. By the definition of the Vi{<.-operator and the semantics of the temporal

operator VU, and the reset quantifier z, it is clear that

[o1]VU<c [02] = [2. (61 A 2 < e)VU(P2 A 2 < ¢))]B.

which over all trajectories of [B]%" is equivalent to

[z. ((01 A 2 <)VW(d2 A =z < ¢))]B,

where the temporal operator VW is defined as follows: o |:|[B]]div 1Y Weo iff for
all trajectories 7 of [B]%* with 7(0,0) = o, either
1. there exists a position 7 of 7 such that 7(7) IZ[[B]]div 92 and for all positions
7 < or(7) [y 91V pai or
2. for all positions 7 of 7, 7(7) }Z[[B]]dw 1.

Second, we claim that for every hybrid automaton B, and all state predicates ¢

and ¢,
[01VWoa]p = [~((=¢2)3U(=d1 A —=2))] B-

The above equality implies that
|IZ. (((51 Nz < C)VW(g/)z Nz < C))]]B = [[—|:. ((—@2 Vz> C)Hl/f(ﬂ(@l Vpo)Vz> C))]]B,

which would prove the proposition, since the right-hand side of the equality is

equal to

[=2. ((m¢2)3U(= (01 V ¢2) V 2 > ¢))]B.

61

Consider a state o € [(m¢2)IU(—p1 A —¢2)]p. Then there exists a trajec-
tory 7 € [B]¥" with 7(0,0) = ¢ and there is a position 7y of 7 such that 7(m) ¢
([o1 V ¢2]) and for all positions 7 < m, 7(7m) € [¢2]. By the definition of the
operator YW, it is clear that o & [¢1YWe¢o] . It remains to be shown that if o ¢
[01YVWao2] g, then o € [(mg2)IU(=p1 N —p2)] 5. Assume that o € [o1VWh2] .
Then we know that ¢ & [¢o]. and there is a trajectory 7 € [B]*" with 7(0,0) = o
such that either

1. for all positions 7 of 7, 7(7) ¢ [#2], and there is a position 7 of 7 such that

r(7) & [o]; or

2. there are some positions 7 of 7 with 7(7) € [¢2], and for each such position 7,

there is a position 7’ < 7 such that 7(7') & [¢1 V ¢2].

Condition 1 implies that ¢ € [(=¢2)3U(—¢1 A —¢2)]p. Now we assume that
Condition 2 holds. Let my be the infimum of all positions 7 with 7(7) € [¢2].
Then we know that for all positions 7 < my of 7, 7(7) & [¢2], and either one
of the following two cases must hold: (a) 7(m) € [¢2] or, (b) 7(m) & [¢2] and
there is a position 7' that is arbitrarily close to position my such that 7/ > mg
and 7(7') € [¢2].

In case (a), Condition 2 implies that there is a position 7’ < 7 such that 7(7') ¢
[o1 vV ¢2]. Moreover, we know that for all positions 7 < my of 7, 7(7) & [o2], so
o € [(=¢2)3U(=d1 A —p2)] .

In case (b), assume that position 7y = (7, 6g) is the last position of trajectory 7
in location v. Then no matter whether state 7(i+1,0) is in [¢2] or not, position (i+
1,0) should have been the infimum of all positions 7 with 7(7) € [¢2], which is a
contradiction. So there must be some position m = (7, 62) in the same location v
such that 62 > 89 and 7(m2) € [¢2]. If there is such a position m such that for all

position m; with 7y < m < w2, m € [¢1 V ¢2], then according to Condition 2,

62

there must be a position 7’ < g such that 7(7') € [¢1 V ¢2]. Thus we can
conclude o € [(—¢2)IU(—d1 A —02)] B.

Now it remains to consider the cases that satisfy the following condition (Con-
dition 3): for each position w2 such that m > mp and 7(m) € [¢2], there exists
a position 71 such that mp > 71 > mp, and 7(71) € [-¢1 A —¢2]. Suppose that
o2 = U, (v, py), and o1 A =02 = U, (v, ¢p). Let (v,6, p) be the trajectory fragment
of the trajectory 7 containing the position 7y in location v.

Since my = (v,8y) is the infimum of all positions 7 with 7(7) € [#2], for each
€ > 0, there is a positive real number ¢ such that 0 < €’ < e and p(&y + €') € [p.]-
Moreover, by Condition 3, we know that there is a positive real number €”’, such
that 0 < €’ < ¢ and p(69 + €’) € [¢,]. In other words, for any ¢ > 0, the open
ball B(p(dp),€) intersects [¢,]. Therefore p(dg) is an accumulation point of [gq,].
By point-set topology, p(ég) is in [close(q,)].

In addition, since p(8gp) is an accumulation point of [¢,], again, by point-
set topology, for any ¢ > 0, the open ball B(p(éy),€) contains infinitely many
points (data states) in [g,]. Note that [close(q,)] is defined by the data predicate
close(qy), which cannot define infinitely many isolated data states (this would re-
quire infinitely many disjuncts). Therefore, there must be a convex data region
S C [close(qy)] such that for some € > 0, p(dg) and p(dg + €) € [¢,] are both in S.
By the proof of Lemma 1, we know that there is also a linear data trajectory (o', €)
such that p'(0) = p(é0). p'(€) = p(6p + €), and p'(t) € [close(gqy)] for all t € [0, €.

Since B is nonzeno and [B] is fusion-closed, the trajectory fragment

7‘[(0,0),71’0] — (U,E’/)/)

can be extended to a divergent B-trajectory that is a witness trajectory for o €

[(=¢2)3U(=d1 A =2)] 5. m

63

The correctness of the SMcC-procedure follows from Propositions 4, 5, and 6 (let B

be Ag).

Theorem 4 If the procedure SMC halts on the input (A,), then || is a charac-

teristic predicate of (A,v); that is, [|¢]] = [¥] 4.

3.3 Implementation of the Symbolic Model
Checking Procedure

The SMc-procedure was first implemented as the first version of HYTECH on Sun
Sparc stations under MATHEMATICA. Throughout the verification process, state
predicates are represented as quantifier-free formulas of the theory (R, <,+) of the

reals with addition, over data variables, integrators, and the program counter (.

3.3.1 Direct Implementation
The implementation performs the following operations on state predicates:

Boolean operations Trivial.

Quantifier elimination The quantifier elimination This is necessary to compute
the time-precondition operation pre_. and the transition-precondition oper-
ation pre,_. on state predicates. The details of the quantifier elimination will

be shown later this section.

Validity checking The validity checking is necessary (1) throughout the Smc-
procedure, to see if a successive-approximation sequence of state predicates
has converged, and (2) after termination of the SMC-procedure, to see if the
input automaton A meets the requirement specified by the input formula .

Let |¢| be a characteristic predicate of (A,). Then A meets ¢ iff the state

predicate || & ¢4 is valid.

64

The state predicate ¢ is valid iff =¢ is unsatisfiable. The implementation
determines the satisfiability of state predicates using linear programming.
First each linear formula is converted into disjunctive normal form. Then for
each disjunct, which is a conjunction, the linear-programming algorithm of
MATHEMATICA decides if that conjunction of linear inequalities has a solu-
tion. This is an exponential decision procedure for deciding the satisfiability

of linear formulas, whose satisfiability problem is NP-complete [HNSY94].

Simplification For quantifier elimination and validity checking, the implemen-
tation converts state predicates into disjunctive normal form, which may
cause an exponential blow-up of the size of the formulas. To alleviate this
problem, we simplify all formulas after each step of the verification process
by applying rewrite rules. We use a polynomial-time set of rewrite rules,
whose iterated application to a linear formula in disjunctive normal form
brings each disjunct into normal form, but may not eliminate redundant or
overlapping disjuncts. It is worth noting that the repeated simplification of
state predicates is, overall, by far the most time-consuming activity of the

implementation.

We now describe the quantifier elimination procedure that we implemented
in the first version of HYTECH. In fact, we first implemented the theoretically
optimal decision procedure of Ferrante and Rackoff [FR75]. We found, however,
that the following “naive” quantifier-elimination procedure performs better for
our purposes, perhaps because we need to deal only with quantified formulas in a
particular form.

We eliminate quantifiers one by one, starting with innermost quantifiers. Con-
sider the formula 36. p, for a linear (quantifier-free) formula p over the set of data

variables and the quantified variable 6. We first convert 3. p into an equivalent

formula of the form \/ 36. p;, where each p; is a convex data predicate over ¥ {6}.
This is always possible, because the existential quantifier distributes over disjunc-
tion. We then convert each linear inequality in p; into the form 0 ~ e, where e is

a linear term, and ~€ {<, <}. So suppose that p; is of the form
O~perder- 0N ANO~p et 0 ANO ~pyg e FCpp1 0N . AD ~py e+ 6,

where ¢1,...,¢, > 0 and ¢pqq,..., ¢ < 0. We now “solve” each conjunct for 6;

€1
o=

that is, we convert each conjunct into the form Z—’ ~j o, forl < j < kiand é ~j =y
J J

J
for k +1 < j/ < m. Then we eliminate § by combining conjuncts. For example,
the conjuncts x + 3 < 6 and 6 < 4y are combined to the new conjunct x 4+ 3 < 4y.

We so obtain the following formula p/:

€ [P
A (=~ L),
1<j<k
E+1<j<m

where ~ ./ is < if ~; or ~

i jris <;and ~; is <, otherwise.

J j
It is not difficult to check that the resulting quantifier-free formula \/ p} equiv-

alent to the original formula 36. p.

Proposition 7 Let p) be the formula obtained from the formula 36. p; by the quan-

tifier elimination procedure. Then pl = 30.p;, for each i.

Proof. According to the quantifier elimination procedure, it is clear that 36. p;
implies p:. Conversely, suppose that p’ is true. It’s sufficient to show that there
exist a witness dg such that and p;[6 := &o] = true.
Suppose that a = mar{Z |1 < j < k} and b = min{il | k+1<j < m}.
Cj C]'I
Then a ~ b is in p}. There exist one or more pairs of indexes j and j' such that

G‘j/

the following conditions hold: j € [1,k], j/ € [k +1,m], a = %, b= =, and the
J]'

66

conjunct i—j ~ it Z—JL: is in pi. We want to choose a particular pair of j and j’ such
that ~; and ~j are as restricted as possible; that is, we prefer < to <. Precisely,
if there is any j such that a = %JL and ~;j=<, we choose this j as jo; if there is no
such j, we choose any j with a = z—j as jo. We choose jj in the same way. From
the quantifier elimination procedure, we can always find a number 6y such that

a ~j, oo ~i b. It is easy to check that 6y satisfies all the required conditions and

pi6 := bp] is true.m

3.3.2 Better Implementation

After reading Halbwachs’s paper [Hal93] about his polyhedral-manipulation li-
brary, we realized that most operations in the symbolic model-checking procedure
can be substituted with more efficient polyhedral-manipulation operations pro-
vided in Halbwachs’s polyhedral-manipulation library. Accordingly, we reimple-
mented HYTECH. The details of the new implementation will be described in

Chapter 4.

3.3.3 Symbolic Model Checking of the Railroad Gate
Controller

We now illustrate the application of the SMcC-procedure to the running example,
the railroad gate controller. We use HYTECH to verify the safety and time-bounded
response properties of the railroad gate controller.

Recall the railroad gate controller from Section 2.1.4, and the initial condition
wnat from Section 2.2.3. The safety requirement of Section 2.2.3 can be rewritten
as

init — —3O(x < 10 A (2] # closed).
To avoid negation, we ask HYTECH to first compute the characteristic predicate

o |3O(x <10 A (]2] # closed)|

67

and then check that the state predicate wnit A ¢ is unsatisfiable. It follows that the
railroad gate controller meets the safety requirement. HYTECH takes 74.3 seconds
of CPU time to verify this task.?> The characteristic predicate ¢ computed by

HYTECH is the state predicate

(] =2A(2]=1A(3]=1A0<zA-1220< -5z~ 13y A —90< —y A 0 <

5]
>
|
ot
IN

2 A -2T0< —a—522)V ({1 =2 A (2] =1 A (B3] =2A90 =y A0<

SAO<aA-B5<—2A-210<—x—522)V (([1] =2 A 2] =1A(3]=3A0<

ANO<a2ANO<yA-5<—2A-50<-bx+13y A 270 < —ax—52z) V ({[1] =

0

RV

AL

A =2A03=1A0<zA 90< yA 1220 < 5z 13y) V (([1] =
QAU =2AL3]=2A0=yA0<z)V (([1]=2A2=2A3]=3A0<
yAO<zA-50<-5x4+13y)V (([1]=2AL2]=3A(3]=1A0<2zA—-1220<
b —18y A -0 < —y A0 <a A-5< —2zA-270< —a—522)V ({[1] =

DAY =3AB]=2AN=yA0<zA0<aA-5<—2zA 270

IN

—x—=522) V (U[1]=2A 2] =3A(3]=3A0<2A0<2A0<yA-5<
A 50< Br 413y A 270 < —z —522) V (1] =3 A (2] = 1 A (3] =
1A -10< 2 A -90< yA -5< 2A0<z)V (([1=3A2=1A (3=
2NN =yA-10< -2 A-5<-2A0<2)V([1]=3AL2=1A([3]=
3A-10< -2 A0<yA—5<—2A0<2) V(L =3A02=2A03]=1A-90<
—yA—10< —2)V (([1] =3 A2 =2A (3] =2A90=y A —10 < —z) V ({[1] =
SAL2=2A03]=3A0<yA—10< —2)V (1] =3A 2] =3A(3]=1A-10<
e A -90< —yA-5<-2A0<z)V(]=3A2=3A3]=2A090=
YA-10< —c A -B5<—2A0<2)V(([I=3A02=3A3=3A-10<
— e ANO<yA-5<—2A0<2) VU1 =2AL2]=1A(3]=1A0<2zA-90<
—y A =270 < —2—522 A =10 < y—202 A 180 < a+2y) V (([1] = 2A([2] = L A L[3] =

IANO<S2A0<a A0 <a4+2y A —2650 < —5x+13y—520z A —90 < —y A =100 <

3 All performance data are measured on a Sun SPARC-670MP server running MATHEMATICA.

68

y—202 A —5< —z A —2390 < —52—13y) V (([1] =2 A (2] =1 A ([3] =2 A 90 =
YAOS2A0< T A—5<—2A—504<—2—522)V (([1] =2 A (2] =2 A ([3] =
1AN180<a42y AN -90<—y)V ({([1]=2A2]=3A{3]=1AN0<2zA-=-90<
Yy A =270 < —x — 522 A =10 < y— 202 A 180 < x +2y) V (1] = 2 A (2] =
SAL3]=3A0<2A0<yA0<aA-180<z—2yA—190 < —y—20z A —1220 <
~52+13y A —3820 < —5r— 13y~ 5202 A —5< —2) V (([1] =2 A ([2] = 3 A ([3] =
ANO=yANO0<zAO0<z A -5<-—2A-504<-—-2—-522)V (([1]=3 AN (2] =
SAUI =4A0=yA-10< -2 A-5<—-2A0<z2) V(1] =2A(2 =
1AL =1A0<2zA-90<—y A —-504<—2—-522A-10<y—20z A 180 <
r42y) V(L1 =2AL2]=3A(3]=3AN0<2AN0<yA180<a+2y A =5<
—2 AN =190<—y—20z A =180<z—2y)V (([1]=2 A (2] =3 A (8]=3A0<
2AN0<2—2y A0 <y A —100 < —y—20z A =504 < —2—52z) V (L[] =2 A (2] =

3AUB=4A0=yA180<a A-B<—2A0Z<z2)

The time-bounded response requirement of Section 2.2.3 is verified by HYTECH

using 215.1 seconds of CPU time.

Chapter 4

HyTech : the Implementation of
the Symbolic Model-checking

Procedure

The advantage of implicit definition over construction
are roughly those of theft over honest toil
— Bertrand Russell

We describe HYTECH, the HYbrid TECHnology Tool, an implementation of
the symbolic model-checking procedure described in Chapter 3. This chapter also
serves as a reference manual for potential users of HYTECH.

HYTECH currently has three generations. The first generation is the complete
implementation of the model-checking procedure introduced in the last chapter.
The first generation was implemented in MATHEMATICA to utilize the language’s
powerful symbolic manipulation and to allow rapid development and experimenta-
tion with algorithms and heuristics. Regions are represented as symbolic formulas.

The evaluation of the successors of time-step or transition-step uses existential

69

70

quantifications, which are easily coded in this language. However, because the
quantifier elimination process takes too much time in MATHEMATICA, we started
to look for other implementation methods.

The second generation of the verifier is the currently stable version and is ftp
available. This version of HYTECH uses a MATHEMATICA main program that
called efficient C++ routines from Halbwachs’ library. Data regions are represented
as sets of convex polyhedral. The quantifier elimination task is replaced by com-
puting the “projection” of a polyhedron with respect to the axis corresponding
to the variable to be eliminated. However, we only implemented the reachabil-
ity analysis portion of the symbolic model checking procedure in this version of
HyTecH. We can apply this version of HYTECH to verify the safety properties,
time-bounded properties and some duration properties of hybrid systems. This
thesis concentrates on this version of HYTECH.

The third generation of HYTECH [HHWT95a, HHWT95b] is also running. The
new generation HYTECH that we introduce here avoids MATHEMATICA altogether
and is built entirely in C++. It is an even more powerful tool for analyzing complex
systems. The third generation of HYTECH is under development, and it is mainly
implemented by Howard Wong-Toi. Thus this dissertation refer to the second gen-
eration of HYTECH only. There is no significant difference between the algorithms

in the second and the third generations.

4.1 Bounded-drift Linear Hybrid Automata

HyTEcH handles the bounded-drift linear hybrid automata, which are linear hybrid

automata A such that

o for each location v of A, dif (v) can be written in the form A, ezl < @7 < uy;

and

r = 550 x = 550
rody add, no_rod adds
—-5<z< -1 1<z<5
xz = 510 x = 510
x > 510
= removey removes

Figure 4.1: The reactor core automaton

e for each transitione € E of A, act(e) can be written in the form p A a, where
p is a data predicate over the data variables 7, and « is a data predicate in

the form A,z 2" = t;, where ¢; is a linear term over the data variables Z.
rex Yy

It is worth noting that, in most literature, the definitions of linear hybrid automata
are as general as, or more restricted than, the definition of bounded-drift linear
hybrid automata here.

If dif(v) = Apjezle < & < ug, the labeling function dif basically assigns
to each control location v € V and each data variable x; € ¥ a rate inter-
val dif (v,x;) = [lp,u,], where [, and u, are integer constants. The rate inter-
val dif (v,x;) = [lp,u,] specifies that the first derivative of the data variable x;
may vary within the interval [I,.,u,] C R while the automaton control resides in
location v.

We call p and a the guard and the assignments of the discrete action act(e) =

p A « of a bounded-drift linear hybrid automaton.

4.1.1 The Input Language

The input language of HYTECH is straight-forward and can be clearly illustrated

by a simple example.

=1
SV

Example: Reactor Temperature Control

We use a variant of the reactor temperature control system from [NOSY93] as a
running example for this chapter. The system consists of a reactor core and two
control rods that control the temperature of the reactor core. The reactor core is
modeled by the linear hybrid automaton in Figure 4.1. The temperature of the
reactor core is represented by the variable x. Initially the core temperature is 510
degrees and both control rods are not in the reactor core. In this case, the core
temperature rises at a rate that varies between 1 and 5 degrees per second. Notice
that x is the first derivative of the variable . The reactor is shut down once the
core temperature increases beyond 550 degrees. In order to prevent a shutdown,
one of two control rods can be put into the reactor core to dampen the reaction. If
control rod 1 is put in, the core temperature falls at a rate that may vary between
—5 and —1 degrees per second. Control rod 2 has a stronger effect; if it is put in,
the core temperature falls at a rate that varies between —9 and —5 degrees per
second. Either control rod is removed once the core temperature falls back to 510

degrees.
Input a Bounded-drift Linear Hybrid Automaton

We now describe the specification of each component of a single bounded-drift
linear hybrid automaton using the HY'TECH input language. The grammar of the

HyTECH input language is in Appendix A.

Data variables The reactor core automaton from Figure 4.1 has the data vari-

able x. We declare the data variable x as follows.
AnaVariables = {x}

If we also had a discrete variable y in this example, then we would write the

following.

{x}
v}

AnaVariables

DisVariables

Location invariants In the reactor core automaton, we have inv(no_rod) = (x <
550), wnv(rody) = (x > 510), and wnv(rodz) = (510 < z). In HYTECH, we

specify these invariants as follows.

inv[1l[core]l==norod] = x<=550

inv[1l[core]l==rodone] = 510<=x

inv[1l[core]==rodtwo] = 510<=x
Continuous activities In the reactor core automaton, dif (no_rod,z) = [1,5],
dif (rody, x) = [=5, —1], and dif (rody, x) = [-9,=5]. In HYTECH, we specify

these rate intervals as follows:

dif[core,norod,x] = {1,5}
dif[core,rodone,x] = {-5,-1}
dif[core,rodtwo,x] = {-9,-5}

Discrete actions In HYTECH, we specify the transitions, synchronization letters,

and guarded commands of the reactor core automaton as follows:

act[core,1]={1[corel==norod && 550==x, addi,
{1[core]l->rodone}}

act[core,2]={1[corel==norod && 550==x, add2,
{1[core]l->rodtwo}}

act[core,3]={1[corel==rodone && 510==x, removel,
{1[core]l->norod}}

act[core,4]={1[corel==rodtwo && 510==x, remove2,

{1[core]l->norod}}

Y1 =w y1 > w

remove; Temoves

Figure 4.2: The control rod automata

Notice that we encode the source and target locations of a transition within

a guarded command.

Input a Set of Bounded-drift Linear Hybrid Automata

When we specify a hybrid system that consists of the parallel composition of
several component hybrid automata, we specify each individual hybrid automaton
in any order and then specify the scope of each synchronization label. For the
reactor example, we use the two linear hybrid automata of Figure 4.2 to model
the two control rods. Due to the mechanics of moving control rods, after a control
rod is removed from the reactor core, it cannot be put back into the core for
w seconds, where w is an unknown parameter. This requirement is enforced by
the integrator y; that measures the time that has elapsed since control rod 1
was removed from the reactor core, and the integrator ys that measures the time
that has elapsed since control rod 2 was removed. The rod automata synchronize
with the core automaton through synchronization letters such as remove;, which
indicates the removal of control rod 1. The entire reactor system, then, is obtained
by constructing the product of the core automaton of Figures 4.1 and the two rod
automata of Figure 4.2.

We now show how the complete reactor temperature control system is specified

in HYyTEcH. First we declare the data variables:

AnaVariables = {x, y1, y2}

=1

Ot

DisVariables = {w}

The data variables z, y1, and y2 are analog variables, and the data variable w is
a discrete variable. We have already defined the reactor core automaton. Now we

define the two control rod automatas:

inv[1l[rod1]==out] = 0<=y1
inv[1l[rod1]l==in] = 0<=y1
inv[1l[rod2]==out] = 0<=y2
inv[1l[rod2]==in] = 0<=y2

dif[rodl,in,y1]={0,0}
dif[rodl,out,y1]l={1,1}
dif[rod2,in,y21={0,0}
dif [rod2,out,y2]={1,1}

act[rod1,1]1={1[rod1]l==out && w<=yl, addl, {l[rod1] -> in}}
act[rod1,2]={1[rod1]==in, removel, {l[rod1] -> out, yi1 -> 0}}
act[rod2,1]={1[rod2]==out && w<=y2, add2, {l[rod2] -> in}}

act[rod2,2]={1[rod2]==in, remove2, {l[rod2] -> out, y2 -> 0}}

The synchronization alphabet of each automaton is defined by declaring a scope for
each synchronization letter. The scope of the letter o is the set of automata that
contain ¢ in their synchronization alphabet. For the reactor temperature control

system, we specify

syn[removel] = {rodi,core}
syn[remove2] = {rod2,core}
synladd1] = {rodi,core}

synladd2] = {rod2,core}

76

For example, the letter remove; is used by the reactor core automaton and by the
first control rod automaton. This means that the core automaton and the rod 1
automaton must synchronize on transitions labeled with remove;.

While we have given symbolic names like core and no_rod to automata and
locations, the analysis procedures of HYTECH require that all automaton names
and location names are integers starting from 1. To replace the symbolic names
with integers, HYTECH calls a macro language preprocessor when it reads an
input file. Therefore, we need to define the integer values of the symbolic names
at the beginning of the input file. The symbolic names that we use for the reactor

temperature control system may be defined as follows:

define(rodi,1)
define(rod2,2)
define(core,3)
define(rodone,1)
define(rodtwo,2)
define(norod, 3)
define(out,1)

define(in,?2)

We also must declare the number of input automata, and the number of locations

and transitions of each automaton:

AutomatalNo = 3
locationo = {2,2,3}

transitiono = {2,2,4}

The expression locationo = {2,2,3} means that the first (control rod 1), second

(control rod 2), and third (reactor core) automaton has 2, 2, and 3 locations, respec-

tively. The expression transitiono = {2,2,4} specifies the number of transitions

in each input automaton.

4.1.2 Global Invariants for Modeling Urgent Transitions

Although the product automaton is constructed automatically by HYTECH, it
is sometimes useful to specify global conjuncts of all invariants of the product
automaton. Such global invariants permit, in particular, the modeling of urgent
transitions, which are transitions that must be taken as soon as possible. In the
graphical representation of hybrid automata, we use boldface synchronization let-
ters to mark urgent transitions. HYTECH allows the user to specify location in-
variants for locations of the product automaton using the command GlobalInvar.
We will show how urgent transitions can be modeled with global invariants as we
analyze the examples of Chapter 7. The reactor temperature control system does

not have any urgent transitions, so we write:
GlobalInvar = {}

This completes the specification of the reactor temperature control system. Except
for initial define statements, all HYTECH input commands can be written in any

order.

4.2 Parametric Reachability Analysis

4.2.1 Reachability Analysis

For a region R, recall that we define preiA (R) to be the set of all states ¢ such
that ¢ can reach some state ¢’ € R by a single time-step or a single transition-
step. Similarly, we now define posti”‘ (R) to be the set of all states o such that
some state ¢’ € R can reach ¢ by a single time-step or a single transition-step. To

simplify the notations, we write pre(R) for prei‘A (R) and post(R) for postiA(R) if

78

no ambiguity would occur. We show in Section 3.1.2 that pre(R) are again regions.
By the similar argument, we can also show that post(R) are again regions. We
write pre*(R) for the infinite union U;>¢ pre’(R), and post*(R) for the infinite
union U;>q post'(R). In other words, pre*(R) is the set of all states that can reach
a state in R by a trajectory of A; and post*(R) is the set of all states that can be
reached from a state in R by a trajectory of A.

The reachability problem (A, ¢, ¢p) for a nonzeno linear hybrid automaton
A, an initial state predicate 7, and a final state predicate ¢, asks if the region
post*([er]) N [er] is empty or, equivalently, if the region [p;] N pre*([er]) is
empty. In other words, the reachability problem (A, g7, ¢r) asks if there is a
trajectory of A from some state in [¢r] to some state in [pr]. If 7] represents
the set of “initial” states of the automaton A, and [¢r] represents the set of
“unsafe” states specified by a safety requirement, then the safety requirement can
be verified by reachability analysis: the automaton satisfies the safety requirement
iff the reachability problem has the answer yes (i.e., post*([er]) N [er] = 0).

Unfortunately, the computation of post*([¢]) or pre*([pr]) may not termi-
nate within a finite number of post or pre operations, because the reachability
problem for linear hybrid automata is undecidable. HYTECH, in other words, of-
fers a semidecision procedure for the reachability analysis. It is our experience,
however, that for practical examples, including the examples in this dissertation,
the computation does terminate and HYTECH solves the corresponding reachabil-
ity problems. Indeed, as for the practitioner there is little difference between a
nonterminating computation and one that runs out of time or space resources, we
submit that decidability questions are mostly of theoretical interest.

For the reactor temperature control system, we wish to check the safety re-
quirement that the reactor never needs to be shut down; more precisely, whenever

the core temperature reaches 550 degrees, then either y; or y» shows more than

79

w seconds, thus allowing the corresponding control rod to be put into the reactor
core. Let A denote the product of the reactor core automaton and the two control
rod automata. We define the reachability problem (A, ¢, ¢r) as follows. The

initial states are characterized by the state predicate o7 =
(([rod1] = out A ([roda] = out A ([core] = no_rod A x =510 A yp =w A y2 = w);

that is, initially no rod is in the reactor core, the initial temperature is 510 degrees,

and y; = y» = w. The unsafe states are characterized by the state predicate ¢ =
(L[rod] = out A ([rody] = out A ([core] = no_rod N x =550 A y; < w A y2 < w);

that is, the unsafe situation is that the core temperature reaches 550 degrees and
neither y; nor y» shows more than w seconds (and, thus, none of the control rods is
available). The answer to the reachability problem (A, ¢, ¢) is yes iff the reactor
temperature control system satisfies the safety requirement.

In HYTECH, the reachability problem is specified as follows:

InitialState = 1l[rodl]==out && l[rod2]==out &&
1[core]l==norod && 510==x && w==yl && w==y2
Bad = 1[rodl]==out && 1l[rod2]==out && l[core]l==norod &&

550==x && yi<=w && y2<=w
Forward versus backward analysis

HYTECH can attack a reachability problem by forward analysis or by backward
analysis. Given the reachability problem (A, ¢, @), the forward analysis com-
putes the state predicate that defines the region post*([¢r]), and then takes the
conjunction with the final state predicate ¢ r; the backward analysis computes the
state predicate that defines the region pre*([pr]), and then takes the conjunction

with the initial state predicate ¢7. Chapter 5 would cover more details about this

80

issue. Only the backward analysis terminates for the reactor temperature control
system.

We ask HYTECH to perform a forward or backward analysis, respectively, by

writing

Go := PrintTime[Iterative[Forward] 1]
or

Go := PrintTime[Iterative[Backward]]

These commands also print the CPU time consumed by the reachability analysis.

4.2.2 Parametric Analysis

The automatic derivation of delay parameters was introduced for real-time systems
in [AHV93] and now we apply the technique to hybrid systems. We can use
HYTECH to synthesize necessary and sufficient conditions on system parameters
such that a hybrid automaton satisfies a requirement.

Recall that the reactor temperature control system contains the parameter w,
which specifies the necessary rest time for a control rod. Clearly, the safety re-
quirement will not be satisfied for large values of w. Indeed, the target region
[or] N pre*(Jer]) gives a sufficient and necessary condition on w such that the
safety requirement is not satisfied. Typically the state predicate that defines the
target region is too complex to see the conditions on the parameters clearly, but

these can be isolated in HYTECH using elimination operators. By writing

EliminateLocList = {rodl,rod2,core}

EliminateVarList = {x,y1,y2}

we eliminate all location information from the state predicate that defines the

target region, and we project out all information about the data variables z, y1, and

81

y2. Then the resulting projection of the target region, as computed by HY'TECH

using backward analysis, is
dw>=184

In other words, the target region is empty if and only if 9w < 184. It follows that
9w < 184 is a necessary and sufficient condition on the parameter w that prevents

the reactor from shutdown. The verification requires 17.27 seconds of CPU time.!

4.2.3 Abstract Interpretation

To expedite the reachability analysis and to force the termination of the anal-
ysis, HYTECH provides several abstract-interpretation operators [CC77,HH95¢],
including the convex-hull operator and the extrapolation operator. Chapter 5
would provide more details about the abstract-interpretation operators.

In HYTECH, we write

TakeConvex = True

or

TakeConvex = False

to turn the convex-hull operator on or off, respectively. The extrapolation operator
can be turned on or off selectively for individual control locations. For example, if
we want to apply the extrapolation operator only to data regions that correspond
to the two locations ([rodi] = out A ([rods] = in A ([core] = no_rod and ([rod,] =
in A l[rods] = out A ([core] = no_rod of the reactor temperature control system,

then we write:

!The performance figure is given for a SPARC 670MP station.

g
>

y1 2w

Y2 2w
addg

AN

[N

hn
o«

y, =0

Temovey removes

Figure 4.3: The augmented control rod automata

WideSet[lc_] =
((1c === 1l[rodi]l==out && 1l[rod2]==in && l[core]l==norod) ||

(lc === 1[rodl]==in && 1l[rod2]==out && l[core]==norod))

The commands

WideSet[1lc_] True
and

WideSet[1lc_]

False

ask HYTECH to apply the extrapolation operator to all or none of the control
locations, respectively. (In our analysis of the reactor temperature control system,

it was not necessary to use any abstract-interpretation operators.)

4.2.4 Checking More Properties by Reachability
Analysis

While the first HYTECH prototype accepts ICTL input, we have not yet completed
the implementation of ICTL model checking for the current version of HYTECH.
Fortunately, besides safety requirements, we can check most time-bounded re-
sponse requirements and duration requirements using reachability analysis by mov-
ing clocks and integrators from the requirement specification to the system model.
Consider, for example, the duration requirement of the reactor temperature con-

trol system that independent of the control strategy that s used for deciding which

83

control rod to put into the reactor core, each control rod 1s used at most one third

of the time:
o1 — (z:true)(zy: [[rod1] = in)(z2: l[rods] = in) VO(3z; < 2 A 329 < z).

To verify this ICTL requirement, we move the clock z and the integrators z; and
z9 to the control rod automata as shown in Figure 4.3. Then we use HYTECH to
check if any state in the unsafe region [3z1 > z V 3z > z] is reachable from an

initial state.

4.3 Geometric Implementation

HYTECH uses a MATHEMATICA main program that calls C++ routines from Halb-
wachs’ polyhedron-manipulation library. The verifier requires conversions between

MATHEMATICA expressions and C++ data structures.

4.3.1 Polyhedron-manipulation Library

We describe in this chapter what operators the polyhedron-manipulation library
provides and how we implement the fixpoint computation procedure using the
provided operators. The readers should refer to [Hal93,HRP94| for more details
about the library.

The most common representation of a convex polyhedron P is a system of
closed linear inequalities P = {& | MZ > ¢}. We shall call this representation
the wnequality representation. To store a convex polyhedron P in the inequality

él. On the other hand, by Minkowski’s

representation, we store the matrix [M
theorem [NW88|, every nonempty convex polyhedron P in R™ has a unique (within

scalar multiplication) representation by its extreme points X = {#; | i € I} and

84

T

Figure 4.4: Two representations of a convex polyhedron
extreme rays R = {7j | j € J} such that
P={ifeR"|7¥= Z)\ifi + Z w7, where \;, u; € R>g and Z Ai =1}
el jet el
We shall call this representation the frame representation. Notice that if the point
¢ and the ray 7 are in P, then so are all points of the form 4+ A7, for A € R>y.
To store a convex polyhedron P in the frame representation, we store the pair of
matrices (X, R) where X' is the matrix consisting of the points as columns and R
is the matrix consisting of the rays as columns.
For example, the polyhedron P in Figure 4.4 can be represented in the inequal-

ity representation as below

e —y > —1 4 -1 -1
X
Y

ry>1 1 1 1

or can be represented in the frame representation as the points

and the rays

3 1

r = vy =

2 4
We need both representations because some polyhedral operations are performed
on the frame representation and some polyhedral operations are performed on the
inequality representation. There exist two efficient translations that translate each
representation to the other and minimize the representations on-the-fly [Che68,
LeV92].

Halbwachs’s library provides the implementation of the two translations and

also the following operators on convex polyhedra.

e Projection operator: given a convex polyhedron P = (X, R) and a ray 7, the
projection operator adds ray 7 to P; that is, the operator returns (X, [R 7]).
The projection operator is used to implement the quantifier elimination and

the time-precondition operator in HYTECH.

e Assignment operator: given a convex polyhedron P = (X = [7}---%,], R)
and a set of assignments 7= ME+E represented by the matrix M, the
assignment operator computes the convex polyhedron P’ that consists of the
states that can be obtained by applying the assignments to all the states in
P. In fact,

P'=([Mi + - -MZ,+d,MR).

The assignment operator is used to implement transition-precondition oper-

ator in HYTECH.

e Intersection operator: given a convex polyhedron P = [M|c] and a convex

polyhedron) = [N (i] , the intersection operator computes the convex poly-

86

hedron P N by computing

M| ¢

PnQ = .
N | d

HYTECH uses the intersection operator to compute the conjunction of two

data predicates.

e Emptyness test operator: given a convex polyhedron PP = (X,), the empty-
ness test operator checks if P is empty using the fact that P is empty if and
only if X is empty. HYTECH uses the emptyness test operator for validity

tests.

e Inclusion test operator: given a convex polyhedron PP = (X, R) and a convex
polyhedron @ = [M
fact that P C @ if and only if (1) for all ¥ € X, MZ > ¢ and (2) for all

c], the inclusion test operator tests if P C () using the

7€ R, M7 > 0. HYTECH uses the inclusion test operator to check if the

fixpoint computation converges.

e Convex-hull operator: given a convex polyhedron P = (X, R) and a convex
polyhedron @) = (Y, S), the convex-hull operator computes the convex hull of
P and @), denoted by PU(Q). The convex hull PU() in its frame representation
is simply (X UY, RU S). The convex-hull operator is used by HYTECH as

an abstract operator, which will be discussed in Chapter 5.

4.3.2 Implementation using the
Polyhedron-manipulation Library

We now outline how our tool utilizes the efficient convex polyhedron operators
supplied by Halbawachs’s polyhedron-manipulation library. Symbolic analysis of

a linear hybrid automaton requires boolean operations on the data predicates and

87

\L (07 _1)

Figure 4.5: Quantifier elimination: eliminating variable y

the iterated computation of the pre and post operators. To compute the pre and
post operators, we need to know how to compute the time-precondition opera-
tor, time-postcondition operator, transition-precondition operator and transition-

postcondition operator. We describe the computation for these operators below.

Quantifier elimination The elimination of an existential quantified data vari-
able z; from a formula dz;.p is achieved by adding the ray whose i-th com-
ponent is 1 and whose other components are all), and also the ray whose
i-th component is -1 and whose other components are all 0, to the frame
representation of the data region R = [p]. We use an example to illustrate
this algorithm. Suppose that we want to eliminate the variable y from the
quantified formula be dJy. —1 <rx -y <1 A1 < x4y < 2. It is easy to
verify that the result is the data predicate 0 < z < % using the quantifier-
elimination procedure that we introduced in Chapter 3. The data region
R=[-1<2-y<1A1<z+y<2]is depicted on the left of Figure 4.5.
After adding the rays (0,1) and (0,—1) to the frame representation of the
data region R, we get the (shaded) data region [0 < x < %]] on the right of

88

Figure 4.6: Time step
Figure 4.5, which exactly represents the quantifier-eliminated data predicate.

Time step The time-postcondition operator post[[i)”“(”‘)]](v; R) returns the data re-
gion that consists of all the states that can be reached by a state in the data
region R with respect to a time step. Notice that the time-postcondition op-
erator is defined analogously to the definition of the time-precondition opera-
tor in Section 3.1.2. From now on we write post_.(v; R) for postlmo ()l (4 R)
for simplicity. The time-postcondition operator is used for computing the
operator post. The time-postcondition operator post_ (v; R) is computed by
adding rays that delineate the “shadow” created by the continuous evolution
of the data variables to the frame representation of the data region R. In
general, if a bounded-drift linear hybrid automaton A has n data variables
(1,...,2,), we require the addition of 2" — 2 rays, where the i-th coordi-
nate of each ray is either the upper or lower bound of the rate interval for
the variable ;. The ray whose all coordinates are lower bounds and the ray
whose all coordinates are upper bounds, are captured by linear combinations
of the other rays and thus need not to be added. The polyhedron obtained

by adding the 2" — 2 rays is then intersected with the polyhedron that defines

89

Figure 4.7: Reverse time step

the location invariant.

For example, suppose hybrid automaton A has two variables x| and 9,
where 21 has the rate interval [1,3] and 2 has the rate interval [2,4] in a
location v with location invariant true. Let the data region be R = —1 <
t—y<1A1<az+y<2(shown on the left in Figure 4.6). The time-
postcondition of R, post_ (v; R), is shown on the right in Figure 4.6. It is
computed by adding two rays (1,4) and (3, 2) to the frame representation of
the data region R.

The time precondition operator pre_ (v; R) can be computed by quantifier
elimination shown in Section 3.1.2. But we can compute it more efficiently
using the same method that we compute post_ (v; R) except that we add
rays of opposite directions to the data region F. For example, the time

precondition pre_ (v; R) of the data region R from the previous example is

90

shown in Figure 4.7, which is obtained by adding the rays (—1,—4) and
(=3, -2) to the data region R.

Transition step The transition postcondition operator is defined analogously
to the definition of the transition precondition operator in Section 3.1.2.
So the transition postcondition of a convex region R of an automaton A,
post=A (v R), is the region that consists of all the states that can be reached
by a state in the region R with respect to a transition step. We shall write
post,_(v; R) for postA(v; R). The transition postcondition operator can be
computed directly using the intersection operator and the assignment op-
erator provided by the polyhedron-manipulation library as follows. For a
specific automaton transition e with the action predicate p A «a, where p is
the guard and « is the set of assignments of the transition, we first compute
the data region P = R N [p] using the intersection operator. Then we use
the assignment operator in the library to compute the region that consists
of all the states that can be reached by a state in the region (v, P) via the

assignments a.

We follow the method introduced in Section 3.1.2 to compute the transition
precondition pre, (v; R) using quantifier elimination and the intersection op-

erator.

4.4 More Examples Verified by HYyTEcH

We introduce more verification examples using HYTECH in this section to show
the applicability of HYTECH and to provide the readers more opportunities to

practice the usage of the model and the tool.

91

4.4.1 Timing-based Mutual Exclusion

Consider the mutual-exclusion problem for an asynchronous distributed system
with local clocks. The system consists of two processes, P; and P», with atomic
read and write operations on a shared memory. Each process has a critical section,
and at every time instant at most one of the two processes is allowed to be in
its critical section. Mutual exclusion can be ensured by a version of Fischer’s
protocol [Lam87], which we first describe in pseudocode. Each process P;, for

t = 1,2, executes the protocol in Table 4.1.

Table 4.1: The timing-based mutual exclusion protocol

repeat
repeat

await £ =0

k=1
delay b
until & =

Critical section
k=0

forever

The two processes P; and P, share the variable k, and process P; is allowed
into its critical section iff £ = ¢. Each process has a private clock. The instruction
delay b delays a process for at least b time units as measured by its local clock.
Furthermore, each process takes at most a time units, as measured by its local

clock, for a single write access to the shared memory (i.e., for the assignment k :=

i).

e>bAk#1L

Figure 4.8: Timing-based mutual-exclusion protocol

To make matters more interesting, we assume that the two local clocks of the

processes P| and P, are inaccurate and proceed at different rates. Indeed, the clock

rates may vary within certain bounds: the local clock of P is slow—its rate varies
between 4/5 and 1—and the local clock of P, is fast—its rate varies between 1
and 11/10. The resulting system can be modeled by the product of the two hybrid
automata shown in Figure 4.8. Each of the two automata models one process, with
the two critical sections being represented by the locations 4 and D, respectively.
The parameters a and b are shared data variables with unknown, constant values
(i.e., their rate of change is 0 in all locations, and they are not altered by any
transitions).

The initial condition ¢ of the system is given by the state predicate
(= (1,A) AN k=0.
The final condition is the state predicate

(= (4,D).

93

The target region [p;[Npre*([¢r]) computed by HYTECH in 50.1 seconds of CPU

time, is the represented by the state predicate

(=(1,A)Ak=0A (a>bV 1la > 8b).

Therefore, the protocol guarantees mutual exclusion iff the delay parameters a and
b are chosen such that 8) > 11a.

A further advantage of the symbolic approach to system analysis is its insen-
sitivity to the magnitude of constants in the system description. To demonstrate
this, we performed the following experiment. We verified the mutual-exclusion
property for hybrid automata that are identical to those shown in Figure 4.8, ex-
cept that the parameters a and b are instantiated, first with @ = 2 and b = 4, then
with a = 2-10% and b = 4-10%, and finally with « = 2-10% and b = 4-10°. We found
that, for this example, the verification time taken by HYTECH is independent of

the magnitude of the parameter values. The results are shown in Table 4.2.

Table 4.2: Coefficient size versus performance

Magnitude of the coefficients | CPU time (in seconds)
100 6.11
103 6.55
10° 6.36

4.4.2 Leaking Gas Burner

In [CHRY1], the duration calculus is used to prove that a gas burner does not leak
excessively. It is known that (1) any leakage can be detected and stopped within

1 second and (2) the gas burner will not leak for 30 seconds after a leakage has

leak
r<1Ay>0
=1
g=1

z=1

30<x Az’ =0

Figure 4.9: The Gas Burner Automaton

been stopped. We wish to prove that the accumulated time of leakage is less than
one twentieth of the time in any interval of at least 60 seconds.

The system is modeled by the hybrid automaton in Figure 4.9. The automaton
has two locations: in location leak, the gas burner leaks; fized is the nonleaking
location. The integrator z records the cumulative leakage time; that is, the accu-
mulated amount of time that the system has spent in location leak. The clock x
records the time the system has spent in the current location; it is used to model
the facts (1) and (2). The clock y records the total elapsed time. Initially the gas
burner is leaking and all the variables are zero. In 6.5 seconds, HYTECH shows

that the final region y > 60 A 20z > y would not be reached from the initial state.

4.4.3 Two Different Schedulers

Data variables that range over a finite domain of values can be encoded within the
control of a hybrid automaton. Our experience has been that HYTECH performs
better if all finite-state variables are encoded in the control. We illustrate this
observation with two examples taken from scheduling—a priority scheduler and a
round-robin scheduler. Schedulers are examples of hybrid systems with integrators,

which measure the accumulated amount of execution time for each task.

k1 >2 Ay =4A
ki =ki—1Ay =0

ko >2 N ys =8A
ky =ks =1 Ay,=0

inty
ko =1 ANki1 21 Ay =8A

. ky,=0Ay, =0
intq - -

Figure 4.10: The priority scheduler. data version

Priority Scheduler

The two small hybrid automata on the left of Figure 4.10 model an environment
that generates two types of interrupts: an interrupt of type int; arrives at most
once every 10 sec; an interrupt of type ints, at most once every 20 sec. For
every int; interrupt, a task of type ¢ needs to be executed: each type-1 task
requires 4 sec; each type-2 task, 8 sec. Moreover, only one processor is available
for the execution of all tasks, and type-2 tasks have priority over type-1 tasks and
interrupt their execution. The resulting priority scheduler is modeled by the hybrid
automaton on the right of Figure 4.10. In location Taski, a type-1 task is being
executed; in location Tasks, a type-2 task. The variable k; represents the number
of incomplete (i.e., running and pending) tasks of type i; the variable y; represents
the execution time of the current task of type 7. The three automata synchronize on
the synchronization labels int; and inty; that is, whenever an int; interrupt arrives,

the scheduler takes a transition that is labeled with int;. The entire scheduling

96

Figure 4.11: The priority scheduler, control version

system, then, is the product of the three component automata. Using HYTECH,
we verified that in any trajectory starting from the region (Idle,ky = ko = 0) the
number of incomplete type-1 tasks never exceeds 2 and the number of incomplete
type-2 tasks never exceeds 1; that is, no state that satisfies k1 > 3 V ko > 2 is
reachable. The HYTECH input file for this example is in Appendix B.

Since the variables k; and k9 range over finite domains, they can be encoded
in the control of the scheduler. The control version of the priority scheduler (Fig-
ure 4.11), then, contains a location (kq, ko) for all possible values of the variables ky
(namely, 0, 1, and 2) and k3 (0 and 1). The location Overflow represents any state
with k1 > 3 or ko > 2. We checked that the region Overflow cannot be reached
from the region Idle. We also increased the number of interrupt and task types
and the results of these experiments, which were performed on a Sparc 670MP

station, are shown in Table 4.3. Clearly, our verifier handles finite-state control

97

Ayh=0

y1 =4 AN ks =0 A kg >2A

yo =8 AN ky =0 A ky >2A
K=k 1Ayl =0

k’zzkg—lAyQ:O

"2 ° z2=3Aki=0Az2 =0

Figure 4.12: The round-robin scheduler

more efficiently than real-valued data.

Table 4.3: Performance data (CPU time)

Priority scheduler, 2 tasks, data version 47 sec
Priority scheduler, 2 tasks, control version 20 sec
Priority scheduler, 3 tasks, data version 89 sec
Priority scheduler, 3 tasks, control version 32 sec
Round-robin scheduler, 2 tasks, data version 171 sec
Round-robin scheduler, 2 tasks, control version | 38 sec

Round-robin Scheduler

98

Figure 4.12 shows a round-robin scheduler. The two task types are assigned alter-
nating time slices of 2 sec, as measured by the clock z. If all tasks of one type are
completed, the scheduler starts a new time slice for the tasks of the other type.
Again we check that the number of incomplete type-1 tasks is bounded by 2 and
the number of incomplete type-2 tasks is bounded by 1, which allows us to encode
the variables k1 and k9 in the control of the scheduler. The verification results are

also shown in Table 4.3.

Chapter 5

Efficient Symbolic Model
Checking

“A Physicist believes”, sard the mathematician, “that G0 is divisible by all
numbers. He observes that 60 is dinsible by 1, 2, 3, 4, 5, and 6. He examines a
few more cases, as 10, 20, and 30, taken at random as he says. Since 60 s
divisible also by these, he considers the experimental evidence sufficient.”

“Yes, but look at the engineer”, said the physicist. “An engineer suspected that
all odd numbers are prime numbers. At any rate 1 can be considered as a prime
number, he arqued. Then there comes 3, 5 and 7, all indubitably primes. Then
there comes 9; and awkward case, 1t does not seem to be a prime number, yet 11
and 13 are certainly primes. “Comaing back to 97, he sard, “I conclude that 9

must be an experimental error”.” — George Polya

In this chapter we discuss several model-checking strategies and approximation
methods that are designed to improve the performance of HYTECH. We (1) simul-
taneously compute the target region from different directions, (2) conservatively

approximate the target region by dropping constraints, and (3) iteratively refine

99

100

the approximation until sufficient precision is obtained. We consider the standard
abstract convex-hull operator and a novel abstract extrapolation operator.

The main theoretical limitation of the SMcC-procedure for the hybrid systems is
that termination (i.e., finite approximability) is not guaranteed (problem A); the
main practical limitation of the implementation is its cost, which is largely due to
two factors. First, continuous activities correspond to quantifier-elimination steps
on real-valued linear expressions (problem B); second, if expressions are trans-
formed into disjunctive normal form for further manipulation, then the number of
disjunctions grows rapidly (problem C).

Having identified the three problems, we improved the performance of HY'TECH
by adding various abstract interpretation strategies, both exact and conservative,
to guide the fixpoint computation of the target region. To address problem A,
we approach the target region simultaneously from several directions, so that suc-
cess is guaranteed even if only one direction terminates (Section 5.2). To address
problem B, we represent regions as unions of convex polyhedra, so that quantifier
elimination is replaced by operations on polyhedra. To address problem C, we
conservatively approximate the union of several convex polyhedra by a single con-
vex polyhedron. We discuss two abstract operators—convex-hull approximation
and extrapolation (Section 5.3). Each approximation can be iteratively refined to
achieve the desired precision (Section 5.4).

We wish to point out that the abstract operators and the iterative approx-
imation process are well-known abstract interpretation techniques [CCT77,Cou8l]
applied to a new domain—that of linear hybrid automata. The convex-hull op-
erator [CH78] and the widening operator [CCTT7], which is similar to our extrap-
olation operator, are dynamic abstract operators used for convergence accelera-
tion [CC92]. Also the idea of two-way iteratively refining approximations is due to

Patrick and Radhia Cousot [CC92|, and it has been used for the analysis of real-

101

Figure 5.1: The water-tank automaton

time systems [DW93]. We acknowledge the work of Nicolas Halbwachs, who has
applied the convex-hull and widening operations to the analysis of synchronous
programs [Hal93] and linear hybrid automata [HRP94]; also, the current imple-
mentation of HY TECH makes use of Halbwachs’ polyhedron manipulation library.
We suggest a new extrapolation operator instead of Halbwachs’ widening opera-
tor, which is sometimes too coarse for our purposes (on the other hand, widening,
unlike extrapolation, guarantees the convergence of iterative application). We feel
that the convex-hull and extrapolation operators are particularly suited for the
analysis of the continuous and linear state spaces, because a polyhedron more
naturally represents all of its interior points rather than just the grid of interior
integer points, and because the linear regions are closed under both approximation

operations.

5.1 Example: Water Tank

The hybrid automaton of Figure 5.1 models a water-level controller that opens
and shuts the outflow of a water tank. The automaton has two data variables,
x and y, and two locations, shut and open. The variable x represents a clock of
the water-level controller and the variable y represents the water level in the tank.

Since the clock x measures time, the first derivative of z is always 1 (i.e., # = 1). In

102

shut fopen Shut Eop), shut bpe

3 6 9 R>o

Figure 5.2: The change of the water level y of the water-tank automaton

location shut, the outflow of the water tank is shut and the water level increases 1
inch per second (y = 1); in location open, the outflow of the water tank is open and
the water level decreases 2 inches per second (y = —2). The transition from open
to shut (shut the outflow) is taken as soon as the water tank becomes empty: the
guard y = 0 on the transition ensures that the transition may be taken only when
the water level is 0; the constraint y > 0 on open ensures that the transition to
shut must be taken before the water level becomes negative. The transition from
shut to open (open the outflow) is taken every 3 seconds: the transition is taken
whenever ¥ = 3, and the transition restarts the clock x at 0. If the automaton
is started from the state (shut,z = y = 0), then Figure 5.2 shows how the water

level y changes as a piecewise-linear function of time.

5.2 Forward versus Backward Reachability
Analysis

Recall that there are two possible approaches for solving the reachability problem
by symbolic model checking: we may compute the region (represented by a data
predicate in HYTECH) post*(S) of states that can be reached from the initial
region S and check if post*(S)NT = () (forward reachability analysis), or we may

compute the region pre*(T) of states from which the final region T' can be reached

3T Yy So 3 ZL)

Sy

4 N 1
Se
Sy

T T To=T, =T, =

(a) (b) T
w w w w T T

3 3

Figure 5.3: Exact forward and backward analysis

and check if pre*(T) NS = () (backward reachability analysis). For any given
reachability problem, one approach may perform better than the other approach;
indeed, it may be that one approach terminates and the other does not.

Recall, for example, the water-tank automaton of Figure 5.1. We wish to check
if the final region T' = (shut,1 < # < 3 A © = y + 1) can be reached from
the initial region S = (shut,z = y A @ < 3). The procedure computes the two
regions post™(S) and pre*(T) iteratively as the limits of two infinite sequences of
regions. Let S;j+1 = post(S;) be the region of states that can be reached from S
by i 4+ 1 single steps, and let T;41 = pre(1;) be the region of states that can reach
T by i + 1 single steps. Then post*(S) is the limit U;>(S; of the infinite region
sequence Up<i<, Sy, for n > 0, and pre*(T') is the limit U;>oT; of the infinite
region sequence Up<;<, I}, n > 0. It is clear that if post"*l(S) C Up<i<n posti(S),
then post*(S) = Up<i<n post’.(’S), and an analogous termination condition holds
for the computation of pre*(T). HYTECH can check if T' is reachable from S on
the fly; that is, if post™(S)NT # () or pre"(T) N S # (), then T' is reachable from
S and the limit computation is aborted. Since for each ¢ > 0,

) (_1 +1 ;

&

104

(Figure 5.3(a)) and

—1)¢
: 92-') Ay >0),

S2i41 = (open,2x +y =2+

the forward computation of post*(S) does not terminate within any finite number
of iterations. The backward computation, however, converges in a single iteration
with the result

To=Ty = (shut,1 < <3 ANx=y+1)

(Figure 5.3(b)) and
T, =T = (open,x + 2y = 2).

It follows that
pre*(T) = (shut,1 <x <3 ANx=y+1) U (open,z + 2y = 2).

Since S N pre*(T) = (), we conclude that the final region T is not reachable
from the initial region S. For optimal performance, we can also implement a
strategy that dovetails both approaches by computing the alternating sequence

So, 1o, S1,T1,53, ... of regions.

5.3 Convergence Acceleration through
Abstract Operators

Sometimes the exact computation of a region is prohibitively expensive or does not
terminate, independent of the verification strategy (forward v.s. backward). In such
cases, we approximate the target region and iteratively refine the approximation
until sufficient precision is obtained.

We discuss two convergence acceleration operators, convex hull and extrapo-
lation, which can be turned on or off by the user of HYTECH. Both operators

overapproximate a union of convex polyhedra by a single convex polyhedron and

105

3~Ary

Figure 5.4: Application of the naive and the refined convex-hull operators

thus reduce the time and space requirements of the verifier; indeed, either operator,
or the combination of both operators, may cause the termination of an otherwise
infinite computation. If we overapproximate, by 3, the target region post™(S) of
states that are reachable from the initial region S (i.e., post*(S) C S), and S con-
tains no final state from 7', then we can conclude that 7" is not reachable from S;
if, on the other hand, S does contain a final state, then we cannot reach a valid
conclusion and must refine the approximation.

An abstract operator + is a binary operator on data regions such that for two
data regions S and S’, the result S+.5’ is a convex data region with SUS’ C S+.5".
For the abstract operator 4, the approximated postcondition of the region S is the
region post, (S) = U,(v,S, + post(S),). Then Up<i<, post'(S) = postly(S) C
post’t (S), and we can overapproximate the target region post*(S) by the limit
S = Ui>0 posti_('S‘). While we concentrate on the approximate forward analysis in
this chapter, analogous observations hold for the approximate backward analysis

using pre.

5.3.1 Convex Hull

An obviously abstract operator is the convex-hull operator U [Hal93,HRP94|, which

maps two data regions S and S’ to the convex hull of the union S U S’. Recall

106

once again the water-tank automaton of Figure 5.1. Now we wish to check if the
final state T/ = (shut,r = % A y = 0) can be reached from the initial region S =
(shut,x = y A x < 3). Again, the forward computation of the region post*(S)

does not terminate. This time, however, we can make the forward approach work

with the help of the convex-hull operator. Let S; = postL(S). Then Sy = S,

S1 = (shut,x —y=0A2<3)U(open,y+2x=3 A y>0),
Sy = ('.shut,(;r—y:()/\1:§3)Ll(1:—y=%/\JJSZ’)))
U (open,y +2xr =3 Ay > 0)
= (shut,0<x—y<3 Ax<3) (Figure 54(a))
U (open,y +2x =3 Ay > 0),
Sy = ('shut,OS,r—yS%/\I§3)U(0pen,%§y+2x§3/\yZO‘),

S, = 9.

The forward computation terminates with the overapproximation S3 of the
target region. Since Sz contains T”, however, we cannot conclude that 77 is or is
not reachable from S. Thus we refine our approximation strategy, and apply the
convex-hull operator only if the resulting region does not contain any final states.
This refinement is sensible for all abstract operators. Formally, we overapproximate

the target region post*(S) by the limit S = Ui>o S;, where

. p03t+(‘§7-) if p05t+(si) NT =10,
Sit1 =

post(S;) otherwise.

For the water-tank example, we obtain Sy = S,

S = (shut,x —y=0A 2 <3)U(open,2x+y=3 Ay >0),

Sy = (shut,x —y=3 A x <3)U(open,2c+y=3 Ay >0),

107

~ Por
4 z>1AZ=0 B
0<z<2Az>0 0<z<2Az22>0
i=1 i=1
l<y=s2 —2<y<-1
1<#<2 SS1A =0 l<z<2

Figure 5.5: The robot automaton

Sy = (shut,x—y:%/\ajg?)‘)
U (open, (20 +y=3 Ay>0)U(2e+y=3 Ay>0))
= (shut,x—yz%/\;1?§3,)U(0pen,%§2x+y§3/\yZO),
Sy = (shut,(m—y:%A1:§3)U(%§J?—y§%/\x§3))

U ('open,% <2e4+y<3Ay>0)
= (shut,% <r—y< % A x<3) (Figure 5.4(b))
U (open,3 <22 +y <3 Ay>0),
S5 = Si.
The forward computation terminates with the overapproximation Uogigg,- of
the target region. Since Uogiggi does not contain 7", we conclude that the final

state T” is not reachable from the initial region S.

5.3.2 Extrapolation

Convex-hull approximation is typically useful for systems with variables whose val-
ues are bounded, such as the water-tank automaton. By contrast, if the regions in
the sequence Up<;<, Si, n > 0, grow without bound, we may want an extrapola-
tion operator that “guesses” an overapproximation of the limit U;>¢.S;. Consider,

for example, the hybrid automaton of Figure 5.5, which models the movement of a

108

Figure 5.6: A trajectory of the robot automaton

robot in the (z,y)-plane. The robot can be in one of two modes—heading roughly
northeast (location A) or heading roughly southeast (location B): in mode A,
the derivatives of the coordinates » and y vary within the closed interval [1,2]; in
mode B, the derivative of & remains between 1 and 2, while the derivative of y
changes its sign and varies between —1 and —2. The robot changes its mode every
1 to 2 minutes, according to its clock z. Moreover, there is a wall at the x = 0
line, causing the system invariant x > (0. Figure 5.6 shows how the position of the
robot in the (z,y)-plane may change with time, assuming the robot is started in
the initial state S = (shut,x =y = 2 = 0).

We wish to check if the robot can reach, from S, the final position T = (z =
9 A y =12). At this point, we invite the ambitious reader to prove that T cannot
be reached from S. Using HYTECH, the backward computation of the region
pre*(T) terminates within 74 seconds of CPU time! after seven iterations of pre,
and SNpre*(T) = (). The forward computation of the region post*(.S), by contrast,
does not terminate, because the robot keeps zig-zagging to the east and the limit
Ui>0 posti(S) cannot be computed exactly.? As convex-hull approximation does

not help with this example, we define an extrapolation operator that approximates

LAl performance figures are given for a SPARC 670MP station.

2True, if the target region T is reachable, then it can be reached within a finite number of
discrete transitions, and if not, then the invariant @ > 9 becomes true after a finite number of
transitions; extrapolation, however, avoids the ad-hoc “guessing” of suitable invariants.

109

the unbounded target region post*(S); using HYTECH, the forward computation
with extrapolation, then, terminates within 8 seconds of CPU time.

We first give an intuitive motivation for the extrapolation operator. Suppose
that the iterative computation of the target region leads, for a given control state,
to the data region (polyhedron) S and, in the subsequent iteration, to the poly-
hedron S’. Suppose, furthermore, that there is a function f such that f maps
S to S, mapping extreme points to extreme points. A reasonable guess for the
target region, then, would be f>(S5).

The nonempty convex polyhedron S has dimension k, denoted dim(S) = k,
if there are k + 1 points (states) x1,x2,...,2141 S such that the k differences
Ty —T1,x3—21,...,21 — 21 are linearly independent. Notice that if dim(S) =0,
then S is a point, and if dim(S) = 1, then S is a straight line, a ray, or a line
segment. The set F' = {& € S | ax = b}, for two vectors a and b, is a face of S
if every point x in S satisfies the inequality az < b. Notice that every face of S
is also a convex polyhedron. The face F is a facet of S if dim(F) = dim(S) — 1.
The set F is a 1-dimensional face of S iff F' is the intersection of dim(S) —1 facets
of S (Criterion (1)).

Now consider two polyhedra S and S’. We first compute the convex hull SIS’
of SUS’. All points and rays of the frame representation of the convex hull S LI S’
are extreme points and extreme rays of either S or S’. Let {x; | ¥ € I} be the
extreme points of both S U S" and S, let {a; | [€ I} be the remaining extreme
points of SU S, and let {r; | j € J} be the extreme rays of S S’. Suppose that
kelandl eI’ and 2}, and a; are the endpoints of a 1-dimensional face of RS,
which can be checked by Criterion (). Then it is possible that f(x) = x; for the
imaginary function f from S to S’. Moreover, if f is applied infinitely many times,
then all points of the form x} + A(z; — x3.), for A € R>q, are included in f*(R).

We therefore add the ray x; — x;, into the generators of S o S’: the extrapolation

110

Figure 5.7: Extrapolation operator

S S S8

Figure 5.8: Results of the extrapolation operator and the widening operator

operator o maps the two polyhedra S and S’ to S x S’ =

{freR, o= > Nai+ Y pwirj+ > peglar—ap),

ielur jeT (k)ek
where A, pt5, pir1 € R>g and Z Ai =1},
elul’

where (k,1) € Kiff k € I and ! € I' and both 2 and 2; are in the intersection of
dim(RUS")—1 facets of SUS’. Notice that o is an abstract operator, that o is not
symmetric (i.e., S o S and S’ o« S may be different), and that SU S C S o« 5.

Figure 5.7 shows the application of the extrapolation operator to two convex 2-
dimensional polyhedra S and S’. The result of the extrapolation S o S” is shown
as the left figure in Figure 5.8. As a comparison, the right figure in Figure 5.8
shows the result of applying the widening operator 57 [Hal93,HRP94] to the same

regions.

111

s

/

approximate forward approximate backward

Figure 5.9: One-way approximative analysis

7
7 T i

/ /

approximate forward intersection with T' approximate backward

Figure 5.10: Two-way iterative approximative analysis
5.4 Two-way Iterative Approximation

Suppose that an approximate forward reachability analysis is inconclusive; that is,
the overapproximation S of the target region post*(S) contains some final states
from T'. If the intersection SN T is a proper subset of T, then we have nonetheless
obtained new information—mnamely, that the states in T — S are not reachable
from S—and we may proceed computing backward the new target region pre*(7T'N
S), or an overapproximation T’ of pre*(TﬂS). If 7NS = 0, then T is not reachable
from S; if, on the other hand, T does contain some initial states from S, then we
may continue the two-way iterative approximation process, this time computing
forward from 7N S.

The two-way iterative approximation strategy is illustrated in Figure 5.9 and

Figure 5.10, assuming a 2-dimensional state space and convex-hull approximation.

Figure 5.11: The bouncing-ball automaton

The two shaded boxes in the lower left corner of the state space represent the
initial region S; the two shaded boxes in the upper right corner represent the final
region T'. The derivatives of both variables x and y are 1. While an exact forward or
backward analysis would show that 7" cannot be reached from S, both approximate
forward analysis and approximate backward analysis are inconclusive (Figure 5.9).
An approximate forward analysis followed by an approximate backward analysis
is successful (Figure 5.10).

We now apply the two-way iterative approximation strategy to analyze the
bouncing-ball automaton of Figure 5.11. The variable x represents the horizontal
distance of the ball from a reference point, the variable y represents the distance
of the ball from the floor, and the variable z represents the “energy” of the ball.
Suppose that the ball is dropped at the position x = 14 A y = 4 in the direction
of the reference point; that is, S = (down,z =14 A y =4 A z = 0). While the
ball is falling (location down), its energy is increasing (¢ = 1); when the ball hits
the floor (y = 0), it loses half of its energy and bounces back up (location up); on
the way up, the energy decreases (£ = —1) until it becomes 0 and the ball starts
to fall again. The trajectory of the ball is shown in Figure 5.12.

We wish to prove that the ball never reaches the region 7' = (¢ < 2 A y =
0) of the floor. First notice that the exact forward computation of the target

region post*(S) does not terminate, and convex-hull approximation is of no help.

113

Figure 5.12: A trajectory of the bouncing-ball automaton

If we use extrapolation, then we obtain the overapproximation S of the target
region post*(S), and S contains the final states SNT = (r =2 Ay=0A z = 0).
Since pre(g NnNT) = SNT, a second, backward, pass terminates immediately
without reaching the initial state S. HYTECH requires 12 seconds of CPU time for
both passes. (Notice that if we were to begin with a backward pass, attempting
to compute the target region pre*(T'), neither the exact computation, nor the
approximate computation with convex-hull approximation, nor the approximate

computation with extrapolation, would terminate.)

Chapter 6

Analysis of Nonlinear Hybrid

Automata

But two permassible and correct models of the same external
objects may yet differ in respect of appropriateness

— Hewnrich Hertz

This chapter extends the model-checking approach to the analysis of certain
nonlinear systems. !

We present, analyze, and apply two algorithms for translating nonlinear hybrid
systems into linear hybrid systems to analyze nonlinear hybrid automata, which

alone provide an accurate model for most real-time environments (for example,

the temperature of a furnace decreases along an exponential curve with negative

LControl theory, of course, has a long tradition of analyzing what we call nonlinear hybrid
systems (in control theory, the term linearity usually refers to differential equations, not trajec-
tories). There, however, the number of discrete modes of a controller is typically quite small.
Model checking, on the other hand, allows the analysis of controllers that are defined by arbitrary
finite-state programs. While the control theorists start with complex environments—differential
equations—and steadily increase the complexity of the controllers that can be analyzed, we com-
puter scientists start with complex controllers—programs!—and steadily increase the complexity

of the environments.

114

115

exponent).?

As we know how to compute time-precondition and time-postcondition accu-
rately only for linear hybrid automata, we propose a two-step methodology for
verifying a nonlinear hybrid automaton A. In Step 1, we translate A into a linear
hybrid automaton B. In Step 2, we apply the HYTECH tool to the translated
automaton B. The translation is sound, for a class P of properties, if all P-
properties of B are inherited by A; complete, if all P-properties of A are inherited
by B. If the translation is P-sound and B satisfies the property ¢ € P, then so
does A. Incomplete translations may lead to false negatives: B may not satisfy the
P-property ¢ although A does. We therefore accompany incomplete translations
with error analyses: given a metric d on hybrid automata, what is the automaton
A" d-closest to A such that if A’ satisfies ¢, then so does B? If the d-difference
between A and A’ can be made arbitrarily small, then the translation is called
asymptotically complete under the metric d.

We present two translations, which transform two incomparable classes of non-
linear hybrid automata into linear hybrid automata. Both translations can be
automated. The clock translation replaces nonlinear variables by clocks (i.e., lin-
ear variables with slope 1). The clock translation is applicable to the nonlinear
variable z if the value of x is always uniquely determined by the latest assignment
to x and the time that has expired since that assignment. If the clock translation
of the automaton A yields the automaton B, then the underlying transition sys-
tems are timed bisimilar. It follows that the clock translation is both sound and
complete for all branching-time properties. If all variables of a nonlinear hybrid

automaton can be replaced by clocks, then the resulting linear hybrid automaton

2We insist on representing nonlinear behavior accurately in our underlying model, because we
feel that linearization or digitization ought to occur after the modeling phase, so that the errors
that are introduced by these processes can be analyzed and bounded. Such an analysis, indeed,
is performed in the present paper for both linearizations we propose.

116

is a timed automaton [AD94]. As a corollary, we obtain a new decidable class of
hybrid automata. We verify a nonlinear version of the railroad gate controller in
Chapter 2 using the clock translation and the HY'TECH model checker.

The rate translation approximates nonlinear variables by piecewise-linear vari-
ables. The rate translation is applicable to the nonlinear variable x if the value of
x 1s bounded. If the rate translation of the automaton A yields the automaton B,
then the transition system of B simulates the transition system of A (but not vice
versa). It follows that the rate translation, while sound for all linear-time prop-
erties, is not complete for safety properties. We show that the rate translation is
asymptotically complete for safety properties. We verify the thermostat automa-
ton in Chapter 2 using the rate translation and HYTECH. Technically, both the
clock translation and the rate translation can be viewed as abstract interpretations

of nonlinear hybrid automata [CCT7].

6.1 Verification of Nonlinear Hybrid
Automata

We associate with a hybrid automaton A a labeling function it that assigns to
each control location v € V' a convex data predicate init(v), the initial condition
of v; and also a labeling function final that assigns to each location v € V of
A a data predicate final(v), the accepting condition of v. The control of A may
start in the location v only when the initial condition nit(v) is true. We write 14
for the inatial region U,cv{(v, [init(v)])} of A; and we write F)y for the accepting
region Uyey {(v, [final(v)])} of A. We use the initial and accepting conditions to
analyze reachability problems of hybrid automata. In the graphical representation
of hybrid automata, we suppress initial conditions of the form false and suppress

accepting conditions of the form true.

117

raise

lower

closed

y=0

Controller

Figure 6.1: A railroad gate controller

6.1.1 Examples of Nonlinear Hybrid Automata

The first example of a nonlinear hybrid automaton is actually the thermostat
automaton of Figure 2.1 in Chapter 2.

The second example is a nonlinear variation of the train-gate-controller exam-
ple in Chapter 2 and 3. The three hybrid automata of Figure 6.1 model three
processes—a train, a gate, and a controller. The nonlinear variable x represents
the distance of the train from the gate.

Initially, the train is far from the gate and moves at the speed 50 meters per
second. When the train approaches the gate, a sensor placed at a distance of 500
meters from the crossing detects the train and sends the signal app to the controller.
The train starts to slow down following the differential equation # = —5= — 30.

The controller waits 5 seconds before sending the command lower to the gate; the

118

delay of the controller is modeled by the clock ¢t. Consequently, the gate is lowered
from 90 radius degrees to 0 degrees at the constant rate of 20 degrees per second;
the position of the gate in degrees is represented by variable y. After passing the
gate, the train begins to accelerate following the differential equation = = £ + 30.
A second sensor placed at 100 meters past the crossing detects the leaving train
and signals exit to the controller, which, after another delay of 5 seconds, sends
the command raise to the gate. The distance between consecutive trains is (at

least) 1,000 meters.

6.1.2 Another Semantics for Hybrid Automata: Labeled
Transition Systems

We have to define another semantics for hybrid systems in order to use the no-
tion of bisimulation to discuss the equivalence of two hybrid automata. A hybrid
automaton A defines a labeled transition system Sy with the state space ¥ 4 and
the transition relation that consists of both the time steps 24 and the transition
steps ¥4 For simplicity and expressiveness, We write 2 for the time step 24

corresponding to a witness data trajectory (6, p) with the duration é; and we write
by

X4

5 for the transition step > corresponding to an automaton transition e with the
synchronization label /.

Formally, the hybrid automaton A defines the labeled transition system Sy =
(¥ 4.14,L,— 4, Fy) that consists of (1) the infinite state space T4, (2) the set Iy
of initial states, (3) the alphabet £ = L UR>q, (4) the transition relation — 4=
U{ KA |6 >0}UU{ W | ¢ € L}, and (5) the set F)4 (accepting region) of accepting
states. A finite trajectory T of A is a finite path o = o = - - - il oy in S4 such
that og € I4 and for alli € {0,...,k—1}, (0; i 0i4+1) €— 4. The finite trajectory
T is accepting if the final state of 7 is accepting; that is, o € F4. The reachable

region R(A) C ¥ 4 of the hybrid automaton A is the set of all final states on the

119
finite trajectories of A.

6.1.3 The Emptiness Problem

The emptiness problem for hybrid automata asks, given a hybrid automaton A,
if A has an accepting finite trajectory. It is obvious that a reachability problem
(A, ¢1, ¢r) is equivalent to an emptiness problem for hybrid automata A with the
initial region I4 = [¢r] and the accepting region Fy = [¢r].

For the thermostat automaton of Figure 2.1, we will verify the safety property
whose “unsafe” region is characterized by the state predicate Uyefon o1 {(v,6 <
z < 2y — 1)}; that is, after 6 time units the heater has always been on at most
half of the time plus 1 time unit. So we associate the thermostat automaton
with the initial region (on,2 = 2 Ay = 0 A z = 0) and the accepting region
Usefon,ofyt(v:6 < 2 <2y = 1)}

For the railroad gate controller of Figure 6.1, we will verify the safety property
whose unsafe region is characterized by the state predicate ngﬁclosed{(’va r < 100)};
that is, whenever the train is within 100 meters from the gate, the gate is closed (we
write v |= closed if the gate component of location v is closed). So we associate the
railroad gate controller with the initial region (far, open,idle) and the accepting
region Uyizclosed1(v,© < 100)}. Both of the safety properties can be verified as

emptiness problems.

6.2 Clock Translation

The clock translation of a hybrid automaton replaces each nonlinear data variable
x by a clock t, that is restarted whenever the value of x is changed by a discrete
action. The clock translation is applicable if at every point of a finite trajectory,

the value of x is uniquely determined by the value of t,.

120

6.2.1 Solvable Automata

Let A be a hybrid automaton. The simple nonlinear data variable x of A is
(rationally) determined in the location v of A if (1) variable x and the dotted
variable & occurs in exactly one conjunct of the form & = f(x), denoted by dif (v, z),
(2) dif (v,x) = f(x) and for all (rational) initial values ¢ € R, the initial-value
problem “#(t) = f(x); x(0) = x¢” has an algebraic solution x, ,,(t) such that
for each finite constant ¢ that appears in an atomic data predicate x ~ ¢, for
~€ {<, >}, or an atomic action predicate @’ = ¢ of A, the function x, 4, (t) — ¢
has a finite number of (rational) roots. For example, suppose that the function
Ty (t) — ¢o has the two roots ryp and rq, and all finite trajectories that enter the
location v have the initial value x¢ for 2. Then the value of the variable x is
Ty (tz) for all reachable states in v. Thus an exit edge of location v guarded
with * = ¢y can be replaced by two exit edges guarded with ¢, = rg and ¢, = ry,
respectively.

The location v of A is definite for the data variable x if the initial condition
init(v) implies x = ¢, for some initial value ¢ € R. The edge e of A is definite for
v if the action act(e) implies 2/ = ¢, for some arrival value ¢ € R. The simple

nonlinear data variable x of A is solvable if the following three conditions hold:
1. For all locations v of A, x is determined in v.
2. All locations of A are definite for x.
3. For all edges e = (v,v') of A, if dif (v,x) # dif (V/,x), then e is definite for x;

For example, the nonlinear variable x of the thermostat automaton of Figure 2.1 is
solvable, and so is the the nonlinear variable x of the train automaton of Figure 6.1.
The hybrid automaton A is solvable if all nonlinear data variables of A are simple
and solvable. The automaton A is rationally solvable if A is (1) rational, (2) solv-

able, and (3) all data variables of A are rationally determined in all locations of A.

121

All (rational) timed automata are (rationally) solvable and the class of (rationally)
solvable hybrid automata is closed under parallel composition. For each solvable
data variable x, we collect the initial values of x for all locations and the arrival
values of z for all definite edges in the finite set CritVal(z) C R of critical values

for x.

6.2.2 The Clock Translation Algorithm

Given a solvable nonlinear hybrid automaton A, we construct a linear hybrid au-
tomaton A°—the clock translation of A—Dby replacing each nonlinear data variable
x with a new clock t,.. For each nonlinear data variable x, the construction proceeds

in two steps:

1. Let CritVal(x) = {c1,...,c,} withep < -+ < ¢,. Eachlocation v of A is split
into a collection v, , ..., v., of locations, one for each critical value ¢; of x. We
then add the clock t, such that the value of z in location v, is x(t,), where

x(t) is the solution of the initial-value problem “&(t) = dif (v, x); x(0) = ¢;”.

2. All initial and accepting conditions, invariants, and actions are translated

from conditions on x to conditions on t,.

We now provide more details.

Step 1. Splitting Locations and Edges

After the application of Step 1, each new location v., has the same activities as v
and, in addition, the new activity dif (v.,,t,) = 1 for the clock t,. The new location
v¢; has the initial condition init(v) A t, = 0, the accepting condition final(v),
and the invariant snv(v). The location v, has the initial condition nit(v,,) =
init(v) A t, =0 if inv(v) implies x = ¢;, and init(v,,) = false otherwise. For each

indefinite edge ¢ = (v,v’), we introduce all edges of the form (fvci,véi:) with the

fr=In3 At =
tM
te =IN2 At =0

STEP 2

Figure 6.2: Clock translation of the thermostat automaton

action act(e) A t, = t, and the label label(e); for each definite edge e = (v, ')
with the arrival value c;, we introduce all edges of the form (‘vq.‘véj) with the
action act(e) A t,. = 0 and the label label(e).

For example, the thermostat automaton of Figure 2.1 has only definite edges.
The critical values of x are 1. 2. and 3, so we split both locations on and off into
three locations each. Since the locations ong, off |, and off , are not reachable by a
sequence of automaton edges from the initial location ons, we remove these three
locations from the clock-translated automaton. The result of Step 1 is shown on

the left in Figure 6.2.

Step 2. Updating Initial Conditions, accepting conditions, invariants,
and actions
Let the function x(t) be the solution of the initial-value problem “i(t) = dif (v. x);
2(0) = ¢;7. We now eliminate the nonlinear variable x from the initial and accept-
ing conditions, invariant, and exit-edge actions of each new location v,,.

First, we simply remove all the atomic data predicates that involve the variable
x from the initial condition init(v.,). Second, we translate the accepting condition
of location v.,. Suppose that * < c is an atomic data predicate of the accepting

condition final(v.,;) (other atomic data predicates are handled similarly). We find

123

all finite roots ry,....r; of x(t) — ¢ (count roots with zero derivatives twice). If
no such root exists and ¢; < ¢, then x < ¢ is always satisfied and we replace x < ¢
by true; if no root exists and ¢; > ¢, then @ < ¢ is not satisfiable and we replace
r < ¢ by false. Otherwise, if ¢; < ¢, then x < ¢ is satisfied when the value of t, is
in any of the intervals [0, o], [r1,72],...; if ¢; > ¢, then x < ¢ is satisfied when the
value of ¢, is in any of the intervals [rg,r], [r2,73],... We therefore replace = < ¢

by the disjunction \/[cermi <ty < 11, where I is the set of root intervals

TiTit]
during which x < ¢ is satisfied. The result can be transformed into disjunctive
normal form.

Third, we translate the invariant of location v.,. Suppose that x < cis a
conjunct of the invariant inv(v,,) (other conjuncts are handled similarly). If ¢; > ¢,
then the arrival value of x does not satisfy the invariant, and thus we remove the
location v,,. Otherwise, we find the smallest nonnegative finite root r of x(t) — c.
If such a root r exists, then the automaton control can reside in the location v,
up to r time units, and thus we replace the conjunct x < ¢ of the invariant by the
conjunct ¢, < r. If no such root r exists, then the automaton control can reside in
the location v.; forever, and we replace the conjunct v < c by true.

Fourth, we translate the actions of all edges that leave the location v,;. Suppose
that @ < ¢ is a conjunct of the action act(e), where e = (v,v'). We find all finite
roots rg, ..., r; of x(t) — ¢ (count roots with zero derivatives twice). If no such root
exists and ¢; < ¢, then the edge e is always enabled and we replace the conjunct
x < ¢ by true; if no root exists and ¢; > ¢, we remove the edge e. Otherwise,
if ¢; < ¢, then the edge e is enabled when the value of ¢, is in any of the intervals
[0,70], [r1,72],...; if ¢; > ¢, then e is enabled when the value of ¢, is in any of
the intervals [rg, 7], [r2, 73], ... For each root interval [r;,r;y1] during which e is
enabled, we introduce an edge with the action act(e) and the label label(e) except

that (1) the conjunct x < ¢ is replaced by the conjunct r; < ¢, < r;41 and (2) any

124

atomic subformula involving 2’ is removed. In the thermostat example, we have
Tony (1) = —3e7"+4, 24, (t) = —2¢7"+4, and Topr, (1) = 3e~!. Consider the action
x = 3 of the edge from ons to off 3. Since In2 is the unique root of —2e~! +4 — 3,
it follows that x = 3 iff t, = In2. Hence we replace the action x = 3 with the

action t, = In2. The final result of Step 2 is shown on the right in Figure 6.2.

6.2.3 Soundness, Completeness, and Decidability

We show that the clock translation is both sound and complete for checking the
emptiness of solvable automata. Let A be a solvable hybrid automaton, and let
A€ be the automaton clock translated from A by translating a nonlinear variable
x into a clock t,. We show that A and A¢ are bisimilar.

We first recall the definition of (timed) bisimulation. Let T} = (31,1}, £, —1)
and Ty = (X9, I, L, —9) be two labeled transition systems. The binary relation
~C Y| x Y9 is a bisimulation between T and T5 if for all states o1 € ¥ and
0y € ¥y, 01 & 09 implies for every letter m € L that (1) if oy ¥ o/, then there
exists a state o such that oo+ o) and o] = o}; and (2) if o= 0}, then there
exists a state o} such that oy %o} and o} ~ ¢5. The two states ¢ € ¥; and
o' € Y9 are bisimilar if there exists a bisimulation ~ between T and T such that
o ~ ¢'. The labeled transition systems 7 and 75 are bisimilar, denoted T =~ Tb,
if for each initial state o € Iy, there is a initial state ¢’ € I such that ¢ ~ ¢/, and
vice versa. The two hybrid automata A and B are bisimilar if Sy = Sp.

We define the function a,: ¥ 4c — ¥4 such that a,(v., §1) = (v, §2), where the
location v, is split from the location v for the critical value ¢, the states §7 and 55
agree on all data variables except x and t,, and §»(x) = f.(51(t,)) if the function
fe(t) is the solution of the initial-value problem “#(t) = dif (v, z); x(0) = ¢”. To

show that A and A¢ are bisimilar, we will find the following two lemmas useful.

125

Lemma 3 Let A be a solvable hybrid automaton, and let A€ be the clock translation
of A that results from replacing the nonlinear variable x by the clock t,.. Then for

all states o1, 0 € S pc, if 017> o} in Spe then a(o1) ™ ax(ah) in Sa.
Proof. We consider the time step first. Assume that the function f.(¢) is the
solution of the initial-value problem “i(t) = dif (v,z); x(0) = ¢”. Let 01 = (v, §1)

oh = (v, 55) be two states in ¥ 4, where the location v, is split from the location

and o = (v, §) be two states in ¥ 4c, and let a,.(01) = 09 = (v, 5) and a,(0]) =
(
v for the critical value c.

Suppose that §i(t,) = t, and o4 +i>0'l1 for some witness data trajectory (6, p)
with duration 6 > 0. We shall show that o5+ o). First notice that §3(x) = f.(t,)
and §h(x) = f(6+1t,). Let (6, p') be the data trajectory such that for all ¢ € [0, ¢],
(P ()(x) = fo(t+ ta) and (p/(t))(y) = (p(t))(y) for all data variables y # x.
We claim that the data trajectory (¢, ') is a witness of oy R o). It is clear that
P (0) = o3 and p/(6) = 0%, so it remains to be shown that (9, p') is an admissible
data trajectory in the location v. According to the clock translation of the invariant
inv(v.), for all t € [0,4], the state p'(t) € [inv(v)]. Since the function f.(¢) is the
solution of the initial-value problem “i(t) = dif (v, x); x(0) = ¢”, for all ¢t € [0, ¢],
fe(t + ta) € [dif (v, 2)]. Moreover, since p'(t)(y) = p(t)(y), for all data variables
y # x and for all t € [0,6], we have p/(t) € [dif (v)]. Thus (¢, ') is admissible.

Now let us consider the transition step. Let o1 = (v., §1) and o] = (ug, §}) be
two states in ¥ 4c, and let o, (01) = 02 = (v, 52) and a,(0]) = o) = (u,), where
the location v, is split from the location v for the critical value ¢ and the location
ug 1s split from the location u for the critical value d. Suppose that o W o', where
(= syn(ve, ug).

According to the clock translation of the transitions of A€, there must be a

transition (v, u) of A such that syn(v,u) = syn(v.,uq) = (. Also assume that

126

the function f.(t¢) is the solution of the initial-value problem “#(t) = dif (v,);
z(0) = ¢” and the function g4(t) is the solution of the initial-value problem “i(t) =

dif (u,x); (0) = d”. We now show that oy N o’ for the following two cases:

1. act(v., ug) implies t/, = 0. In this case, according to the clock translation,
act(v,u) implies 2’ = d. After the reset of the variable x, we have &|(t,) = 0.

Since §5(x) = gq4(51(t:)) = 94(0) = d, it is clear that o9 l£>0'l2.

2. act(ve,uy) implies ¢/, = t,. In this case, according to the clock translation,
act(v,u) implies 2’ = z and dif (v,2) = dif (u,2). Then F(x) = F(v) =
fo(51(t2)) = £.(3\(t)). Thus o2 +5 o

The proof is complete. m

Lemma 4 Let A be a solvable hybrid automaton, and let A€ be the clock translation
of A that results from replacing the nonlinear variable x by the clock t,.. Then for
all states 09, 0% € a, (S 4c), if 02>) in Sy and 09 = a,(01), then there exists a

state o) in 3¢ such that o1+ o' and b = a,(o}).

Proof. We consider the time step first. Suppose that o2 and o) are both in the
image a,(X4) of the function a, and o |£>0'2 for some witness data trajectory
(6, p) with duration 6 > 0. For a constant d, define the function fy(t) to be the
solution of the initial-value problem “z(t) = dif (v, z); x(0) = d”.

Let o1 be any state of A° such that cy;r(al) = 0y. Define (4, ') be the data
trajectory such that for all ¢t € [0,0], p'(t) = a.(p(t)). According to the clock
translation of the invariant inv(v.), the data trajectory (6,p’) is admissible in
location v.. Suppose that o(t,) = t, and thus o}(t,) = t, + 6. It remains to
be shown that o5 = a,(0]). Since the duration of the finite trajectories (4, p)
and (6, p) are the same, for all t € [0,¢], and for all variables y # x, we have
i (t)(y) = oh(t)(y). We now show that o)(t)(y) = f.(t, +). Since o2 N ol and

fe(tq) = o2(z), we have

6
oe) = oa(a)+ [Fhy(®) dt
5 N
= Jolta)+ [f}.”(t) at

= f(t)+/ fo(t) dt
== C(ta) + (fc(t(l + 6) - ff(ta))
= fe(ty+9).

Notice that fy () is the solution of the initial-value problem “@(t) = dif (v, x);

x(0) =

fe(ta)” and f}c(ta) is the first derivative of the function fy

. L. - (
Now let us consider the transition step. We suppose 09+ 0, where (=

syn(v,u). Again, we have to consider two cases:

1.

act(v,u) implies 2" = d. In this case, according to the clock translation, there
must be a location uy split from the location u and transitions of the form
(ve,ug) with the action predicate act(ve,uy) = act(v,u) A tl, = 0 and the
label syn(ve,uq) = (. Let 01 = (v, §1) be any state such that a,(o;) = 0.
We pick the state o] = (ugy, §)) such that ¢ (t,) = 0 and o/ (y) = o)(y) for
all data variables y # x. Let gq be the solution of the initial-value problem
“i(t) = dif (ug,x); x(0) = d”. Since oh(x) = g4(0) = d, and o5(y) = o} (y)
for all variables y # x, the state o/ is admissible and o N ol

/

. act(v,u) implies ' = x. In this case, according to the clock translation,

there must be a location u. split from the location u and transitions of the
form (v.,u.) with the action predicate act(v.,u.) = act(v,u) A t,, =t, and
the label syn(v.,u.) = (. Moreover, dif (v.) = dif (u.). Let o1 = (v, §1) be
any state such that a,(oy) = g2. We pick the state o] = (ug, &) such that
ol (t.) = o1(t,) and o (y) = o4(y) for all data variables y # x. Then it is

.. 14
obivious that a,(0}) = o), and o1 — o}.

128

The proof is complete. m
Now we are ready to show that the relation {(o, a,(0)) | ¢ € ¥ 4c} is a bisimulation

between S4 and Sy4e, and thus Sy ~ Sye.

Proposition 8 Let A be a solvable hybrid automaton, and let A¢ be the clock
translation of A that results from replacing the nonlinear variable x by the clock

t,. then A and A€ are bisimilar.

Proof. Suppose that 4 and I4c are the initial regions of A and A€ respectively.
Again, we define the function a, : ¥ 40 — ¥4 such that o, (v, §) = (v, 57) where
the location v, is split from the location v for the critical value ¢, the states § and
s agree on all data variables except x and t,, and 57(1‘) = f.(5(t;)) if the function
fe(t) is the solution of the initial-value problem “i(t) = dif (v, x); 2(0) = ¢”.

According to the clock translation, it is clear that a,(I4c) = I4; that is, a, is
onto. Suppose the value of the variable x is ¢ in an initial state (v, §). Then among
the locations split from the location v, only nit(v.) = (t, = 0) is not false. Thus
a, is also bijection (one-one and onto) between I4 and I 4c.

Now it remains to show that the binary relation ~ = {(a,(0),0) |0 € L4} C
YA X ¥ ge is a bisimulation between Sy and Sjqe. By Lemma 3 and Lemma 4,
it is clear that for all states o1 € Y 4c and 09 € Y4, 01 = 02 implies for every
letter m € £ that (1) if o1 % 0/, then there exists a state ¢}, such that oy o)
and o] ~ ob; and (2) if 09 o), then there exists a state ¢} such that oy % o}
and o] & o4. In other wards, the binary relation & = {(a,(0),0) | 0 € T4} is a
bisimulation between S4 and Sy-. m

Since bisimilarity is transitive, by Proposition 8, if A results from A by replac-

ing several nonlinear variables with clocks, A and A are still bisimilar.

Theorem 5 If A is a solvable hybrid automaton and A€ s a clock translation of

A, then A and A€ are bistmular.

129

It follows from Theorem 5 that the clock translation is sound and complete for
all branching-time properties. In particular, for safety properties, we have the

following corollary.

Corollary 1 Let A be a solvable hybrid automaton, and let A be a clock transla-
tion of A. Then A has an accepting finite trajectory iff AS has an accepting finite

trajectory.

We conclude that for solving the emptiness problem for the nonlinear automaton
A, it suffices to solve the emptiness problem for the linear automaton A¢. The
emptiness problem for A¢, however, can be solved exactly only if the clock trans-
lation A€ is rational. This gives us the following decidability result, which covers
a class of nonlinear hybrid automata, while all previously published decidability

results refer to linear hybrid automata [HKPV95].

Corollary 2 The emptiness problem is decidable for rationally solvable hybrid au-

tomata.

6.2.4 S-approximate Clock Translation

If the clock translation A¢ is not rational, we approximate A® by a rational au-
tomaton, and show soundness for emptiness checking. To preserve soundness when
approximating irrational roots numerically, we over-approximate all root intervals.
For example, the action t, = [n2 can be overapproximated by the rational data
predicate 693 < 1000t, < 694 with an error bounded by 6 = 1/1000. Formally, a
o-approrimation of the data predicate t, < ¢ (t, > ¢), for 6 € R, is of the form
ty, < (t, >)such that c < <ec+6 (¢c— 6 < <e¢)and ¢ is rational. A 6-
approzimate clock translation [A¢]s of A is a rational linear hybrid automaton that
is obtained from the clock translation A¢ by replacing all atomic data predicates

in initial and accepting conditions, invariants, and actions by é-approximations.

130

Note that an action predicate that involves the primed variable ¢/, for a new clock
t, are of the form ¢/, = 0 or #, = #,. So the predicates that contain the primed
variable t/. are not relaxed.

We show that [A¢]; simulates A. To see this, recall the definition of (timed)
simulation. Let 71 = (X4, [1,£,—1) and Ty = (X, Ir, L, —2) be two labeled
transition systems. The binary relation > C ¥y X Y9 is a stmulation of To by T}
if for all states o1 € ¥1 and 09 € Yo, 01 > o2 implies for every letter m € L that
if o9+ o), then there exists a state o such that o1 % o] and o > o). The state
o € Xy simulates the state ¢’ € 3y if there exists a simulation > of T by T} such
that ¢ > o’. The labeled transition system T simulates the labeled transition
system T5, denoted T > T5, if each initial state of T is simulated by an initial
state of 7. The hybrid automaton A simulates the hybrid automaton B, written
A » B, if S4 = Sp. It is clear that [A¢]s simulates A°. Moreover, since A and A€

are bisimilar, we know that [A¢]s simulates A.

Proposition 9 Let A be a solvable hybrid automaton. For all 6 € R>g, if [As is

a b-approzimate clock translation of A, then [A]s simulates A.

Proof. Define the binary relation > = {(0,0) | 0 € ¥4} C Yi4e); X Y 4. Since the
d-approximate clock translation of A, [A¢]s, is obtained by relaxing the initial and
accepting conditions, invariants, and actions by é-approximations, it is apparently
that if 0% ¢’ in A then o> ¢’ in [As. Therefore, the binary relation > is a
simulation for all the initial states of A. In other words. each initial state o of A
is simulated by the initial state o of [A°];. m

It follows that approximate clock translation is sound for all linear-time properties.

Again, for safety properties, we have the following corollary.

Corollary 3 Let A be a solvable hybrid automaton and let [A€]s be a 6-approzimate
clock translation of A. If A has an accepting finite trajectory, then so does [As.

131

t, =20 At =0 l,=20At, =0

25 < 10t, < 26

I
Atz =0 127 < 10t, < 128

Ath =0
10t, < 26
ir=1

Figure 6.3: Clock translation and 0.1-approximate clock translation of the train

automaton
6.2.5 Example: Railroad Gate Controller

The clock translation Bf of the train automaton B from Figure 6.1 is shown on
the left in Figure 6.3, next to a 0.1-approximate clock translation [Bj]g.; on the
right.

By taking the product of [Bj]g.; with the gate and controller automata from
Figure 6.1, the HYTECH verifier automatically checks (in 25 seconds of CPU time)
that whenever the train is within 100 meters from the gate, then the gate is closed.
On the other hand, a 1.0-approximate clock translation of the train automaton is
not sufficient for proving this safety property. (After clock translation, the safety
property of the thermostat automaton from Figure 2.1 is checked by HYTECH in
7 seconds of CPU time.)

6.2.6 Error Analysis

The approximate clock translation [A]s may have an accepting finite trajectory
even if A does not. We now show that there is a hybrid automaton that is very close

to A and yet also has an accepting finite trajectory. The following error analysis

132

relaxes all atomic data and action predicates of A to provide an upper bound on the
error of [A¢]s. If the hybrid automaton A models a hybrid system with sensors and
actuators, then the e-relazed automaton A*, for ¢ € R>¢, models the same system
with sensors and actuators that suffer from errors bounded by : (1) all atomic
data predicates of the form = < ¢ and x > ¢ (in initial and accepting conditions,
invariants, and actions) are replaced by < ¢+ ¢ and x > ¢ — ¢, respectively; and
(2) all atomic action predicates of the form a2’ = ¢ are replaced by c—¢ < 2/ < c+e.
Notice that if ¢ — 0, then A~ — A. We define the metric d- on hybrid automata
such that d (A, B) is the infimum of all nonnegative reals ¢ such that A* > B > A
or B » A > B, if such an ¢ exists; otherwise, d» (A, B) = co. The error of the
b-approximate clock translation [A]s is di- (A, [A]s). The following lemma bounds

this error from above.

Lemma 5 Let A be a solvable hybrid automaton, and let [A€]s be a d-approzimate
clock translation that results from translating the data variable x of A. Suppose
A € R>q bounds the absolute values of the derivatives of all data variables of A in
all locations of A. Let 01 = (v, 51) be a state of [A°]s and o3 = a,(01) = (vc, 52)
be an admissible state of A. If d—6 < o1(ty) < d+6, then fo(d)—6-X < o9(x) <
fe(d) + 6 - X, where the function f.(t) is the solution of the initial-value problem

() = dif (v,0); 2(0) = .

Proof. We assume that t, = d 4+ ¢ for some non-negative constant 0 < e < 6.

Then we have the following:

02(17) = fc(tr)
= f((l+€

(/—I—(

133

For all t € [d,d + 8], we know that |f/(t)| < . Thus —8 - A < [fi(t) dt <5\,
Therefore, £,(d) ¢ X < o(x) < fo(d) 4 ¢\

Tf £, = d—e for some non-negative constant 0 < ¢ < &, by the similar arguments,
we can show that fu(d) — - A < 0a(2) < fold) + € -

Since d — 6 < 01(fy) < d+ 6, we have shown that fu(d) — 6 - A < oa(x) <
fo(d)+6- A m

Lemma 6 Let A be a solvable hybrid automaton, and let [A€]s be a d-approzimate
clock translation that results from translating the data variable x of A. If A €
R>q bounds the absolute values of the deriwatives of all data variables of A in all
locations of A, then A% simulates [A€s; that is, the error of the d-approrimate

clock translation [A]s is bounded by 6 - .

-

Proof. We define the function a, : Xj4¢, — X4 such that g (ve. 51) = (v, 52),
where the location v, is split from the location v for the critical value ¢, the states
§1 and Sy agree on all data variables except x and t,, and Sy(x) = f.(51(t,)) if
the function f.(¢) is the solution of the initial-value problem “i(t) = dif (v, z);
2(0) = ¢”. We claim that the relation {(a,(0),0) | 0 € ¥4, } is a simulation of
Siae), by Sysa for every initial state of [As.

We first argue that a,.(0) is an admissible state of A% for any admissible state
o of [A]s. The conjunct of the form t, < d+ € in inv(v,) is clock-translated from
a conjunct x ~ f.(d) in inv(v) and then é-relaxed by € < 6. Since o(t,) < d + €,
by Lemma 5. fo(d) —6- X < ag(o)(z) < fo(d)+ 6 - A Thus a, (o) is admissible if
o is admissible.

Next we consider the time step. Let o1 = (v, 51) and o] = (v, §)) be two
states in ¥y 41, and let a,(01) = 09 = (v, 52) and a,(0]) =) = (v, 55).

Suppose that o1+~ 0] for some witness data trajectory (e, p) with duration

e > 0. Let (¢, o) be the data trajectory such that for all ¢ € [0, €], p/(t) = a.(p(t)).

134

We claim that the data trajectory (e, ') is a witness of o9+~ o). Since f. satisfies
the rate predicate dif (v) of A, and since the rate predicate dif (v) of A and the
rate predicate dif (v) of A%A are the same, the data trajectory (e, p') satisfies the
rate predicate dif (v) of A%*. In addition, every state p/(t) is admissible since the
state p(t) is admissible. Thus the data trajectory (e, p') is a witness of o9+ o).
Now we consider the transition step. Let o1 = (v, §1) and ¢} = (ug, 57) be two
states in Spye),, and let ay(01) = 09 = (v,52) and a.(0]) = 0 = (u,5)), where
the location v, is split from the location v for the critical value ¢ and the location
ug is split from the location u for the critical value d. Suppose that o +£>0'/1,
where (= syn(v.,ug). Since §] and §| satisfies the action predicate act(v.,uq),
by Lemma 5, § and &, satisfies the action predicate act(v,u). In addition, by
Lemma 5, both §3 and §, are admissible. This completes the proof. m
Lemma 6 shows the error of a ¢-approximate clock translation [A¢]s that results
from translating a data variable of A is bounded by 6 - A. It is clear that the
same argument applies to a é-approximate clock translation [A¢]s that results from
translating several data variables of A. It follows that the approximate clock trans-
lation is asymptotically complete, under the metric d-, for checking the emptiness

of hybrid automata.

Theorem 6 Let A be a solvable hybrid automaton. For all reals ¢ > 0, there is
a real 6 > 0 such that for all 6-approximate clock translations [A]s of A, A® »
[A%]s = A

Proof. Take 6 < LT where)\ bounds the absolute values of the derivatives of all
data variables of A in all locations of A. Notice that by the definition of hybrid

automata, A is finite. From Lemma 6, the result follows. m

Corollary 4 Let A be a solvable hybrid automaton. For all reals = > 0, there 1s

a real 6 > 0 such that if a 6-approximate clock translation of A has an accepting

135

Figure 6.4: A temperature controller with delays
finite tragectory, then so does A°.

The corollary means that whenever the approximate clock translation [A¢]s gives
answer no, then there is a problem (B, ¢) such that A** > B and (B,) has

alnswer no.

6.3 Rate Translation

The rate translation of a hybrid automaton replaces each nonlinear data variable
x by a piecewise-linear variable that approximates x. The rate translation may be
applicable also to unsolvable automata.

Consider, for example, the nonlinear hybrid automaton of Figure 6.4, which
models a temperature controller with delays: after the thermometer detects that
the temperature is low or high, there may be a delay of up to 1 time unit before the
heater is turned on or off. We wish to verify that the plant temperature is always
between % and %. The automaton is not solvable, because the edge from delay, to
off is indefinite for x. Hence we cannot apply the clock translation to eliminate the

nonlinear variable x. Instead, we approximate x by a piecewise-linear variable. In

136

location v with the bounded invariant region [inv(v)], we bound the derivative of x
by its minimum « and its maximum b, and then replace the activity dif (v, x) by the
rate interval [a, b]. For a better approximation, we split the location v into several
locations and limit the size of the rate intervals. Clearly, smaller rate intervals

yield a more accurate overapproximation of the automaton finite trajectories.

6.3.1 Bounded Automata

Let A be a hybrid automaton. The data variable x of A is nondecreasing (non-
increasing) in location v of A if snw(v) implies that the slope of variable z is
nonnegative (nonpositive). The data variable z of A is bounded with the window

[c,d] C R if any one of the following three conditions holds:

1. For all states in R(A), the value of z is always within the bounded inter-
val [c,d]. In particular, this is the case if for all locations v of A, inv(v)

implies ¢ < & < d.

2. A does not contain constants smaller than ¢ or larger than d, and either z is

nondecreasing in all locations of A, or x is nonincreasing in all locations.
3. mFy implies ¢ < x < d.

For example, the nonlinear variable x in the temperature controller is bounded
with the window % %] because of the third condition. If the data variable x is
bounded with the window [c¢,d], and its value lies outside [c,d], then the exact
value of x is irrelevant for checking the emptiness of A. The hybrid automaton A

is bounded if all nonlinear variables of A are simple and bounded.

6.3.2 The Rate Translation Algorithm

Let A be a bounded hybrid automaton, and let 6 € R>g be a nonnegative real.

A b-approxzimate rate translation [A"|s of A is a linear hybrid automaton that is

137

obtained by the following construction. Consider a data variable x and a loca-
tion v of A. First assume that the activity dif (v,2) = f(x) is a function of x
only. Let [c,d] be the window of x. We partition the window [c,d] into k subin-
tervals I = [co = ¢,c1],..., 1) = [cp_1,¢ = d], each of size at most 6. The
location v is split into k + 2 locations vg,...,vr4+1. Each new location v; has
the invariant inv(v) A ¢;_1 < @ < ¢, where ¢y = —o0 and ¢4 = oo. For
each v;, we compute the minimum a and the maximum b of the function dif (v;, x)
for ¢; 1 < x < ¢;. We then approximate the derivative of x in the location v;
by the rate interval dif (v;, 2) = [a,b]. Finally, we introduce all edges of the form
(vi,vi41) and (v;q1,v;) with the action = ¢; and the label v (which is the label
of the stutter edge e,); and for each edge e = (v,v'), all edges of the form (v;,v})
with the action act(e) and the label label(e).

Now consider the general case that dif (v,z;) = f(x1,...,2n). We approx-
imate all nonlinear variables x1,...,x, simultaneously. Suppose that the win-
dow for x; is I;. We partition I; into k; subintervals [c;0,¢i1], -, [¢igi—1 Cik,]5
each of size at most 6. The location v is split into the set U, = {v(ai,...,a,) |
0 < a; <k +1} of (ky +2)---(kn + 2) locations, all with the initial condi-
tion 4nit(v) and the accepting condition final(v). The invariant of v(ay,....a,)
is inv(v) A Nizi..n Ciai—1 < i < g0 Where ¢, 1 = —o0 and ¢; 41 = oc. For
each new location, we compute the rate intervals for all ;. For each pair v(d) and
U(‘l—)‘) of new locations, we introduce all edges of the form (v(a), 11(5)) with the axtion

=/

' = 7 and the label v (many of these edges are inconsistent and can be omitted);

=

and for each edge ¢ = (v,v'), we introduce all edges of the form (v(d),v'(b)) with

the action act(e) and the label label(e).

138
6.3.3 Soundness

We show that the rate translation is sound for checking the emptiness of bounded

automata.

Proposition 10 Let A be a bounded hybrid automaton. For all 6 € R>q, if [A"]s

is a b-approximate rate translation of A, then [A"]s simulates A.

Proof. We define the onto function 3 : ¥4, — T4 such that §(v/,5) = (v, 5) if
v € U,. Notice that (1) the automaton [A"]s and the automaton A have exactly
the same transitions, so o Lo in Sypiff o Lo in S[ar),; and (2) we relax the rate
predicates in the automaton A to obtain the automaton [A"]s. Thus it is clear that
for all states oy and oy of [A"]s and for all transition m of [A"]s, if B(oy) ¥ B(02)
in Sy, then o1+ 09 in Sjar),- Hence the relation {(o,3(0)) | 0 € T4, } is a
simulation of S4 by Spgr),- ®

It follows that the rate translation is sound for all linear-time properties. In par-

ticular, for safety properties, we have the following corollary.

Corollary 5 Let A be a bounded hybrid automaton, and let [A"]s be a rate trans-
lation of A. If A has an accepting finite trajectory, then so does [A"]s.

6.3.4 Example: Temperature Controller with Delays

Recall the emptiness problem for the automaton By of Figure 6.4 with the accepting

condition J,{(v,x < % Voo > %)}

For the rate translation of the automaton Bs., we partition the window [%, %

into the eight intervals [£, 2], [2,1], [1, 2], [2.2], [2, 2], [, 3], [3, 1], and [&, &2
of uneven size at most 0.6 (it is a good idea to separate intervals at the point

c if ¥ = ¢ is a conjunct of an invariant or action). After removing inconsistent

edges and unreachable locations, we obtain the linear hybrid automaton [Bj]g6

139

Figure 6.5: Rate translation of the temperature controller with delays

of Figure 6.5, which is a 0.6-approximate rate translation of By. The HYTECH
verifier reports that [B5]g ¢ satisfies the safety property that the value of x stays

within the interval (% %y) In fact, the automatic computation of R([Bj]g.¢) shows

that x stays in the smaller range %, g—é) (using 45 seconds of CPU time).

6.3.5 Error Analysis

To analyze the error of the é-approximate rate translation [A"]s, we define the
metric dp such that dp(A,B) is the infimum of all nonnegative reals ¢ such
that R(4) C R(B) C R(A%) or R(B) C R(A) C R(B°). if such an ¢ ex-
ists; otherwise, dp(A, B) = oc. The error of the $-approximate rate translation
[A"]s is dp(A.[A"]s), where R([A"]s) is interpreted as S(R([A"]s)) when compared
with R(A).

In particular, we analyze the error of rate translation for monotonic bounded

140

hybrid automata, where (1) in each location v each variable x is either nonde-
creasing or nonincreasing and (2) in the rate predicate dif (v), the dotted variable
& is compared with the variable x and constants only. We denote the conjuncts
in dif (v) involving the dotted variable & by dif (v,x). By choosing successively
smaller values of 6, the rate translation of a monotonic bounded hybrid automa-
ton can satisfy any desired error bound. (at the cost of increasing the number of

locations of the automaton [A"]s, of course). We obtain the following theorem.

Lemma 7 Let A be a monotonic bounded hybrid automaton and [A"]s be a 6-
approximate rate translation that results from translating the nonlinear variable
x with the window [c,d|. Let e be any constant such that ¢ < e < d, and let
o = (v,5) be a state of [A"]s. Define max,(8) = max{t | ov>0’;0'(x) = e},
min,(8) = min{t | o1+50';0'(x) = e}. Then their exist a function Ay(8) such
that max,(6) — min,(6) < Ay(8); and either Ay(6) — 0 as &6 — 0, or max,(6) =

min,(6) = co.

Proof. Without loss of generality, we assume that x is nondecreasing in v. If
o(x) > e then both max,(6) and min,(¢) are infinite. Suppose that o(x) < e and
the window [c, d] is partitioned into into k subintervals I} = [cg = ¢, c1],..., [=
[ck1,cr = d], each of size at most 6 in the automaton [A"]s. Each location v is
split into & + 2 locations vy, ...,v;41. For each v;, we compute the minimum a;
and the maximum b; of the function dif (v;,z) for ¢;_1 < 2 < ¢;. Suppose that
cjy < §(x) < ¢jyq1 and ¢;; < e < ¢j41; that is, 0 € vj, and o € vj, The longest
time a finite trajectory from o to a state o’ such that o’(x) = e.

Cig+1 — 01() N) L) Cj41—€

S+ ,
@jg Ajo+1 aj;—1 ajy

max,(6) =

and the shortest time is

Cig+1 — 01() by - by +cj-1_|_1—e
bjo bjo-l-l bjl—l bjl

min,(6) =

141

Then A,(6) = max,(6) — min,(6) is bounded by

i+ +i (£+ +£
a ay, bo bk)'

Since b; — a; — 0 as 6 — 0, it is clear that A, () = 0as d — 0. m

Lemma 8 Let A be a monotonic bounded hybrid automaton and [A"]s be a 6-
approximate rate translation that results from translating the nonlinear variable x
of A. Let o1 = (v,51) be a state of A, and let o9 = (V', 55) be a corresponding state
of [A"]s such that 3(o9) = o1. If 0y Lo, o', then there is an open ball B(a'(x), Dy(0))
such that (1) for all states ol such that O’Qii—0>0'-lz, B(oy)(x) € Blaj(x),D,(5)),
and (2) D,(6) — 0 as 6 — 0.

Proof. Without loss of generality, we assume that z is nondecreasing. Suppose
the minimum possible value of the data variable x in such a state o5 is m. From
Lemma 7, we know that if o9 Lo, o3 and o3(x) = m, then |t — t)] < A,(6). The
difference between the maximum and minimum possible value of the data variable
z in the state o) is bounded above by the maximum time difference to reach the
minimum possible value of the variable x times the maximum slope of x in location
v. So if the maximum slope of the data variable x in location v is E,, then the
difference between the maximum and minimum possible values of the data variable
x in the state o) is bounded above by E, - A,(6).

Define D, (8) = E, - Ay(6). Then for all states 5 such that oy ol f(oy)(x) €
B(o|(x),Dy(6)). Since A,(6) — 0 as 6 — 0 and E, is finite, we know that
D,(6) - 0as 6 —0.m

We want to point out a fact that in the context of the previous lemma, for all
data variables y # x, 3(0})(y) = 02(y), since the differential equation for the data

variable y remains unchanged in [A"]s.

142

Lemma 9 Let A be a monotonic bounded hybrid automaton and [A"]s be a 6-
approximate rate translation that results from translating the nonlinear variable x
of A. Let o1 = (v,81) be a state of A, and let 093 = (V',52) be a correspond-
ing state of [AT]s. such that ((o2) = o1. If aé@»ag, then there is an open
ball B(3(ah)(x), Dy(8)) such that (1) there is a state o such that 0'1&01 and
B(al)(x) € B(B(ah(x)),Dy(8)), and (2) Dy(6) — 0 as & — 0.

Proof. Without loss of generality, we assume that = is nondecreasing. Let o3 be
a state such that o3(x) = o(x) and o3 % g1 in A. Then from Lemma 7, we can
deduce that |t — ty| < A,(5).

We first assume that ¢ —%(is non-negative. So the state o3 needs at most A,(0)
more time units to reach the state o in the automaton A than the time needed
by the state o), to reach that the state oy in [A"]s. Let of be the state such that
oy o, and define ¢/ to be the state such that o/ (z) = o4(x) and o (y) = h(y)
for all other data variables y. The we know that o} Lo o1. Let us bound the range
of o (x) according to o5(x). Let 2 be the minimum common value of the variable
x in the witness finite trajectories of o} Lo o1 and o) Lo oy. Suppose that o} be
the first state of the witness finite trajectories of o} Lo, o1 such that o (z) = .
We define ¢4 analogously. Notice that either o} = o or ¢ = 0, From Lemma 7,
the maximum time difference needed by the states of and ¢f to reach the states
o1 and oy respectively is bounded above by A,(6). Therefore, |0} (x) — oh(z)]| is
bounded by D, (6) = E, - A,(6). Thus Part (1) is proved for this case.

On the other hand, if ¢ — ¢y is negative, by the similar arguments we can also
show Part (1). Since A,(6) — 0as 6 — 0 and E, is finite, we know that D,(6) — 0
as 6 — 0. m

For the automaton A and a é-approximate rate translation [A"]s of A, we define

D(6) = max{D,(6) |v eV}

143

We claim that R([A"]s) C R(AP©),

Theorem 7 Let A be a monotonic bounded hybrid automaton. For all reals ¢ > 0,
there is a real 6 > 0 such that for all 6-approximate rate translations [A"]s that

result from translating a nonlinear variable x of A, R(A) C R([A"]s) C R(A®).

Proof. From Proposition 10, R(A) C R([A"]s). We shall show that R([A"]s) C

R(AP@)) Let P be a finite trajectory from a state | € 1[A"]s to a state oy €

F[AT](S. We re-identify the a sub-path of P that corresponds to a single time
771j0 'mjl 'I'lljk_l

step in a location of A. Formally, if o, = 0j, v --- &= o0, is a sub-path

of P and all the states o, ---0;, are in the same location v of A and all the

.
transitions mj, - --mj,_1 are either time steps or transition steps that correspond
to the transitions interconnecting the locations split from the location v, then we
collapse the sub-path to a single time step o, rt—0>0jk where ty is the sum of all
durations of the time steps among mj, ---m;, _1.

We can further remove stutter transitions from the resulting path and add zero

duration time steps if necessary to obtain the finite path
/ mg my mg
P =o0y—o1—=09 -+ +— 0p_1 — 0

such that (1) both m; and my,_; are time steps, (2) the time and transition steps
occur alternatively in P, and (3) no transition step in P’ corresponds to a stutter
transition.

We will prove by induction on k that there is an initial state o € I ;p(s) and a
finite trajectory

m mp_1

mr—2 g
o O b Ok

(v}

/Mo my
Q =0gr—=01— 0y

I

iIl SAD(&) .
Consider first the base case that & = 1; that is, there is only a time step in

P’. Since the conjuncts involving the data variable x in the initial conditions and

144

location invariants of the automaton AP(®) are relaxed by D(¢), by Lemma 9, there
must be a state 06 in I s such that 06 9 1. So we take () = 06 9 o1.

Now consider the induction step that we have constructed a finite trajectory ()
from the state of, to the state og;_1 and o9;_; N Lo, 09i11 is a sub-path of P'.
First we notice that the guard involving the variable x is satisfied by o9;_1. In addi-
tion, the nondeterministic assignments to the variable x are relaxed by D(6), so any
state of); within the open ball B(c2;, D(6)) can be reached. By Lemma 9, there is a
state o5, € B(02;, D(6)) such that o), Ko, 09i41 in the automaton AP, Therefore,
we can augment the finite trajectory @ by two steps o9;_1 v o), Lo, T2i+1-

We have shown that if a state o, can be a final state of a finite trajectory of
[A"]s, then the state o can also be a final state of a finite trajectory of AP that
is, R([A"]s) C R(AD(‘”). Therefore, given any ¢ > 0, we take § to be a nonnegative
real such that D(6) < e. Then R(A) C R([A"]s) C R(A%). m

Corollary 6 Let A be a monotonic bounded hybrid automaton. For all reals e > 0,
there 1s a real 6 > 0 such that if a 6-approrimate rate translation of A has an

accepting finite trajectory, then so does A°.

However, there is not always a positive constant ¢ such that [A"]s and A have

the same result of the emptyness problem. Let v be a location of a hybrid automa-
ton A such that (1) dif(v,2) =4 — 2z, (2) mv(v) =0 < 2 < 4, and (3) the initial
value of the variable x is less than 4 when a finite trajectory reach the location v.
Then the region [(v,x = 4)] is not reachable by A. But if v is the split location
with the invariant 4 — 6 < x < 4 from a é-partition of the interval [0,4], then

the maximum slope of x in v is & > 0, so for any 6, the region [(vi, 2 = 4)] is

reachable by [A"]s.

145

r =510

p x = 550
add, o add,
T =15 —
x =510 v x =510
TeMmove,| T€MOVEs

Figure 6.6: The nonlinear reactor core automaton
6.4 Discussion

The two translations presented in this chapter provide algorithmic methods for
verifying safety properties of two classes of nonlinear hybrid systems: solvable sys-
tems and bounded systems. Whenever both translations are applicable, the clock
translation is generally preferable, because the size of the translated automaton
does not depend on the precision of the translation. We use a nonlinear version of
the reactor temperature control system in Chapter 4 to compare the results of the
application of the two translations to the same automaton.

Suppose that the reactor core of the reactor temperature control system is
modeled by the hybrid automaton shown in Figure 6.6. The core temperature z
increases according to the differential equation # = /10— 50 if no control rod is in
the reactor core; x decreases according to the differential equation & = x/10 — 56
if control rod 1 is in the reactor core; and z decreases according to the differential
equation # = x/10 — 60 if control rod 2 is in the reactor core. Then the clock
translation of the reactor core automaton is shown in Figure 6.7. In a second step,
we can apply a 0.1-approximate clock translation to the automaton of Figure 6.7
to get the linear hybrid automaton of Figure 6.8.

We now try the rate translation on the same automaton. Consider, for ex-

ample, the location rod; of the reactor core automaton from Figure 6.6, with the

146

ty =0
te =105 At =0 \l/ te =105 At =0
rodq addT no_rod adds rods
te < 10in5 te <102
; removey . removes ; 5
tr=1 ty =1 ty =1
ty =105 A t), =0 ty =10l Ath, =0

Figure 6.7: The clock-translated reactor core automaton

t, =0
160 < 10, <161 A ¢/, =0 160 < 10, < 161 A ¢/, =0

rodq add, no_rod adds rods
10t, < 161§ < 2 (10t, < 89
=1 remove; =1 removes

tlzzl

160 < 10t, < 161 A . =0 88 < 10t, < 89 A 1. =0

Figure 6.8: The 0.1-approximate clock-translated core automaton

differential equation & = /10 — 56. Since we can strengthen the invariant to
510 < o < 550, the derivative of x is bounded below by —5 and above by —1.
Thus we can replace the differential equation for the variable x with the rate inter-
val dif (no_rod, x) = [=5,—1]. By treating the other locations similarly, we obtain
the linear hybrid automaton of Figure 4.1, if we decided not to split any location.

Recall that HYTECH guarantees that the reactor core automaton of Figure 4.1
meets its safety requirement iff the parameter w satisfies the condition 9w < 184
(Section 4.2.2). For the clock-translated reactor core automaton of Figure 6.8,
HYTECH computes the weaker condition 5w < 189. This condition is weaker,
because the clock translation of Figure 6.8 gives a better approximation of the
nonlinear system of Figure 6.6 than does the rate translation of Figure 4.1. Thus
better approximations allow the design engineers to use slower mechanisms for

moving the control rods. If desired, the approximation by rate translation can be

147

refined by splitting control locations.

Chapter 7

Case Studies

Why does this magnificent applied science which saves work
and makes life easier bring us so little happiness?

The simple answer runs:

because we have not yet learned to make sensible use of it.

— Albert Einstein

In order to help the practitioners make sensible use of HYTECH, we show the
application of HYTECH to three nontrivial benchmark problems in this chapter.
All three examples are taken from the literature, rather than devised by us. The
first case study is a distributed control system introduced by Corbett [Cor94]. The
system consists of a controller and two sensors, and is required to issue control
commands to a robot within certain time limits. The two sensor processes are ex-
ecuted on a single processor, as scheduled by a priority scheduler. This scenario is
modeled by linear hybrid automata with clocks and stop-watches. HYTECH auto-
matically computes the maximum time difference between two consecutive control
commands generated by the controller. It follows, for example, that a scheduler

that gives higher priority to one sensor may meet the specification requirement,

148

149

Sensor?2

Figure 7.1: The two sensors

while a scheduler that gives priority to the other sensor may fail the requirement.

The second case study is a two-robot manufacturing system introduced by Puri
and Varaiya [PV95b]. The system consists of a conveyor belt with two boxes, a
service station, and two robots. The boxes will not fall to the floor iff initially
the boxes are not positioned closely together on the conveyor belt. HYTECH
automatically computes the minimum allowable initial distance between the two
boxes.

The third case study is the Philips audio control protocol presented by Bosscher,
Polak, and Vaandrager [BPV94]|. The protocol consists of a sender that converts
a bit string into an analog signal using the so-called Manchester encoding, and a
receiver that converts the analog signal back into a bit string. The sender and
the receiver use clocks that may be drifting apart. In [BPV94], it was shown, by
a human proof, that the receiver decodes the signal correctly if and only if the
clock drift is bounded by a certain constant. HYTECH automatically computes

that constant for input strings up to 8 bits.

150

SENSOT |
1027 < 11

requesty

&wait
220 >3 Azh =0 z9 < 2

l’lz =1

Figure 7.2: The scheduler

7.1 A Distributed Control System with
Time-outs

The distributed control system of [Cor94] consists of two sensors and a controller
that generates control commands to a robot according to the sensor readings.
The programs for the two sensors and the controller are written in ADA. The
two sensors share a single processor, and the priority of sensor 2 for using the
processor is higher than the priority of sensor 1. In other words, if both sensor
1 and sensor 2 want to use the processor to construct a reading, only sensor 2
obtains the processor, and sensor 1 has to wait. The two sensors are modeled by
the two linear hybrid automata in Figure 7.1 and the priorities for using the shared
processor are modeled by the scheduler automaton in Figure 7.2.

Each sensor can be constructing a reading (location read), waiting for send-
ing the reading (location wait), sending the reading (location send), or sleep-
ing (location done). The processor can be scheduled idle (location Idle), serving

sensor 1 (location sensory), serving sensor 2 while sensor 1 is waiting (location

151

sensory&wait)), or serving sensor 2 while sensor 1 is not waiting (location sensorsy).

Each sensor constructs a reading and sends the reading to the controller. The
shared processor for constructing sensor readings is requested via request transi-
tions, the completion of a reading is signaled via read transitions, and the reading
is delivered to the controller via send transitions. Sensor 1 takes 0.5 to 1.1 mil-
liseconds and sensor 2 takes 1.5 to 2 milliseconds of CPU time to construct a
reading. These times are measured by the stop-watches x1 and 2 of the scheduler
automaton. Notice that at most one of the two stop-watches x1 and x9 runs in a
location of the scheduler automaton, which reflects the fact that only one sensor
can use the shared processor at a time. If sensor 1 loses the processor because of
preemption by sensor 2, it can continue the construction of its reading after the
processor is released by sensor 2.

Once constructed, the reading of sensor 1 expires if it is not delivered within
4 milliseconds, and the reading of sensor 2 expires if it is not delivered within
8 milliseconds. These times are measured by the clocks y; and ys of the sensor
automata. If a reading expires, then a new reading must be constructed. After
successfully delivering a reading, a sensor sleeps for 6 milliseconds (measured again
by the clocks y; and y2), and then constructs the next reading.

The controller is modeled by the automaton in Figure 7.3. The controller is
executed on a dedicated processor, so it does not compete with the sensors for CPU
time. We use the clock z to measure the delays and time-outs of the controller.
The controller accepts and acknowledges a reading from each sensor, in either
order, and then computes and sends a command to the robot. The sensor readings
are acknowledged via ack transitions, and the robot command is delivered via a
stgnal transition. It takes 0.9 to 1 milliseconds to receive and acknowledge a sensor
reading. The two sensor readings that are used to construct a robot command must

be received within 10 milliseconds. If the controller receives a reading from one

signal
102 > 36 A
W' =0Ac =0

Figure 7.3: The controller

sensor but does not receive the reading from the other sensor within 10 milliseconds,
then the first sensor reading expires (via an ezpire transition). Once both reading
are received, the controller takes 3.6 to 5.6 milliseconds to synthesize a robot
command.

We want to know how often a robot command can be generated by the con-
troller. For this purpose, we add a clock ¢ to the controller automaton such that
c measures the elapsed time since the last robot command was sent. The slope of
the clock ¢ is 1 in all locations of the controller automaton (this is omitted from
Figure 7.3), and c is reset to 0 whenever a robot command is sent. We want to
compute the maximum value of the clock ¢ in all states that are reachable in the
product of all four automata.

However, the product of the four automata does not model the system exactly
according to Corbett’s specification. This is because the send transitions should

be urgent, that is, they should be taken as soon as they are enabled. We model

153

the urgency of the send transitions by adding an additional clock, u, and global
invariants. The clock u is reset whenever a sensor is ready to send a reading to the
controller, and whenever the controller is ready to receive a sensor reading. Then
we use the global invariant that « = 0 if both a sensor and the controller are ready

for a transmission; that is,

({[sensori] = wait A lcontroller] = rest — u=0) A

({[sensorg] = wait A l[controller] = rest — u=10) A

({[sensory] = wait A l[controller] = wait; — u=10) A

({[sensorg] = wait A l[controller] = waity — u =0).

This invariant enforces whenever a transmission of a sensor reading is enabled, the

transmission happens immediately.

In HYTECH, the global invariant is defined as follows:

GlobalInvar={{l[sensori]l==wait && l[controller]==rest, O==u},
{1[sensor2]==wait && l[controller]==rest, O==u},
{1[sensori]l==wait && l[controller]==waitl, O==u},

{1[sensor2]==wait && l[controller]==wait2, O==u)}}

To compute the range of possible values for the clock ¢ in the reachable states, we

write:

InitialState = 1l[sensori]==done && l[sensor2]==done &&
1[scheduler]==idle && l[controller]==rest &&

O==c && 6==y1 && 6==y2 && O==

Bad = True
EliminateLocList = {sensorl,sensor2,sched,gen}
EliminateVarList = {x1,x2,y1,y2,z,w,u}

box 2

robot D bO}‘(

moving belt

L4

red mark

| robot G

T

[

service station

Figure 7.4: The two-robot manufacturing system

Notice that, using the two projection operators, we ask HYTECH to print only

information about the clock c.

Using forward analysis without approximation,

HYTECH returns, in 89.53 seconds of CPU time, the following answer:

0 <= ¢ && -12 <= -B*xc || -7 <= -2xc && 9 <= 10*c ||
-3 <= -c & 7 <= 10*c || -9 <= -2%c && 3 <= 2xc ||
12 <= B*c && -28 <= -5*c || 5 <= 2%c && -18 <= -2xc ||
33 <= 10*c && -105 <= -10%c || 42 <= Bxc && -56 <= -bxc

From this result (the last disjunct is 42 < 5¢ A =56 < —5¢), it follows that the

maximum value of the clock ¢ is 11.2; that is, a robot command is generated by

the controller at least once every 11.2 milliseconds. We can also apply HYTECH to

analyze the same system except that the priority of sensor 1 for using the shared

processor is higher than the priority of sensor 2. In that case, a robot command is

generated at least once every 11.0 milliseconds.

s_ready
_— _— =

d =0 . <dAd =

5<d

d_put,
I
d_turnleft l<dAd= 0<d_putdown

d_turnright
d<6

d=1

d<6 d<?2
d=1 d=1

d_put,

1<dAd=0 5<dAd =0

Figure 7.5: Robot D
7.2 A Two-robot Manufacturing System

Puri and Varaiya [PV95b] designed a manufacturing system that consists of a
conveyor belt with two boxes, a service station, and two robots. The system
is illustrated in Figure 7.4. This system has been also modeled and analyzed
in [DY95].

Robot D, one of the two robots, is modeled by the linear hybrid automaton
of Figure 7.5. The clock d is used to measure the time needed for the actions
performed by robot D. Initially robot D is looking at the service station (location
d_stay). When it sees an unprocessed box in the service station, it picks up that
box from the service station in 1 to 2 seconds (location d_pick), makes a right turn
in 5 to 6 seconds (location d_turnright), puts the box at one end of the conveyor
belt in 1 to 2 seconds (location d_putdown), makes a left turn back to the service
station in 5 to 6 seconds (location d_turnleft), and stays at there waiting for the
next unprocessed box (location d_stay).

The two boxes, box 1 and box 2, are modeled by the indexed linear hybrid

automaton in Figure 7.6, where the index i is either 1 (for box 1) or 2 (for box 2).

mouv-m
134 > b;
bi=1

d_pick;
bi =0

Figure 7.6: Box ¢

A box may be in the service station (location on_serve), held by robot D (location
on_d), moving on the conveyor belt before a red mark (location mov_m), moving
on the conveyor belt beyond the red mark (location mov_f), held by robot G
(location on_g), or falling off the end of the conveyor belt (location fall). A box
on the conveyor belt is processed by the manufacturing system. The conveyor belt
is moving at a certain speed from one end to the other. The clock b; measures
the total time that box ¢ spends on the conveyor belt, and thus determines the
position of box ¢ on the belt. A box requires 133 to 134 seconds to reach the red
mark after it is placed on the belt by robot D. If a box is not picked up by robot G
before the end of the belt, then the box falls off the belt 166 to 167 seconds after
it is placed on the belt.

Robot G at the end of the conveyor belt is modeled by the automaton in
Figure 7.7. The clock g measures the time needed to perform the actions of robot G.
Initially robot G is looking at the red mark next to the conveyor belt (location
g-stay). When it sees a processed box moving beyond the red mark, it picks up
that box from the belt in 3 to 8 seconds (location g_pick), makes a right turn in

6 to 11 seconds (location g_turnright), waits for the service station to be empty

redmark; 3<gAng' =0
g =0 g-pick g-pick g-turnright
g <8 g <11
g=1 I _ g=1
redmark, 3<gAng =0 g

g =0 g-pick.,
6<gAg =0A

10<g A u' =0

1<gnAng =0

g-turnleft g-puty
g <12

g=1

1<gAng =0

g-put,

Figure 7.7: Robot G

d_pick,
u' =0
- on_servi 8§<s
o — s <10
s_empty) s$=1
g-put,
8§<s
s-ready
d_pick,
u' =0

Figure 7.8: The service station

(location g_wazit), puts the box into the service station in 6 to 11 seconds (location
g-putdown), makes a left turn back to the conveyor belt in 1 to 2 seconds (location
g-turnleft), and stays there watching the red mark (location g_stay).

The service station is modeled by the automaton in Figure 7.8. Whenever the
service station receives a processed box, it pops up an unprocessed box for robot
D to pick up. The service station takes 8 to 10 seconds to switch the processed
and unprocessed boxes, which is measured by the clock s. Initially both boxes are

on the conveyor belt before the red mark. There are at most two boxes on the belt

158

at any time, because the service station pops up a new box only when it receives
a processed box from robot G.

According to Puri and Varaiya’s specification, the transitions with the synchro-
nization letters s_ready, redmark;, redmarks, and s_empty, are urgent; that is,
robot D picks up a box from the service station as soon as it is ready and sees a box
in the service station, etc. We treat the s_ready transitions as ordinary transitions,
because this assumption will not affect our analysis. We use the clock u and the

following global invariants to model the urgent transitions:

GlobalInvar = {{l[grobot]l==stay && 1[box1]==movf, O==u},
{1[grobot]==stay && 1l[box2]==movf, O==u},
{1[grobot]==wait && l[station]==sempty, O==u},

{1[grobot]==wait && l[station]==sempty, O==u}}

We want to check the safety requirement that no box will ever fall off the
conveyor belt. This requirement clearly depends on the initial positions of the two
boxes on the belt. We use the parameter dist such that dist = by — by represents
the difference of the initial values of the clocks by and bs.

Then we use HYTECH to analyze the reachability problem (A, o7, op), where

A is the product of all five automata and

o1 = ({[box1] = mov_m A ([boxs] = mov_m A ([roboty] = g_stay A
([robotp| = d_stay A ([servicestation] = s_empty N u = 0),
or = (L{box1] = fall V ([boxs] = fall).

After we simplified the product automaton by eliminating unreachable locations
and identifying locations in which a box is fallen, HYTECH is able to return, in

163.41 minutes of CPU time, the following target region:

-1 <= -b1+b2 && -9 <= b1-b2 || -1 <= b1-b2 && -9 <= -bl+b2

159

Figure 7.9: The Manchester encoding
using backward computation without approximation. It follows that
b2-01>9VvV bl —-02>9

is a necessary and sufficient condition on the initial condition of the system so that

neither box will fall off the conveyor belt; that is, |by — ba| > 9.

7.3 The Philips Audio Control Protocol

In [BPV94], the timing-based Philips audio control protocol is modeled by an
extension of the timed I/O automata model [LV92,LV93], and verified mathemat-
ically without computer support. We model the same protocol using linear hybrid
automata, and verify its correctness for input strings up to length 8 using HyTECH.

The protocol consists of a sender and a receiver. The sender uses the Manch-
ester encoding to encode an input string of bits into a continuous signal (see Fig-
ure 7.9 for the encoding of 10011). The voltage on the communication bus is either
high or low. A 0 bit is sent as a down signal from high to low voltage; a 1 bit is
sent as a up signal from low to high voltage. The time line is divided into time
slots of equal length, and the signals are sent in the middle of each time slot. The
receiver decodes the continuous signal into an output string of bits. The protocol
is correct iff the input and output strings match.

The time slots are measured by local clocks of the sender and receiver. These

local clocks, however, may not be accurate, and their derivatives may vary within

160

the rate interval [%, % . Besides this potential 5% (or 1/20) timing error, the

protocol faces also the following complications:

e The receiver does not know when the first time slot begins. The sender and
the receiver can synchronize at the beginning of the transmission by knowing
that (1) before the transmission, the voltage is low, and (2) the transmitted

string starts with the bit 1.
e The receiver does not know the length of the bit string that is transmitted.

e The receiver sees only up signals and no down signals (because down signals

are difficult to detect).

Using HYTECH, we verify that whenever the sender encodes and sends a string of
up to 8 bits, the receiver correctly decodes all bits in string. HYTECH also shows
that the protocol is incorrect in the case that the local clocks are subject to timing
errors up to 1/15.

We use four linear hybrid automata to model the input, the sender, the receiver,
and the output. The input automaton of Figure 7.10 generates all the possible bit
strings up to a certain length. The length of the input string is decided by the
initial value of the integer variable k. Whenever a bit is nondeterministically
generated by the input automaton, the value of k is decremented by 1. When k
becomes 0, the input automaton nondeterministically generates a suffix of one or
two bits. So the input automaton generates all possible input strings of £ + 1 or
k 4+ 2 bits. The integer variable ¢ stores the message that is sent. If the bit 0 is
sent, then ¢ is updated to 2¢; if the bit 1 is sent, then ¢ is updated to 2¢ + 1. The
input automaton synchronizes with the sender through the synchronization letters
head; and input;, which correspond to looking at the next bit of the input string

and sending the next bit of the input string, respectively.

161

The sender is modeled by the automaton of Figure 7.11. The variable x repre-
sents the drifting local clock of the sender, and its rate predicate is % <z < % for
all locations of the sender automaton. The sender synchronizes with the receiver
through the synchronization letter up, which represents up signals.

The receiver is modeled by the automaton of Figure 7.12. The variable y
represents the drifting local clock of the receiver, and its rate predicate is % <
y < % for all locations of the receiver automaton. The receiver sees each up signal
of the sender and decides if it encodes a 0 or a 1. If no up signal is received for a
certain amount of time, the receiver times out and concludes that the transmission
is completed. The receiver synchronizes with the output automaton through the
synchronization letters output,, which represent the bits of the decoded string.

The output automaton of Figure 7.13 stores the decoded bit string in the
integer variable d. Then ¢ = d signals a correct decoding, and ¢ # d signals
an error in the protocol. We check if it is possible to reach a state that satisfies
¢ # d when the transmission is completed. A forward reachability analysis with
HYTECH successtully verifies the protocol for k = 6. The performance of HYyTECH

is summarized in Table 7.3.

Table 7.1: Verification of the audio control protocol

Clock error | Input length |Location number| Transition number | CPU time

5o0r 6 681.8 sec.

1/20 Proved
7or8 1300 2795 4275 sec.

1/15 5o0r 6 2018 sec. | Disproved

162

head

headq heady

headg T
K =k—1A

| . ast' =1

tnput, mputo Feme
' =2c+ 1A d=2cnA
K =kr-1 K =k-1

tnput, even_headq head

head .

Figure 7.10: The input automaton

163

z =0 inpuly

zr=4Q Az’ =0

head .
0 head
x=4Q A las

headg

Figure 7.11: The sender automaton

164

odd
last_is_1

last_is_0

Up

output

odd

next_is 0

next_is_1

even
next_is_0

\

y=0

output

i even
last_is_1

y <9Q

last_is_0

y = 9Q stop

y=9Q U output, y=1TQ

Figure 7.12: The receiver automaton

output,

d =2d+1

d = 2d

output,

Figure 7.13: The output automaton

Chapter 8

Future Work

This 1s not the end. It 1s not even the beginning
of the end. But it 1s, perhaps, the end of the beginning.
Winston Churchall

This dissertation presents a general framework for the formal specification and
verification of hybrid systems, as well as a software tool—HYTECH that can au-
tomatically analyze linear hybrid systems.

The long-term goal of this line of research is a software-hardware-mechanism
integrated prototyping environment that supports (1) the rapid prototyping of em-
bedded systems in hybrid automata, (2) the simulation of the prototype through
the hybrid automaton model, (3) the verification and analysis of the hybrid au-
tomata model, and (4) the synthesis of the code and the circuit from the hybrid
automata model.

To reach this long-term goal, there are many exciting short-term continuations

of this work to be done. We list some of them as follows.

165

166

Analysis of More Nonlinear Hybrid Systems

Since most embedded systems operate in nonlinear environments, the study of
nonlinear hybrid systems is obvious the most important subject in this line of
research.

This dissertation introduces two algorithms for translating nonlinear hybrid
systems into linear hybrid systems. The author believes that the symbolic reduction
method in [KMO91] for translating circuits at the transistor level to finite-state
machines can be extended to another sound translation from nonlinear hybrid
automata to linear hybrid automata. The result would permit the analysis of a
more general class of nonlinear hybrid automata.

The advance of this topic would require the knowledge of the existing results

from control theory and dynamic systems.

Analysis of More Real-world Applications

The hands-on experiences obtained by analyzing real-world applications can show
the practitioners how to model and verify their designs, and also suggest researchers
how to enhance and develop their verification tools. Recently, we are interested
in applying HYTECH to verify mixed-signal circuits and digital circuits at the

transistor level.

Hybrid-automaton Based Simulation

Verification is expensive in terms of the required machine time and space. If the
system prototype is designed in hybrid automata, a simulation tool based on hybrid
automata can provide the designer a faster, yet more accurate, estimation of the

behavior of the system design.

167
Distributed Analysis Tool

We believe that distributed hybrid systems should be analyzed by distributed
systems. A parallelized HYTECH can certainly verify complex systems that the
current HYTECH could not verify. Since the fixpoint computation in our symbolic
model-checking procedure is location-based, the degree of the locality of the proce-
dure is high. Consequently, the parallelization of HY'TECH should be a promising

direction of future work.

Automatic Synthesis of Hybrid-system Controller

According to the paper [MPS95], the synthesis of a hybrid system controller can
be done by computing fixpoints of the precondition operators that we introduced
in Chapter 3. Since HYTECH can compute the precondition operators, we should

be able to augment HYTECH to become a hybrid-system controller synthesizer.

Appendix A

The Grammar of the HyTech

Input Language

The following is the grammar of the HY'TECH input language. We want to note
that (1) the regular expressions are surrounded by “(” and “)”, (2) the nonterminal

symbols are in ¢talic characters, (3) the terminal symbols are in typewriter char-

[43

acters, (4) each semicolon “;” can be replaced by a line break “\n”, and (5) the

character ¢ represents the null string.

program — mname_definition wvariable_definition automaton_definition wverifica-

tion_definition
name_definition — ¢

| define(defined_name , number) \n

name_definition
defined_-name —— name
name — ([a —zA — Z][0 — 9a — zA — Z]x)

168

169

number — ([1 — 9][0 — 9]%)
variable_definition —— wariabledefs wvariable_definition

| variabledefs
variabledefs — AnaVariables = {wvariable_sequence };

| DisVariables = {wariable_sequence };
variable_sequence — wariable_sequence , wvariable

| variable
variable — name
automaton_definition —

automaton_numbers location_definition transition_definition

automaton_numbers — AutomataNo = number_sequence
number_sequence — number_sequence , number

| number
location_definition — locnumbers wnvariants rates
locnumbers — locationo = {number_sequence };
mvariants — invariantdef invariants

| invariantdef
mvariantdef — inv[location_eq 1 == locname 1 = data_predicate ;

location_eq — 1[automaton_name] == locname

170
data_predicate — linear_inequalities && linear_inequalities
| linear_inequalities
| boolean
boolean — True
| False
linear_inequalities — linear_term == linear_term
| linear_term >= linear_term
| linear_term <= linear_term
linear_term —— number wvariable + linear_term
| =number wvariable + linear_term
| number variable
| —number wvariable
| number
| —number
| variable
automaton_name — defined_name
| number
locname — defined_name

| number

171

rates — ratedef rates

| ratedef
ratedef — dif Lautomaton_name , locname , wvartable 1 = rate ;
rate — {number , number }

| number
transition_definition —— transnumbers transitiondefs labeldefs
transnumbers — transitiono = {number_sequence };
transitiondefs — transdef transitiondefs

| transdef
transdef —

act Lautomaton_name , number 1 = {guard , synlabel

{assignments }}
gquard — convex_state_predicate
convex_state_predicate — location_predicate && data_predicate
location_predicate — location_eq && location_predicate
| location_eq
| boolean
synlabel — &

| name ,

172
assignments — location_assignment assignment_sequence
| location_assignment
location_assignment — 1[Lautomaton_name 1 -> location_name
assignment_sequence — &
| , assignment assignment_sequence
| , assignment
assignment — wvariable -> lLinear_term
labeldefs — ¢
| labeldef labeldefs
labeldef — syn[label 1 = {automaton_name_sequence };

automaton_name_sequence — automaton_name_sequence ,

automaton_name
| automaton_name
verification_definition —

global_invariant abstract_operators wnit_final directions

eliminatelist product_file
global_invariant — Globallnvar = {location_invariant_sequence };
location_invariant_sequence — &

| location_invariant_sequence , location_invariant_pair

173
location_invariant_pair — {location_predicate , data_predicate }

abstract_operators — TakeConvex = boolean ;

WideSet[lc_]1 = (extraplations)

extraplations — (extraplocs)

| boolean
extraplocs — extraplocs || (lc === location_predicate)
| (Lc === location_predicate)

mat_final — InitialState = state_predicate ;

Bad = state_predicate ;

state_predicate — convex_state_predicate || state_predicate
| convex_state_predicate

directions — Go := PrintTime[Iterative[Forward] 1;
| Go := PrintTime[Iterative[Backward] 1;

eliminatelist — ¢

| EliminateLocList = {automaton_name_sequence };

EliminateVarList = {wariable_sequence };

| EliminateLocList = {automaton_name_sequence };

| EliminateVarList = {wariable_sequence };
product_file — ¢

| ProductFile = "name .a"

Appendix B

HyTech Input File Example

The following is the input file for the priority scheduler in Section 4.4.3.

(* Automaton name definitions *)
define(interi, 1)
define(inter2, 2)

define(sched, 3)

(¥ Location name definitions x*)
define(idle, 1)
define(taskl, 2)
define(task2, 3)

(* Variable definitions*)
AnaVariables={x1, x2, y1, y2}
DisVariables={k1, k2}

(¥ Location definitions)

174

locationo={1,1,3}

dif [sched,idle,y1]1=0; dif[sched,idle,y1]=0
dif [sched,taskl,y1]=1; dif[sched,taskl,y2]=0
dif [sched,task2,y1]=0; dif[sched,task2,y2]=1
dif [interl,idle,x1]=1; difl[inter2,idle,x2]=1

inv[l[interl]==idle]=True (* taskl *)
inv[l[inter2]==idle]=True (* task?2 *)
inv[1l[sched]==idle]=True (* idle *)

inv[1[sched]==taskl]=-4<=-y1 (* taskl *)
inv[1[sched]==task2]=-8<=-y2 (* task2 *)

(* Transition definitionsx*)

transitiono={1,1,11}

act[interl,1]={ 1l[interl]l==idle && 10<=x1, intl,
{1[inter1]->idle, x1->0, k1->k1+1}}
act[inter2,1]={ 1l[inter2]==idle && 20<=x2, int2,
{1[inter2]->idle, x2->0, k2->k2+1}}
act[sched,1]={1[sched]==idle, intl,
{1[sched]->taskl, y1->0}}
act[sched,2]={1[sched]==idle, int2,
{1[sched]->task2, y2->0}}
act[sched,3]={1[sched]==taskl && 1==k1 && 4==y1,
{1[sched]->idle, k1->0, y1->0}}
act[sched,4]={1[sched]==taskl && 2<=k1 && 4==y1,
{1[sched]->taskl, ki1->k1-1, y1->0}}
act[sched,5]={1[sched]==taskl, int1l,
{1[sched]->task1}}

176

act[sched,6]={1[sched]==taskl, int2,
{1[sched]->task2, y2->0}}
act[sched,7]={1[sched]==task2 && 1==k2 && 0==k1 && 8==y2,
{1[sched]->idle, k2->0, y2->0}}
act[sched,8]={1[sched]==task2 && 1==k2 && 1<=k1 && 8==y2,
{1[sched]->taskl, k2->0, y2->0}}
act[sched,9]={1[sched]==task2 && 2<=k2 && 8==y2,
{1[sched]->task2, k2->k2-1, y2->0}}
act[sched,10]={1[sched]==task?2, int1,
{1[sched]->task2}}
act[sched,11]1={1[sched]==task2, int2,
{1[sched]->task2}}
syn[inti]={interl, sched}
syn[int2]={inter2, sched}

AutomataNo=3

(* Verification definitions *)

InitialState=(1[interl]==idle && 1[inter2]==idle &&
1[sched]==idle && O==x1 && 0==x2 && O0==k1 && 0==k2 &&
0==y1 && 0==y2)

Bad = 3 <= k1 || 2 <= k2

Globallnvar = True

TakeConvey = False

WideSet[lc_] := False

Go := PrintTime[Iterative[Forward]]

ProductFile = "psched2.a"

Bibliography

[ACDO93]

[ACH93)

[ACH*95]

[ACHH93)

[AD90]

[AD94]

[AFHO1]

R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense
real time. Information and Computation, 104(1):2 34, 1993.

R. Alur, C. Courcoubetis, and T.A. Henzinger. Computing accumu-
lated delays in real-time systems. In C. Courcoubetis, editor, CAV
93: Computer-aided Verification, Lecture Notes in Computer Science
697, pages 181-193. Springer-Verlag, 1993.

R. Alur, C. Coucoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3-34,
1995.

R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid
automata: an algorithmic approach to the specification and verifica-
tion of hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn,
and H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer
Science 736, pages 209-229. Springer-Verlag, 1993.

R. Alur and D.L. Dill. Automata for modeling real-time systems. In
M.S. Paterson, editor, ICALP 90: Automata, Languages, and Pro-
grammang, Lecture Notes in Computer Science 443, pages 322-335.
Springer-Verlag, 1990.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-235, 1994.

R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punc-
tuality. In Proceedings of the Tenth Annual Symposium on Principles
of Dustributed Computing, pages 139-152. ACM Press, 1991.

[AH94]

[AHH93]

[AHV93]

[AL2]

[AMPO3]

[ASL93]

[BERO4]

[BES93]

[BGMO3]

178

R. Alur and T.A. Henzinger. A really temporal logic. Journal of the
ACM. 41(1):181-204, 1994.

R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic ver-
ification of embedded systems. In Proceedings of the 14th Annual
Real-time Systems Symposium, pages 2-11. IEEE Computer Society
Press, 1993. The full version appeared as Cornell Technical Report
CSD-TR-95-1513.

R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time rea-
soning. In Proceedings of the 25th Annual Symposium on Theory of
Computing, pages 592-601. ACM Press, 1993.

M. Abadi and L. Lamport. An old-fashioned recipe for real time. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real Time: Theory in Practice, Lecture Notes in Computer
Science 600, pages 1-27. Springer-Verlag, 1992.

E. Asarin, Z. Manna, and A. Pnueli. Rechability analysis of dy-
namical systems having piecewise-constant derivatives. Theoretical

Computer Science, 138(1):201-210, 1995.

P.J. Antsaklis, J.A. Stiver, and M. Lemmon. Hybrid system mod-
eling and autonomous control systems. In Proceedings of the 1992

Workshop on Hybrid Systems, Lecture Notes in Computer Science
736, pages 366 392. Springer-Verlag, 1993.

A. Bouajjani, R. Echahed, and R. Robbana. Verifying invariance
properties of timed systems with duration variables. In H. Lang-
maack, W.-P. de Roever, and J. Vytopil, editors, FTRTFT 9}:
Formal Techniques in Real-time and Fault-tolerant Systems, Lec-
ture Notes in Computer Science 863, pages 193-210. Springer-Verlag,
1994.

A. Bouajjani, R. Echahed, and J. Sifakis. On model checking for
real-time properties with durations. In Proceedings of the FEighth
Annual Symposium on Logic i Computer Science, pages 147-159.
IEEE Computer Society Press, 1993.

A. Back, J. Guckenheimer, and M. Myers. A dynamical simulation
facility for hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn,
and H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer
Science 736, pages 255 267. Springer-Verlag, 1993.

[BHO5]

[BLL*95]

[BLR95)

[BPV4]

[BRO3]

[Bra9s]

[CCTT

[CC92]

[Cer92]

[CESS1]

179

J.P. Bowen and M.G. Hinchey. Ten commandments of formal meth-
ods. IEEE Computer, 28(4):56-63, 1995.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Up-
pall, a tool suite for symbolic and compositional verification of real-
time systems. To appear, 1995.

A. Bouajjani, Y. Lakhnech, and R. Robbana. From duration cal-
culus to linear hybrid automata. In Proceedings of the Conference
on Computer-Aided Verification, Lecture Notes in Computer Science
939, pages 196-210. Springer-Verlag, 1995.

D. Bosscher, I. Polak, and F. Vaandrager. Verification of an audio-
control protocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil,
editors, FTRTFT 94: Formal Techniques in Real-time and Fault-
tolerant Systems, Lecture Notes in Computer Science 863, pages 170
192. Springer-Verlag, 1994.

A. Bouajjani and R. Robbana. Verifying w-regular properties for
subclasses of linear hybrid systems. 1995. To appear at CAV.

M.S. Branicky. Universal computation and other capabilities of hy-
brid and continuous dynamical systems. Theoretical Computer Sci-

ence, 138(1):67 100, 1995.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for the static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the Fourth Annual Symposium
on Principles of Programming Languages. ACM Press, 1977.

P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation. In
PLILP, Lecture Notes in Computer Science 631, pages 269-295.
Springer-Verlag, 1992.

K. Cerans. Decidability of bisimulation equivalence for parallel timer
processes. In G. von Bochmann and D.K. Probst, editors, CAV 92:
Computer-aided Verification, Lecture Notes in Computer Science 663,
pages 302-315. Springer-Verlag, 1992.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Design and synthesis

of synchronization skeletons using branching-time temporal logic. In

[CESS6]

[CHTS]

[Che68|

[CHRO1]

[CTS93]

[Cor94]

[Coudl]

[DV95a]

[DV95b)

[DW93]

180

Workshop on Logic of Programs, Lecture Notes in Computer Science
131. Springer-Verlag, 1981.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal-logic specifica-
tions. ACM Transactions on Programmang Languages and Systems,

8(2):244-263, 1986.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the Fifth Annual
Symposium on Principles of Programming Languages. ACM Press,
1978.

N.V. Chernikova. Algorithms for discovering the set of all solutions
of a linear programming problem. U.S5.S.R. Computational Mathe-
matics and Mathematical Physics, 8(6):283-293, 1968.

Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269-276, 1991.

Z. Chaouchen, M.R. Hanzen, and P. Sestoft. Decidability and unde-
cidability results for duration calculus. In STACS 93, Lecture Notes
in Computer Science. Springer-Verlag, 1993.

J.C. Corbett. Modeling and analysis of real-time Ada tasking pro-
grams. In Proceedings of the 15th Annual Real-time Systems Sympo-
stum. IEEE Computer Society Press, 1994.

P. Cousot. Semantics fundations of program analysis. In S.S. Much-
nick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, pages 303-342. Prentice-Hall, 1981.

A. Deshpande and P. Varaiya. Information structures for control
and verification of hybrid systems. In Proceedings of the American
Control Conference, 1995.

A. Deshpande and P. Varaiya. Viable control of hybrid systems.
In Proceedings of the 1994 Workshop on Hybrid Systems and Au-
tonomous Control, Lecture Notes in Computer Science. Springer-

Verlag, 1995.

D.L. Dill and H. Wong-Toi. Using iterative symbolic approximation
for timing verification. In T. Rus, editor, Proceedings of the First

AMAST Workshop on Real-time Systems, 1993.

[DW95)

[DY95]

[EGL92]

[FR75]

[GKNY92]

[GL3]

[GLO3]

[GNKJ95]

[GNRR93]

[Hal93]

181

D.L. Dill and H. Wong-Toi. Verification of real-time systems by suc-
cessive over- and underapproximation. In P. Wolper, editor, CAV 95:
Computer-aided Verification, Lecture Notes in Computer Science 939,
pages 409-422. Springer-Verlag, 1995.

C. Daws and S. Yovine. Verification of multirate timed automata
with KRONOS: two examples. Technical Report Spectre-95-06,
VERIMAG, apr 1995. To appear at RTSS.

U. Engberg, P. Gronning, and L. Lamport. Machanical verification of
concurrent systems with TLA. In Logic of Programs, Lecture Notes
in Computer Science. Springer-Verlag, 1992.

J. Ferrante and C. Rackoff. A decision procedure for the first-order
theory of real addition with order. SIAM Journal on Computing,
4(1):69 76, 1975.

J. Guckenheimer, W. Kohn, A. Nerode, and A. Yakhnis. Hybrid
systems papers for CDC92. Technical Report 92-31, Mathematical
Science Institute, Cornell University, 1992.

R.L. Grossman and R.G. Larson. Some remarks about flows in hybrid
systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel,
editors, Hybrid Systems, Lecture Notes in Computer Science 736,
pages 317 356. Springer-Verlag, 1993.

R.L. Grossman and R.G. Larson. An algebraic approach to hybrid
systems. Theoretical Computer Science, 138(1):101-112, 1995.

X. Ge, A. Nerode, W. Kohn, and J. James. Distributed intelligent
control theory of hybrid systems. In Proceedings of the Fifth An-
nual Conference on AI, Stmulation, and Planning in High Autonomy

Systems, pages 12-15. IEEE, 1995.

R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hy-
brid Systems. Lecture Notes in Computer Science 736. Springer-
Verlag, 1993.

N. Halbwachs. Delay analysis in synchronous programs. In C. Cour-
coubetis, editor, CAV 93: Computer-aided Verification, Lecture
Notes in Computer Science 697, pages 333-346. Springer-Verlag,
1993.

[HHO54]

[HHO5b]

[HHO95]

[HHF+94]

[HHK95)

[HHWT95a]

[HHWTO5b]

[HK95)

[HKPV93]

182

T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hy-
brid systems. In Proceedings of the Conference on Computer-Aided
Verification, Lecture Notes in Computer Science 939, pages 225-238.
Springer-Verlag, 1995.

T.A. Henzinger and P.-H. Ho. HYTEcH: The Cornell Hybrid Tech-
nology Tool. In Proceedings of the 1994 Workshop on Hybrid Sys-
tems and Autonomous Control, Lecture Notes in Computer Science.

Springer-Verlag, 1995. Also appeared as Cornell Technical Report
CSD-TR-95-1521.

T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation
strategies for hybrid automata. In Proceedings of the 1994 Workshop
on Hybrid Systems and Autonomous Control, Lecture Notes in Com-
puter Science. Springer-Verlag, 1995. Priliminary version appeared

as Cornell Technical Report CSD-TR-94-1437.

J. He, C.A.R. Hoare, M. Franzle, M. Muller-Olm, E.R. Olderog,
M. Schenke, M.R. Hansen, A.P. Ravn, and H. Rischel. Provably cor-
rect systems. In FTRTFT’9}, Lecture Notes in Computer Science.
Springer-Verlag, 1994.

M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing sim-
ulations on finite and infinite graphs. To appear at FOCS, 1995.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: The next
generation. To appear at Proceedings of the 16th Annual Real-time
Systems Symposium (RTSS), 1995.

T.A. Henzinger, P-H. Ho, and H. Wong-Toi. A user guide to
HYTECH. To appear at Proceedings of the Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
Aarhus, Denmark, 1995.

T.A. Henzinger and P.W. Kopke. Hybrid automata with finite mu-
tual simulations. Technical Report CSD-TR-95-1497, Cornell Uni-
versity, 1995.

T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s de-
cidable about hybrid automata? In Proceedings of the 27th Annual
Symposium on Theory of Computing, pages 373-382. ACM Press,
1995.

[HMP92]

[HMP93]

[HMP4]

[HNSY94]

[Ho093]

[HPC95]

[HPS83]

[HRP94]

[Hub95]

[HW93]

183

T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems.
In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real Time: Theory in Practice, Lecture Notes in Computer
Science 600, pages 226 251. Springer-Verlag, 1992.

T.A. Henzinger, Z. Manna, and A. Pnueli. Towards refining temporal
specifications into hybrid systems. In R.L. Grossman, A. Nerode,
A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lecture Notes
in Computer Science 736, pages 60-76. Springer-Verlag, 1993.

T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof method-
ologies for timed transition systems. Information and Computation,
112(2):273-337, 1994.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Computation,

111(2):193-244, 1994.

J. Hooman. A compositional approach to the design of hybrid sys-
tems. In Proceedings of the 1992 Workshop on Hybrid Systems, Lec-
ture Notes in Computer Science 736, pages 121-148. Springer-Verlag,
1993.

M.R. Hansen, P.K. Pandya, and Z. Chaochen. Finite divergence.
Theoretical Computer Science, 138(1):113-140, 1995.

D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of reg-
ular programs. Journal of Computer and System Sciences, 26(2):222-

243, 1983.

N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear
hybrid systems by means of convex approximation. In B. LeChar-
lier, editor, SAS 9/: Static Analysis Symposium, Lecture Notes in
Computer Science 864. Springer-Verlag, 1994.

B. B. Hubbard. Hybrid systems: the control theory of tomorrow?
SIAM NEWS, 8(6):12-13, July 1995.

P.-H. Ho and H. Wong-Toi. Automated analysis of an audio con-
trol protocol. In Proceedings of the Conference on Computer-Aided
Verification, Lecture Notes in Computer Science 939, pages 381-394.
Springer-Verlag, 1995.

[HWT95]

[KHMP94]

[KIN*95]

[KMO1]

[KN93)

[KNRO3]

[KNRG94|

[KNRY95

[KPSY93]

[LA9S)

[Lam87]

184

T.A. Henzinger and H. Wong-Toi. Phase portrait approximation for
hybrid systems. Submitted, 1995.

A. Kapur, T.A. Henzinger, Z. Manna, and A. Pnueli. Proving safety
properties of hybrid systems. In H. Langmaack, W.-P. de Roever,
and J. Vytopil, editors, FTRTFT 94: Formal Techniques in Real-
time and Fault-tolerant Systems, Lecture Notes in Computer Science
863, pages 431-454. Springer-Verlag, 1994.

W. Kohn, J. James, A. Nerode, K. Harbison, and A. Agrawala. A
hybrid system approach to computer-aided control engineering. IEE
Control Systems Magazine, 15(2):14-25, 1995.

R.P. Kurshan and K.L. McMillan. Analysis of digital circuits through
symbolic reduction. IEEFE Transactions on Computer Aided Design,
10(11):1356-1371, 1991.

W. Kohn and A. Nerode. A hybrid systems architecture. In J.N.

Crossley, J.B. Remmel, R.A. Shore, and M.E. Sweedler, editors, Logic
Methods, Lecture Notes in Computer Science. Springer-Verlag, 1993.

W. Kohn, A. Nerode, and J.B. Remmel. Hybrid systems as Finsler
manifolds: finite state control as approximation to connections. In
To appear at Proceedings of Hybrid System Workshop, Lecture Notes
in Computer Science. Springer-Verlag, 1995.

W. Kohn, A. Nerode, J.B. Remmel, and X. Ge. Mutiple agent hybrid
control: carrier manifolds and chattering approximations to optimal
control. In CDC9/, 1994.

W. Kohn, A. Nerode, J.B. Rammel, and A. Yakhnis. Viability in
hybrid systems. Theoretical Computer Science, 138(1):141-168, 1995.

Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs:
a class of decidable hybrid systems. In R.L. Grossman, A. Nerode,
A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lecture Notes
in Computer Science 736, pages 179-208. Springer-Verlag, 1993.

M. Lemmon and P.J. Antsaklis. Inductively inferring valid logical
models of continuous-state dynamical systems. Theoretical Computer

Science, 138(1):201-210, 1995.

L. Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1 11, 1987.

[Lam93]

[Lam94]

[LeV92]

[LGKN93]

[LHO5]

[LP83]

[LPY95]

[LSA93]

[LVO2]

[LVO3)

[McMO3]

185

L. Lamport. Hybrid systems in TLA+. In R.L. Grossman,
A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lec-
ture Notes in Computer Science 736, pages 77 102. Springer-Verlag,

1993.

L. Lamport. The temporal logic of actions. ACM Transactions on
Programmang Languages and Systems, 16(3):872-923, 1994.

H. LeVerge. A note on chernikova’s algorithm. Technical Report

Research Report 635, IRISA, 1992.

J. Liu, X. Ge, W. Kohn, and A. Nerode. A semi-autonomous mul-
tiagent decision model for a battlefield environment. To appear at
Proceedings of Hybrid System Workshop, 1995.

Y. Lakhneche and J. Hooman. Metric temporal logic with durations.

Theoretical Computer Science, 138(1):201 210, 1995.

O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent
programs satisfy their linear specification. In Proceedings of the 12th
Annual Symposium on Principles of Programming Languages, pages

97 107. ACM Press, 1985.

K.G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic
model-checking of real-time systems. To appear at RTSS, 1995.

M. Lemmon, J.A. Stiver, and P.J. Antsaklis. Event identification
and intelligent hybrid control. In Proceedings of the 1992 Workshop

on Hybrid Systems, Lecture Notes in Computer Science 736, pages
268-296. Springer-Verlag, 1993.

N.A. Lynch and F. Vaandrager. Action transducers and timed au-
tomata. In R.J. Cleaveland, editor, CONCUR 92: Theories of Con-
currency, Lecture Notes in Computer Science 630, pages 436-455.
Springer-Verlag, 1992.

N.A. Lynch and F. Vaandrager. Forward and backward simulations,
part ii: timing-based systems. Technical Report CS-R9314, CWI,
Amsterdam, 1993.

K.L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publishers, 1993.

[MMP92]

[MP93]

[MPS95]

[MS94]

[MV94]

[Ner92]

[Ner93]

[NK93a]

[NK93b]

[NOSY93]

186

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems.
In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real Time: Theory in Practice, Lecture Notes in Computer
Science 600, pages 447 484. Springer-Verlag, 1992.

Z. Manna and A. Pnueli. Verifying hybrid systems. In R.L. Gross-
man, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, pages 4-35. Springer-Verlag,
1993.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete con-
trollers for timed systems. In STACS 95, Lecture Notes in Computer
Science. Springer-Verlag, 1995.

A K. Martin and C.-J.H. Seger. Conservative approximations of hy-
brid systems. Submitted, 1994.

J. McManis and P. Varaiya. Suspension automata: a decidable class
of hybrid automata. In D.L. Dill, editor, CAV 94: Computer-aided
Verification, Lecture Notes in Computer Science 818, pages 105 117.
Springer-Verlag, 1994.

J. Guckenheimerand A. Nerode. Simulation for hybrid systems and
nonlinear control. In CDC92, pages 2980 2981, 1992.

A. Nerode. Hybrid system games: extraction of control automata
with small topologies. Technical Report Technical Report 93-102,
Mathematical Science Institute, Cornell University, 1993.

A. Nerode and W. Kohn. Models for hybrid systems: au-
tomata, topologies, controllability, observability. In R.L. Grossman,
A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lec-
ture Notes in Computer Science 736, pages 317-356. Springer-Verlag,
1993.

A. Nerode and W. Kohn. Multiple-agent hybrid control architecture.
In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors,
Hybrid Systems, Lecture Notes in Computer Science 736, pages 297
316. Springer-Verlag, 1993.

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to
the description and analysis of hybrid systems. In R.L. Grossman,

[NSY93]

[NW8g]

[0SY94]

[PV94]

[PV95a]

[PVO5h]

Qs8]

[Rok93]

[RRHO3]

[Seg93|

187

A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lec-
ture Notes in Computer Science 736, pages 149-178. Springer-Verlag,

1993.

X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs
and hybrid systems. Acta Informatica, 30:181-202, 1993.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Opti-
mazation. Wiley, 1988.

A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the
verification of linear hybrid systems. In D.L. Dill, editor, CAV 9/:
Computer-airded Verification, Lecture Notes in Computer Science 818,
pages 81-94. Springer-Verlag, 1994.

A. Puriand P. Varaiya. Decidability of hybrid systems with rectangu-
lar differential inclusions. In D.L. Dill, editor, CAV 94: Computer-
arded Verification, Lecture Notes in Computer Science 818, pages

95 104. Springer-Verlag, 1994.

A. Puri and P. Varaiya. Driving safely in smart cars. Technical Re-
port UCB-ITS-PRR-95-24, California PATH Research Report, Au-
gust 1995.

A. Puri and P. Varaiya. Verification of hybrid systems using abstrac-
tions. To appear, 1995.

J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, edi-
tors, Fifth International Symposium on Programmang, Lecture Notes
in Computer Science 137, pages 337-351. Springer-Verlag, 1981.

T. G. Rokicki. Representing and Modeling Curcuits. PhD thesis,
Stanford University, 1993.

A.P. Ravn, H. Rischel, and K.M. Hansen. Specifying and verifying
requirements of real-time systems. [EEE Trans. on Software Eng.,

1993.

C.-J. H. Seger. Voss a formal hardware verification system user’s
guide. Technical Report Technical report 93-45, Department of Com-
puter Science, The university of British Columbia, Vancouver, B.C.,
Canada, 1993.

[Var93]

[WME92]

[Wolsg)]

[WT94]

[ZMO5]

188

P. Varaiya. Smart cars on smart roads: problems of control. [EEE
Transactions on Automatic Control, 38(2):195-207, 1993.

F. Wang, A.K. Mok, and E.A. Emerson. Real-time distributed sys-
tem specification and verification in asynchronous propositional tem-
poral logic. In Proceedings of the 12th International Conference on
Software Engineering, 1992.

S. Wolfram. Mathematica: A System for Doing Mathematics by
Computer. Addison-Wesley Publishing Company, 1988.

Howard Wong-Toi. Symbolic Approximations for Verifying Real-
Tivme Systems. PhD thesis, Department of Computer Science, Stan-
ford University, CA, December 1994.

Y. Zhang and A.K. Mackworth. Constraint nets: a semantic
model for hybrid dynamic systems. Theoretical Computer Science,

138(1):211 239, 1995.

