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ABSTRACT Automatic recording and analysis of bird calls is becoming an important way to understand

changes in bird populations and assess environmental health. An issue currently proving problematic with

the automatic analysis of bird recordings is interference from noise that can mask vocalizations of interest.

As such, noise reduction can greatly increase the accuracy of automatic analyses and reduce processing work

for subsequent steps in bioacoustics analyses. However, only limited work has been done in the context of

bird recordings. Most semiautomatic methods either manually apply sound enhancement methods available

in audio processing systems such as SoX and Audacity or apply preliminary filters such as low- and high-

pass filters. These methods are insufficient both in terms of how generically they can be applied and their

integration with automatic systems that need to process large amounts of data. Some other work applied

more sophisticated denoising methods or combinations of different methods such as minimum mean square

error short-time spectral amplitude estimator (MMSE STSA) and spectral subtraction for other species

such as anurans. However, their effectiveness is not tested on bird recordings. In this paper, we analyze

the applicability of the MMSE STSA algorithm to remove noise from environmental recordings containing

bird sounds, particularly focusing on its quality and processing time. The experimental evaluation using real

data clearly shows that MMSE STSA can reduce noise with similar effectiveness [using objective metrics

such as predicted signal quality (SIG)] to a previously recommended wavelet-transform-based denoising

technique while executing between approximately 5–300 times faster depending on the audio files tested.

INDEX TERMS Noise removal, bioacoustics, big data.

I. INTRODUCTION

Human expansion and climate change have led to dras-

tic changes in ecological balance, which has accelerated in

recent years. This necessitates close monitoring of different

species, particularly birds, which are very good indicators of

environmental health. Traditionally, to monitor birds, experts

needed to be present in the region of interest [1]. This is time

consuming and expensive. Animals make distinct vocalisa-

tions that can be picked up using sound recorders, which can

be later heard by experts to recognize different species present

in certain ecosystems. However, with the large amount of

recording data necessary to monitor an ecosystem, it is

impractical for humans to listen to and manually label record-

ings [2]. Consequently, monitoring surveys are conducted

based on selecting samples of recorded audio. However, this

methodology can introduce bias and incompleteness. Hence,

researchers have turned to automated techniques to process

these environmental recordings.

The approach of automatically processing environ-

mental recordings has recently seen significant research

interest [3]–[5] because of its range of applications, including

tracking bird migration [6], monitoring biodiversity [7], and

detecting endangered species [8]. An issue currently proving

problematic when processing environmental recordings is

that interference from noise canmask vocalisations of interest

andmake them difficult to recognise [1], [9]. Sources of noise

might be generated by geophony (environmental sounds such

as wind and rain), anthrophony (noise generated by humans,

though sources such as traffic and machines), and biophony

(sounds from animals that are not of interest) [1]. In the

context of bird acoustics, any sound other than birds is

considered noise. In this paper, we focus on the automatic

removal of background environmental noise that is present in

recordings with bird vocalisations. Denoising speech signals

is not a new topic [10], [11]; most research work in the

area of bird acoustics adapts noise reduction techniques.

In particular, some researchers apply low and high-pass

filters [12]–[14], which attenuate audio in frequency regions

known to not contain signals of interest. However, because

bird vocalisations are often in the same frequency range as
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interfering noise, a lot of noise remains in the recordings. The

method for automatically removing noise from recordings

with bird vocalisations should be sufficiently generic that

it can be utilised in different contexts such as noise from

different wind speeds, and different rain intensities. It should

also not distort bird vocalisations. Moreover, the amount of

acoustic data collected from multiple locations is sometimes

so large that the time efficiency of the chosen denoising

method becomes an important factor for consideration. Other

research into denoising methods such as wavelet packet

decomposition [9] does not consider time efficiency. Finally,

not all types of denoising methods are applicable for bird

acoustics, as environmental recordings generally have sounds

of interest that are non-stationary as well as noise that is

stationary. In other words, some noise is approximately con-

stant within short time durations, and other noise is not [15].

Moreover, the background noise is from uncorrelated sources

and additive in nature.

In this paper, we analyse and adapt the MMSE STSA filter

Ephraim and Malah [16] to remove stationary and uncor-

related noise from environmental recordings with differing

characteristics. We investigate the effectiveness of different

parameter settings to identify those that should be used for

automatic denoising. We compare the accuracy and time effi-

ciency of our proposed MMSE STSA denoising method for

bird recordings with a recent recommended wavelet decom-

position based method [9]. The contributions of this paper

are:

1) Analysis of the applicability of MMSE STSA for auto-

matic denoising of large scale environmental record-

ings containing bird vocalisations. The algorithm is

tested with six different categories of noisy recordings.

2) Analysis of different settings of the MMSE STSA esti-

mator for denoising environmental recordings contain-

ing bird vocalisations.

We discuss related works in the next section, followed by

an introduction to the MMSE STSA algorithm in Section III.

We present our experimental methodology and evaluation in

Sections IV and V, respectively, followed by conclusions and

future directions in Section VI.

II. RELATED WORK

In recent decades, several noise removal and sound enhance-

ment methods have been proposed for processing human

speech signals. Recently, there has been increasing interest

in finding ways to automatically recognise bird species in

environmental recordings. Noise interference has been a sig-

nificant problem in this research area as it can potentially

decrease the accuracy of bird recognition.

The simplest approaches to reducing background noise

in audio recordings are low and high-pass filtering. These

filters attenuate frequencies in regions of audio known not

to contain any signal. In the context of bioacoustics, the

calls of animals of interest are often known to be in a

certain frequency range, so anything not in this frequency

range can be eliminated. Birds typically do not make sounds

above 12 kHz or below 1 kHz [17], so sounds outside of

this region can be ignored. Neal et al. [12] uses a 1 kHz

high-pass filter as part of an effort to segment bird sounds.

Baker and Logue [13] use the same approach as part of a

technique to compare differences between chickadee sounds

across populations. Similarly, Bardeli et al. [14] use low-pass

filtering to help detect two endangered bird species. However,

as recordings usually have noise in frequency regions that

also contain bird calls [17], these filters on their own cannot

remove all noise from bioacoustics recordings. However,

because they aggressively remove any sound from target

frequency regions, they can be used in combinationwith other

techniques to improve noise reduction [9].

Another common approach for noise reduction is spectral

subtraction, as derived by Boll [10]. This was one of the

first algorithms developed to reduce general noise in audio.

This approach collects a ‘noise profile’, which is a sample

of audio only containing noise. It then analyses the noisy

component of the signal, breaking it down into its component

frequencies. It then subtracts these noise components from

the entire audio file, theoretically leaving only the signal.

A problem with this process is that it is prone to introducing

processing artifacts that can sound like musical tones [18].

Patti and Williamson [19] used spectral subtraction as a pre-

processing step in a bird species classification problem, but

did not test the effectiveness of the noise reduction itself.

Noise gating is similar approach that utilises a noise profile

for estimating the intensity of noise and reduces the volume

of any part of the recording which is below a noise thresh-

old [15]. Bedoya et al. [20] adapted this methodology to

aid in the detection of anuran (frog-like) species. While the

noise reduction itself was not tested for its effectiveness, the

overall system proved to be successful in classifying 13 anu-

ran species, achieving an accuracy of 99.38%–100%, which

compares favourably to similar studies. Due to their effec-

tiveness, spectral subtraction and noise gating are employed

by the widely-used audio editors SoX [21] and Audacity [22],

respectively. However, as these methods require estimation of

noise from a noise profile, their applicability is limited to the

context of developing an automated system for recognising

bird sounds from diverse environmental recordings, because

researchers need to collect noise profiles that cover all dif-

ferent types of background noise featured in the recordings.

Figure 1 illustrates this problem. In this example, identical

audio files are processed by the same spectral noise gating

approach, but one (Figure 1b) uses a noise profile selected

from a portion of audio from a different time of the recording,

while the other (Figure 1c) uses a noise profile selected from

an uneventful part of the recording. When using a general

noise profile from another time in the recording, the noise

filter removes much less noise.

The Wiener filter approaches noise filtering in a similar

way to spectral subtraction, in that it assumes a signal is made

up of a desired component and a noisy component, but it

approaches the estimation of these components differently.

This filter aims to optimise the minimum mean square error
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FIGURE 1. Comparison between usage of noise profiles. (a) Raw Recording. (b) General Noise Profile. (c) Specific Noise Profile.

between the target signal and the predicted signal. An issue

with this technique is that it assumes that noise and signal

are both stationary [9], which is not necessarily true in long

duration environmental recordings.

The MMSE STSA estimator derived by

Ephraim andMalah [16] is another noise reduction approach.

It derives a near-optimal short time spectral amplitude estima-

tor to significantly improve noise reduction with a reduction

in artifacts compared to spectral subtraction andWiener filter-

ing. An improvement to this method uses log spectra, which

was found by Ephraim andMalah [23].While this approach is

intended as a speech enhancement technique [24], it was used

successfully in a bioacoustics scenario by Alonso et al. [1] as

part of a semi-automated segmentation technique for auran

identifications. However, they did not analyse the general

effectiveness of MMSE STSA for different environmental

recordings, in particular for bird identifications. In our paper,

we extensively study the applicability of MMSE STSTA for

denoising environmental recordings for bird identification

application.

Ren et al. [18] apply a similar noise removal model to

wavelet transforms, rather than Short Time Fourier Trans-

forms (STFTs) as used by other techniques. This is designed

to avoid the problem of choosing window sizes for STFTs,

which have a trade-off between time resolution and frequency

resolution, depending on the window size. Instead, wavelet

transforms implicitly use different window sizes for differ-

ent frequency components, which reduces the problems pre-

sented by this trade-off. Ren et al. [18] tested this wavelet

based method against other noise reducing techniques, such

as spectral subtraction and MMSE STSA (with 32 ms win-

dows, 75% overlap, and smoothing factor α = 0.98). They

modified clean audio recordings of different animals by

adding white noise and environmental noise. They found

that their approach increased the signal to noise ratio and

segmental signal to noise ratio (which considers the signal to

noise ratio for smaller segments of audio) more than other

approaches where the signal to noise ratio of the original

audio is lower. Once the signal to noise ratio of the audio

became closer to 0 dB, the standard MMSE STSA approach

started to reduce the noise slightly more effectively. Other

approaches, such as spectral subtraction, did not perform

well.

Priyadarshani et al. [9] similarly use wavelet transforms

to remove noise in a bird sound recording. They use Shan-

non entropy to determine noise thresholds. The intuition is

that noise will have a higher entropy than signal, and this

can be used as a basis to remove noise information. They

combine this with band-pass filters which remove frequen-

cies outside of the range of the signals. They evaluate their
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technique using noisy environmental recordings, as opposed

to Ren et al. [18], who artificially added noise to their

recordings. They define a ‘success ratio’, which compares

the initial noise level to the noise level after denoising, and

a modified peak signal to noise ratio, which considers the

ratio between the maximum value and mean squared error

of the signal. They found large improvements in all metrics

compared to applying simple band-pass filtering. However,

the use of signal to noise ratio to evaluate filter quality is

problematic, as this cannot be used to determine how well the

original signal has been preserved. As such, our evaluation

uses measures that can evaluate noise removal and (retained)

signal quality. We use these measures to compare results with

those of Priyadarshani et al.’s [9] wavelet transform method.

In summary, most work in bird identification from envi-

ronmental recording applies simple denoising methods such

as low and high-pass filters. Most researchers use off the shelf

methods without fully analysing the wide applicability of

the denoising or signal enhancement techniques. Denoising

methods such as spectral subtraction and noise gating require

estimation of noise using a noise profile, and thus are not

applicable for automatic denoising of diverse environmental

recordings. According to Priayadarshani et al. [9], Wiener

filters are not applicable in the context of environmental

recordings. MMSE STSA and wavelet transform based meth-

ods appear to be viable solutions based on previous methods.

However, to the best of our knowledge, no existing research

considers the time efficiency of the denoising algorithms,

which is becoming increasingly important given the very

large and increasing amount of environmental recordings that

are being collected every day. In this paper, we propose using

the MMSE STSA method with band-pass filters for gener-

alised automated denoising of environmental recording for

bird identification. We compare our proposed method with

the wavelet transform based denoising method proposed by

Priyadarshani et al. [9].

III. MMSE STSA ALGORITHM

As discussed, environmental recordings generally contain

noise which interferes with the actual signal, making

identifying bird sounds more difficult, particularly for auto-

mated processes. Any developed denoising method should be

applicable to a wide range of recordings and should be able

to be integrated with automated systems for processing large

amounts of recordings to identify birds. In environmental

recordings, noise may vary over long durations. For example,

changing wind speed can vary the amount of background

noise. It also might not always be possible to cancel out the

noise completely, particularly if it has non-stationary compo-

nents. We aim to reduce the effects of the noise on the signal’s

average spectral amplitude. The Minimum Mean-Square

Error (MMSE) Short-time Spectral Amplitude (STSA) esti-

mator designed by Ephraim and Malah [16] gives a theoreti-

cally optimal estimation of the clean spectral amplitude and

possesses significant advantages over other spectral based

methods when dealing with non-stationary noise, which is

the context of environmental recordings. This approach is

based on modeling speech and noise spectral components

as statistically independent Gaussian random (i.e. normally

distributed) variables. The signal to noise ratio (SNR) of the

audio is estimated a priori, and the filter adapts based on how

high the SNR is (it is more aggressive when the SNR is low).

We present an overview here for the reader’s convenience.

Let Y (k),N (k), andX (k) be the Short Time discrete Fourier

Transform (STFT) of original noisy signal, noise signal and

clean signal, respectively, and integer k represent the fre-

quency index. In the frequency domain, the noisy signal can

be represented as:

Y (k) = X (k) + N (k) (1)

which is defined for each frequency index k as

Yk exp
jθYk = Xk exp

jθXk +Nk expjθNk (2)

where Yk ,Xk ,Nk and θ{·} are the magnitudes and phase of the

frequency spectrum. The MMSE STSA filter is summarised

using the equation for the minimum mean squared estimate

of spectral amplitude of the clean signal(X̂ ):

X̂ = GMMSE (k)Yk (3)

where GMMSE is the spectral gain factor, given by:

GMMSE (k)

=
√

πvk

2
exp

−vk
2

[

(1 + vk) I0

(vk

2

)

+ vk I1

(vk

2

)]

(4)

where I0(·) and I1(·) are modified Bessel functions of the

zeroth and first order, respectively, and vk is defined as:

vk = ξk

(1 + ξk )
γk (5)

where ξk and γk are estimated a priori and a posteriori signal

to noise ratios for each spectral components. The a posteriori

signal to noise ratio obtained is defined as the ratio of the

actual noisy signal to the variance of noise power (σn):

γk =
Y 2
k

σ 2
n (k)

(6)

Ephraim and Malah proposed a decision-directed method

to iteratively compute the a priori and a posteriori SNR.

Initially the variance of noise (σ 2
n (k)) is computed based on

silence regions and then the a posteriori SNR is obtained on

a frame by frame basis. Generally, estimation is based on the

first few frames in the recording. The initial value of the a

priori SNR ξk (0) is given by

ξk (0) = α + (1 − α)P[γk (0) − 1] (7)

where P[·] is a rectification function to ensure the

STSA estimator is positive even, and α is the smoothing

constant with typical value of 0.98.

For each frame m, we update the a priori SNR estimate

using

ξk = αγk (m− 1)GMMSE
2
k (m− 1) + (1 − α)P[γk (m) − 1],

0 < α < 1 (8)
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Algorithm 1MMSE STSA Implementation

Data: Input: Audio File = af ; Window Size = WSize;

Noise Threshold = Thresh

Result: Denoised Audio File paf ;

Apply 1 kHz high-pass filter;

Apply Hamming Window, 50% overlap, Window

Size=WSize. This splits into frames of size WSize. Let

Frames[k] be these frames, where k is a frame ID. for

i in (Frames) do

Coeffs[i, j]= FFT(i);

// Where FFT is the Fast Fourier

Transform. j is the frequency

index of the coefficients (which

is of size Wsize)

Let Magnitude[i, j] = mod(Coeffs[i, j]);

// The volume of each frame and

each frequency index

end

Let InitialFrames[i, j] be the Magnitude of the frames in

the segment used to initialise mean noise level and mean

noise variance (approximately 0.1 seconds);

Let OtherFrames[i, j] be the Magnitude all other frames;

Let NoiseMean[j] be the mean noise level for each

frequency index j. Initialise this to be the mean of all

InitialFrames;

Let NoiseVar[j] be the mean noise variance for each

frequency index j. Initialise this to be the mean volume

squared of all InitialFrames;

for k in (OtherFrames) do

for m in length(WSize) do

Apply VAD;

// Voice Activity Detection.

Detects if a sample contains

animal sound.

if OtherFrames[k,m] has no signal then

Update NoiseMean[m] and NoiseVar[m];

end

Calculate spectral gain factor for

OtherFrames[k,m]. Set this to

SpectralGain[k,m];

Apply Spectral Gain (otherFrames[k,m] =
otherFrames[k,m] × SpectralGain[k,m]);

end

end

paf = Inverse FFT(Frames);

// Where Frames contains InitialFrames

followed by the newly processed

otherFrames

A. DENOISING ALGORITHM IMPLEMENTATION

The actual implementation is summarised in Algorithm 1.

This consists of the following steps:

Firstly, audio files are converted to 22.05 kHz mono wave

files. This is chiefly to reduce computation time in later

analysis steps. A 1 kHz high-pass filter is then applied to

these files. This attenuates the sound below 1 kHz, which

can be done without loss of signal as no birds make sound

below 1 kHz [17]. For each audio file, theMMSE-STSA algo-

rithm is applied, where each file is divided into predefined

window frames. In the experimental evaluation, we utilise a

native Java implementation1 of the MMSE STSA estimator

as described by Ephraim and Malah [16].

This begins by applying a Hamming Window with 50%

overlap is applied to each chunk. Thewindow size is specified

as an input parameter. A Fast Fourier Transform (FFT) is

applied to each frame. The amplitude of the audio at a given

frequency is given by the modulus of the resulting complex

coefficients.

An initial segment of audio is used to estimate the mean

noise level and variance of the audio for each frequency

given by the FFT. The length of the segment chosen is set

to be approximately 0.1 seconds. The number of frames

varies depending on the windows size and sample rate. For a

sample rate of 22.05 kHz, this is equivalent to 7 frames for a

512 windows size, 16 frames for 256 samples, and 33 frames

for 128 samples, i.e. for frames with 50% overlap.

At this point, Voice Activity Detection (VAD) is applied

on each of the other windows in the audio. This begins by

calculating the volume difference (in dB) between the current

signal and the mean noise level for each frequency. Any

negative values are truncated to zero. The mean of the noise

differences over all frequencies is computed. The mean noise

level is calculated using

n̄ = l ∗ n̄old + Yk

l + 1
(9)

where n̄ is the mean noise level, Yk is the magnitude of

the frequency at the frequency index k for the given frame,

and l is the noise length.

In the existing implementation, the noise length is set to

be constant, although we observed greater success initialising

it to 0 and incrementing by 1 each time the noise profile is

updated, so as to accurately calculate the noise mean. Keep-

ing this static in the implementation is likely done to make

newer frames detected as noise having a higher weighting in

the noise mean. The same principle applies with the noise

variance.

If this mean difference is below a noise threshold, it is

classified as noise. This noise threshold is specified as an

input parameter. If there has been a pre-specified number of

consecutive frames of noise (called the ‘frame reset’ by the

implementation), then the sample is flagged as not containing

speech (i.e., a bird call) and the noise mean and variance is

updated to include the current frame. Otherwise, it is said

to contain speech. The frame reset is an input parameter,

but early experimentation found that varying this in the

range [1, 20] did not have a noticeable effect on the audio,

so its value is left at the default of 8.

1Available at https://github.com/alexanderchiu/AudioProcessor
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FIGURE 2. Comparison between the MMSE STSA configurations. (a) SIG. (b) BAK. (c) OVL.

The spectral gain factor for each frequency index is com-

puted by evaluating, in order, Equations 6, 8, 5 and 4, sub-

stituting variables computed in the previous equations. If the

calculated gain is infinite, due to precision errors in the Java

implementation the gain is instead set to

GMMSE (k) = ξk

1 + ξk
(10)

This occurs if the modified Bessel functions (see Equation 4)

give very high values that are approximated to infinity in the

implementation. This is an infrequent occurrence (it usually

is not applied to any frames, and usually less than 100 frames

out of 44000).

The magnitude of each discrete frequency component of

the current window is multiplied by the computed gains for

each of these components. The signal is converted back into

the time domain using an Inverse Fast Fourier Transform.

Windows are combined to form the processed signal, with

overlapping components being added together. This signal is

written to a new file.

IV. EXPERIMENTAL METHODOLOGY

The aim of this research is to present a denoising method

which can be use in automatic bird identification systems.

In other words, the denoising method should be generally

applicable in different situations and it should have low

execution time. Accordingly, experiments are designed such

that these features of our proposed denoising method can be

evaluated. For experiments, we utilise real data collected from

four different locations recorded by the Samford Ecological
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FIGURE 3. Effect of high Shannon entropy on the Wavelet Transform algorithm in a Category 1 (Low SNR) recording in terms of spectrograms
(left) and waveforms (right). (a) Raw. (b) Clean. (c) Wavelet Transform (Entropy = 4.5).

Research Facility (SERF), operated by the Queensland Uni-

versity of Technology. The SERF recordings were taken over

five days between October 12 2010 and October 16 2010.

Recordings from this group have been used in several

research papers in the field [4], [25]. We randomly chose

audio samples from these four locations from one day of

this recording for evaluation. We conducted two types of

experiments:

1) a sensitivity analysis of the algorithm to identify the

most appropriate parameter values to effectively reduce

noise from bioacoustics recordings without degrading

the signal and minimising distortion; and

2) a comparison of the performance of the proposed

method against that of the wavelet transform based

method by Priyadarshani et al. [9].

A. PERFORMANCE MEASURES

Wemeasured the performance of our proposedmethod in two

ways:

1) Composite Evaluation Measures (SIG, BAK, and

OVL): Composite measures [26] based on a linear

combination of the Segmental SNR (SegSNR),

Weighted-Slope Spectral Distance (WSS) [27], Percep-

tual Evaluation of Speech Quality (PESQ) [28], [29],
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FIGURE 4. Effect of high Shannon entropy on the Wavelet Transform algorithm in a Category 3 (High SNR) recording in terms of
spectrograms (left) and waveforms (right). (a) Raw. (b) Clean. (c) Wavelet Transform (Entropy = 4.5).

Log Likelihood Ratio (LLR), and Itakura-Saito (IS)

distance [30] are evaluated for all filters and filter

configurations. These are based on correlating these

established evaluation metrics with a subjective eval-

uation of Signal Quality (SIG), Background Intrusive-

ness (BAK), and Overall Quality (OVL). The equations

for these three metrics are:

Csig = 3.093 − 1.029 · LLR+ 0.603 · PESQ
− 0.009 ·WSS (11)

Cbak = 1.634 + 0.478 · PESQ− 0.007 ·WSS
+ 0.063 · SegSNR (12)

Covl = 1.594 + 0.805 · PESQ− 0.512 · LLR
− 0.007 ·WSS (13)

Without the availability of truly clean audio recordings

to compare the filters’ results against, these recordings

are compared to samples processed using an aggres-

sive spectral noise gating approach, with noise profiles

specifically selected for each recording. These record-

ings represent a good approximation of the true signal.

Files are also down-sampled to 16 kHz for this evalua-

tion, which gives a Nyquist frequency of 8 kHz, which

is lower than some bird sounds [17], but still captures

VOLUME 6, 2018 5017



A. Brown et al.: Automatic and Efficient Denoising of Bioacoustics Recordings

FIGURE 5. Comparison between the MMSE STSA and Wavelet Transform approaches at different Shannon entropies for each of the six
categories. (a) SIG. (b) BAK. (c) OVL.

most of the soundscape. This is done to evaluate PESQ,

which is needed to evaluate SIG, BAK, and OVL.

2) Execution time: The execution time is the time taken

for denoising a bird acoustic recording. In general, the

denoising step is just a pre-processing step in the whole

automatic analysis of a recording. It is expected that

it should take less time than the original recording

to enable the overall analysis process to be efficient.

Therefore, this metric is important to evaluate the prac-

tical usage of any denoising method.

V. EXPERIMENTAL EVALUATION

A. MMSE STSA PARAMETER ESTIMATION

We examined theMMSE STSA algorithm’s sensitivity to two

parameters that exhibit the largest impact on the audio output:

window size and noise threshold.

• Window size is the number of samples in each frame

that is processed. A sample is equal to a part of audio

representing 1/(sample rate) of audio. For a sample

rate of 22.05 kHz, this is equal to 1/22050 seconds of

audio per sample. Lower window sizes give the high-

est time resolutions, at the expense of having the low-

est frequency resolutions. They also produce aliasing

artifacts, as discontinuities between different windows

can occur when processing each window separately

and then recombining. This is the motivation for using

overlapping Hamming windows, although this does not

completely solve the problem. Audio clips processed

with lower window sizes sound more crisp, but also

suffer more distortion compared to higher window sizes,

which tend to sound cleaner, but also more ‘washed

out’. With extremely high window sizes, a reverberation

effect is heard.

• Noise threshold affects how much noise is removed

from the audio. It is defined as the minimum difference

in dB between the mean noise level and the current level

to be detected as a signal. Smaller values remove less

noise, but are less prone to unintentionally removing

good signals compared to larger values.

The experiment is conducted using 10-second excerpts

from a day-long bioacoustics recording. Excerpts are selected

and placed into one of six categories which have differ-

ent properties to each other. The categories are summarised

in Table 1. These are processed using the MMSE STSA

approach testing for different window sizes and noise thresh-

olds. Three window sizes (128, 256, and 512 samples), and

three noise thresholds (2 dB, 6 dB, 10 dB) are tested in

combination with each other, for a total of 9 configurations.

Composite measures are evaluated for each of the six cate-

gories, for each of theMMSE STSA configurations evaluated

in the subjective listening tests. The results of these are shown

in Figure 2.

The results show that, in terms of average performance,

there is little difference between configurations: differences
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FIGURE 6. Spectrogram comparison of Filters for Category 1 recordings. (a) Clean. (b) MMSE STSA. (c) Wavelet Transform (Entropy = 1).
(d) Wavelet Transform (Entropy =2).

TABLE 1. Categories of different experimental recordings.

between the best and worst configurations are within one

standard deviation. Additionally, the ‘clean’ recordings are

not truly clean, but are in fact denoised using a different

approach, which introduces a confounding variable. Nonethe-

less, with a low standard deviation and equal highest average

for the ‘overall‘ metric, the configuration with a window

size of 512 and noise threshold of 2 is identified as a strong

configuration, and is selected for comparison between the

MMSE STSA algorithm and the Wavelet Packet Decom-

position approach with Shannon Entropy Threshold by

Priyadarshani et al. [9]

The filter preserves signal more effectively than it removes

background noise, as indicated by the much higher average

values of SIG compared to those for BAK; surprisingly,

BAK does not correlate with higher noise thresholds.

Additionally, overall scores are low throughout. Average

SIG is approximately 3, indicating somewhat natural, some-

what degraded sound, while the average BAK is approxi-

mately 2, indicating fairly conspicuous, somewhat intrusive

background noise [26], although it is unclear whether this

is because the MMSE STSA filter is poor, or the ‘clean’

comparison audio is problematic.

B. COMPARISON WITH WAVELET TRANSFORM

AMATLAB implementation of the Wavelet Transform tech-

nique by Priyadarshani et al. [9] is openly available to

use, and is evaluated on the same target audio samples

as the MMSE STSA algorithm. Using default settings, the

noise filtering (indicated by Shannon entropy) removes too

much information from the audio recordings, which may

be observed in Figure 3. Better results are observed if the

original SNR is sufficiently high (e.g., Figure 4), although

a human listening test reveals that some signal information is

lost or degraded in most cases.

Accordingly, for the following experiments, lower Shan-

non entropy thresholds are used to reduce the amount of sig-

nal degradation. The processing results with lower thresholds

somewhat similar to MMSE STSA, although they tend to

degrade more of the signal, contain more artifacts, and reduce

less noise.
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FIGURE 7. Spectrogram comparison of Filters for Category 3 recordings. (a) Clean. (b) MMSE STSA. (c) Wavelet Transform (Entropy = 1).
(d) Wavelet Transform (Entropy = 2).

1) COMPOSITE EVALUATION METRICS

A test is conducted comparing the composite evaluation

measures SIG, BAK, and OVL for MMSE STSA (Window

Size= 512, Noise Threshold= 2) and theWavelet Transform

approach with different Shannon entropies, the results of

which are shown in Figure 5. Each category is tested using

5 files each.

The results show that these composite indices vary signifi-

cantly between files in the same category, as indicated by the

large standard deviations (error bars in Figure 5). However, it

appears likely that, for most categories, the MMSE STSA fil-

ter and wavelet transform-based filter with Shannon entropy

equal to 1 outperform the wavelet transform approaches

with higher Shannon entropies in terms of signal preserva-

tion (SIG). However, as shown in Figure 3 in some cases, the

wavelet transform-based technique can significantly damage

the signal at high Shannon Entropies. In some categories,

most notably Category 6, MMSE STSA outperforms the

wavelet transform technique for all Shannon entropy thresh-

olds. For background noise intrusiveness (BAK), there is

little difference between any filter for any category, which

seems to contradict the spectrograms, which show large vari-

ations in the amount of background noise removed (see, for

example, Figure 6).

Overall, these results indicate that it is unlikely that the

wavelet transform technique is better than the MMSE STSA

filter in improving the quality of a noisy bioacoustics record-

ing. Additionally, Figures 6–8 suggest that the MMSE STSA

filter is more effective in removing noise, while preserving

signal, compared to the wavelet transform approach.

2) EXECUTION TIME

Table 2 shows the execution times of the proposed MMSE

STSA and the Wavelet Transform algorithms. The experi-

ment is conducted using a MATLAB implementation of both

algorithms. Each algorithm is applied to one 10-second-long

sample for each category and used a machine with an Intel

Core i5-5200U @ 2.2 GHz (64-bit) processor and 8 GB

RAM. The test is repeated five times for each file and an

average is calculated. The MMSE STSA algorithm tested is

a MATLAB implementation using its default settings. Note

that this is different to the implementation used for evalu-

ating the quality of the algorithm, which is Java-based and

significantly faster. We use the MATLAB implementation

here because the existing implementation of the Wavelet

Transform algorithm provided by Priyadarshani et al. [9] is

MATLAB-based. Default settings (with the Shannon Entropy

set to 4.5) are used for testing, although in informal observa-

tions, changing the Shannon Entropy does not appear to have

a significant effect on execution times. The algorithm is set

to not perform band-pass filtering, as this is done to the raw

audio prior to processing by the two algorithms.
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FIGURE 8. Spectrogram comparison of Filters for Category 5 recordings. (a) Clean. (b) MMSE STSA. (c) Wavelet Transform (Entropy = 1).
(d) Wavelet Transform (Entropy = 2).

TABLE 2. Comparison of execution time in seconds.

The results indicate that the execution time of MMSE

STSA is stable and takes about 2.0 seconds to denoise a

sample of 10 seconds. In comparison, the wavelet transform

approach’s runtime is highly variable (from 9.67 to 625.18

seconds) depending on the file tested. Across the range of

samples, the wavelet algorithm’s average runtime to process

10 seconds of audio is 89 seconds, which is unacceptably

high given that in practical scenarios recordings are of at

least 24 hours. Hence, MMSE STSA appears better suited for

denoising audio recordings in practical automated systems.

VI. CONCLUSION AND FUTURE DIRECTIONS

With the rapid growth in the number of audio recorders

installed to continuously monitor different natural locations,

automating the process of identifying bird species from

bioacoustics recordings is a pressing need. However, these

recorders are often unattended and the noise level is quite

high, which makes reliable identification of bird volcalisa-

tions a difficult and time consuming task. In this paper, we

proposed using the MMSE STSA filter in combination with

a high-pass filter to efficiently and accurately denoise such

recordings.

The MMSE STSA filter depends on two input parameters,

window size and noise threshold. We first estimated the

most appropriate settings using real bioacoustics recording

samples with varying noise and bird call characteristics by

evaluating composite measures for processing with different

settings. We found that a window size of 512 and a noise

threshold of 2 gave the highest average with the lowest stan-

dard deviation, though standard deviations for MMSE STSA

are high, meaning this is not a definitive result.

We then compared the performance of our proposed

method with aWavelet Transform-based approach, one of the

most recently proposed denoising method for bird acoustic

recordings. Composite index testing showed that there is little

difference between the wavelet transform with a Shannon

Entropy of 1 and theMMSE STSA filter, and higher Shannon

Entropy thresholds failed to preserve the signal as effectively.

This can be observed in Figure 4. However, the execution time

for MMSE STSA is considerably shorter than that of Wavelet

Transform, by one to two orders of magnitude, and this

increased execution time is not justified by any corresponding

increase in filtering quality. In particular, MMSE STSA’s
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execution time is much lower than the length of the origi-

nal audio being processed, which is essential if continuous

recordings are to be processed in a reasonable time.

Even thoughMMSE STSA gives better results, there is still

space to improve given there will be further processing of

audio files which may be more complex and time consuming.

In future, we will try to develop a parallel and scalable

implementation of MMSE STSA utilizing GPUs to further

reduce the processing time.
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