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Abstract—We describe a procedure to accurately measure
ground deformations from optical satellite images. Precise
orthorectification is obtained owing to an optimized model of the
imaging system, where look directions are linearly corrected to
compensate for attitude drifts, and sensor orientation uncertain-
ties are accounted for. We introduce a new computation of the
inverse projection matrices for which a rigorous resampling is pro-
posed. The irregular resampling problem is explicitly addressed to
avoid introducing aliasing in the ortho-rectified images. Image reg-
istration and correlation is achieved with a new iterative unbiased
processor that estimates the phase plane in the Fourier domain for
subpixel shift detection. Without using supplementary data, raw
images are wrapped onto the digital elevation model and coregis-
tered with a 1/50 pixel accuracy. The procedure applies to images
from any pushbroom imaging system. We analyze its performance
using Satellite pour l’Observation de la Terre (SPOT) images in
the case of a null test (no coseismic deformation) and in the case
of large coseismic deformations due to the Mw 7.1 Hector Mine,
California, earthquake of 1999. The proposed technique would
also allow precise coregistration of images for the measurement
of surface displacements due to ice-flow or geomorphic processes,
or for any other change detection applications. A complete soft-
ware package, the Coregistration of Optically Sensed Images and
Correlation, is available for download from the Caltech Tectonics
Observatory website.

Index Terms—Change detection, coseismic displacements,
geocoding, image registration, image resampling, optical
imagery, orthorectification, Satellite pour l’Observation de la
Terre (SPOT), satellites, subpixel correlation.

I. INTRODUCTION

EARTH SURFACE changes can be determined by compar-

ing pairs of optical satellite images acquired on different
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dates. Precise images coregistration is a prerequisite in such

applications, and this critical step is often a major source of

limitation [1], [2]. For instance, a registration accuracy of less

than 1/5 of a pixel is required to achieve a change detection

error of less than 10% in Landsat Thematic Mapper images [3].

As to the measurement of Earth surface displacements, which is

the driving motivation of this paper, most applications require

a measurement accuracy of less than 1 m. This implies that the

images co-registration accuracy should be even less, i.e., sig-

nificantly smaller than the pixel size of most currently available

optical satellite images. Examples of such applications include

the measurement of coseismic ground deformations [4]–[7], ice

flow [8], and sand dune migrations [9].

Difficulties in accurately coregistering satellite images arise

from the nonideal characteristics of the optical systems, the

changing attitude of the spacecraft during the scanning oper-

ation of the images, digital elevation model (DEM) errors, and

inaccurate resampling. The accuracy of the measurements of

ground displacements, in addition, depends on the performance

of the correlation technique. Despite these difficulties, encour-

aging results were obtained in a number of studies. It should be

noted, however, that they were all carried on using data from

only one imaging system and under restrictive conditions such

as similar viewing angles and satellite tracks [4], [10], [11] or

using external information from global positioning system

(GPS) measurements [6]. Precise coregistration of images with

viewing angle differing by more than 3◦ also seems out of

reach [4], [11]. The operational use of such a technique, in

particular to monitor coseismic deformations, would benefit

from a more generic approach, allowing to cross-correlate

images from different imaging systems with different viewing

angles, and without the need for information other than what is

extracted from the satellite ancillary data and the topography.

To be coregistered, remotely sensed images need to be pro-

jected and resampled onto some common reference system.

One method consists of fixing one image as the reference

image, the master image. Its viewing geometry defines the com-

mon reference system, and other images, the slave images, are

projected and resampled onto this reference system. Analysis

of images’ discrepancies is carried out in this reference frame

by applying the desired change detection algorithm. This ap-

proach is commonly used in processing pairs of radar images

0196-2892/$25.00 © 2007 IEEE
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to produce differential interferograms [12]. Examples with

optical images are found in [5] and [8]. A second method is to

project and resample each image onto a reference system that is

independent of the satellite viewing geometry, such as a ground

projection. The technique, thus, consists of projecting images

onto the ground according to their viewing geometry, with the

change detection analysis being performed on the set of ground

images generated. This approach is illustrated in [4], [6], and

[7]. Here, we prefer this second method. It is the most flexible

way to coregister images from different acquisition systems

(e.g., pushbroom images, aerial photographs, etc.), and the pro-

duction of ground-projected images provides a georeferenced

by-product suitable for many other needs.

This paper describes an automatic processing chain to accu-

rately and rigorously coregister and compare a set of optical

satellite images. The processing chain is composed of four fun-

damental processes: The first process projects each pixel from

the satellite focal plane onto a ground reference system. This

operation utilizes knowledge from both the imaging system

and the ground topography. The second process performs the

resampling of the acquired image according to the projection

mapping previously calculated. This yields ground-projected

images, called ortho-rectified images. Cumulative uncertain-

ties on both the imaging system and the topography lead to

distortions and misregistrations between the pairs of ortho-

rectified images to be compared. The processing chain is there-

fore augmented with a third process, optimizing the satellite

viewing parameters with respect to some reference frame.

This reference frame will be either a shaded version of the

topography model or another image previously ortho-rectified.

Misregistrations to be corrected are measured from the fourth

process, a correlation.

In this paper, we focus on images from the Satellite pour

l’Observation de la Terre (SPOT) satellite systems principally

because raw images are delivered with all the acquisition pa-

rameters [ephemeris, attitude components during the imaging

process, charge coupled device (CCD) look directions, etc.]

provided in ancillary data [13]. We also use panchromatic

(PAN) images rather than multispectral images because of

their higher ground resolution, which is a major advantage

for the measurement of ground deformations. PAN images of

the SPOT satellites 1, 2, 3, and 4 have a ground resolution

of 10 m. The 5- and 2.5-m ground resolutions are available

from SPOT 5. The technique presented can be applied to any

multispectral images, making it appropriate for any change

detection applications. Images from other pushbroom systems

also can be processed from our methodology, as explained

for Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) images in Appendix IV. An application

is given by the study in [14].

The first three sections of this paper present, respectively,

the orthorectification mapping computation, the resampling

scheme, and the correlation-registration algorithm. The fourth

section describes the global optimization mechanism and the

processing chain that allows for accurate images orthorectifi-

cation and coregistration. Finally, the last section assesses the

quality of the whole process and presents an application to the

measurement of a coseismic displacement field.

II. PUSHBROOM GEOMETRY AND

ORTHORECTIFICATION MODELS

A rigorous way to register satellite images is to determine the

orthorectification parameters for each image such that precise

registration is achieved. We therefore first examine the model-

ing of the SPOT satellites viewing geometry. SPOT satellites

are pushbroom imaging systems, meaning that all optical parts

remain fixed during the images acquisition and the scanning is

accomplished by the forward motion of the spacecraft. Each

line in the image is then acquired at a different time and sub-

mitted to the variations of the platform. Since the pushbroom

acquisition system of all SPOT satellites are modeled by the

same set of equations (see Appendix IV for the case of ASTER

images), it is possible to derive a common orthorectification

scheme.

A. Direct Orthorectification Model

The direct orthorectification model computes the geographic

location on the ground where each pixel in the raw image, i.e.,

the focal plane of the instrument, has to be projected. Notations

are derived from the SPOT satellite geometry handbook [15].

1) Navigation Reference Coordinate System and Look

Directions: The navigation reference coordinate system

(O1,X1, Y1, Z1) is the spacecraft body fixed reference system.

O1 is the satellite center of mass and denoting the satellite

position and velocity vectors by �P and �V , the axes are defined

such that, at nominal attitude when the satellite roll, pitch and

yaw are null angles, we have





�Y1//�V
�Z1//�P
�X1 = �Y1 ∧ �Z1.

(1)

The SPOT satellites (1, 2, 3, 4, and 5) positions and velocities

are given in Cartesian coordinates with reference to the Inter-

national Terrestrial Reference Frame (ITRF) [16]. In the past

years, the WGS 84 geodetic system has been gradually aligned

to the successive ITRF realizations. For this paper, we can

consider that the WGS 84 and the different ITRF realizations

are undistinguishable, and we then express all coordinates in

the WGS 84 reference system.

The SPOT satellites sensor consists of a CCD line array

responsible for the image pushbroom scanning operation. Ex-

pressed in the navigation reference coordinate system, the look

directions are modeling the equivalent pointing direction of

each CCD element. By being constant during the image acquisi-

tion, they provide the internal camera model accounting for the

mirror rotation, optical distortions, and calibration parameters

resulting from on-ground postprocessing. The look directions

are provided in ancillary data in the form of a two angle rotation

(Ψx,Ψy) around the satellite body fixed system axes (Fig. 1).

Hence, for all columns c and for all rows r in the raw image,

the look directions �u1 are given by

�u1(c, r) =
�u ′

1(c, r)

‖�u ′
1(c, r)‖2

, for all c, r = 1, . . . , N (2)
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Fig. 1. Definition of the look direction �u1 from the look angles Ψx and Ψy

in the navigation reference coordinate system.

with

�u ′
1(c, r) =




− tan Ψy(c)
tan Ψx(c)

−1


 , for all r

where N is the number of CCD elements in the line array.

Theoretically, these look directions should be attached to the

optical center of the imaging system. Here, we assume that they

are attached to the center of mass O1, since to our knowledge,

no model linking the optical center to the center of mass is

available. However, the nonlinear distortions induced by this

approximation account for much less than a millimeter on the

ground and are neglected here. Furthermore, the static error is

absorbed from the parameters optimization (Section V-A2).

2) Orbital Coordinate System and Attitude Variations: The

orbital coordinate system (O2,X2, Y2, Z2) is centered on the

satellite (O2 = O1), and its orientation is based on the space-

craft position in space (Fig. 2). Roll, pitch, and yaw variations

are given as rotation angles around the Y2, X2, and Z2 axes

defined by





�Z2(t) =
�P (t)

‖�P (t)‖
2

�X2(t) =
�V (t)∧�Z2(t)

‖�V (t)∧�Z2(t)‖
2

�Y2(t) = �Z2(t) ∧ �X2(t)

(3)

where �P (t) and �V (t) are the instantaneous position and veloc-

ity of the satellite, respectively.

For historical reasons, SPOT attitudes data are expressed

within the inverted navigation reference coordinate system [15].

Applying this convention and given ap(t), ar(t), and ay(t),

which are the absolute rotation angles around the pitch, roll,

and yaw axes at time t, respectively, the satellite look directions

�u2(c, r) in the orbital coordinate system for all CCD elements

are given, for all c, r = 1, . . . , N , by

�u2(c, r) = Rp(r) ·Rr(r) ·Ry(r) · �u1(c) (4)

with

Rp(r) =




1 0 0
0 cos ap(r) sin ap(r)
0 − sin ap(r) cosp(r)




Fig. 2. Orbital coordinate system and attitude variations.

Rr(r) =




cos ar(r) 0 − sin ar(r)
0 1 0

sin ar(r) 0 cos ar(r)




Ry(r) =




cos ay(r) − sin ay(r) 0
sin ay(r) cos ay(r) 0

0 0 1




where Rr(r), Rp(r), and Ry(r) are the roll, pitch, and yaw

rotation matrices at the time of acquisition of image row r.

3) Look Directions in Terrestrial Coordinate System: For

each pixel in the raw image, the corresponding look direction

�u3 expressed within the terrestrial coordinate system is then

�u3(c, r) =



X2x

(r) Y2x
(r) Z2x

(r)
X2y

(r) Y2y
(r) Z2y

(r)
X2z

(r) Y2z
(r) Z2z

(r)


 · �u2(c, r). (5)

4) Location on Earth Model: The corresponding ground

location M of the raw image pixel (c, r) is determined by

calculating the intersection between �u3(c, r) and the Earth

ellipsoid model. For any of such pixel, we are then to find the

point M(xM , yM , zM ) that verifies

−−−→
O3M(c, r) =

−−→
O3P (r) + µ.�u3(c, r),

for µ > 0 and
x2 + y2

A2
+

z2

B2
= 1, with

{
A = a + h
B = b + h

(6)

where O3 is the Earth Cartesian center and a and b are, respec-

tively, the semimajor and semiminor axis of the ellipsoid. h is

the approximated elevation above the ellipsoid at the ground

location M . For any pixel (c, r), µ is determined such that

[
u2

3x
+u2

3y

A2 +
u2

3z

B2

]
µ2 + 2

[ Pxu3x+Pyu3y

A2 +
Pzu3z

B2

]
µ

+
[
P 2

x+P 2
y

A2 + P 2
z

B2

]
= 1

where
−−→
O3P (r) = (Px, Py, Pz) and �u3(c, r) = (u3x

, u3y
, u3z

).

The smallest solution µ1 is to be kept (the largest one intersect-

ing with the other side of the ellipsoid) and used in (6) to obtain

the geocentric coordinates M(xM , yM , zM ) of the pixel (c, r).
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Using a DEM, the intersection with the topographic surface

is computed by locally and successively approximating the

topography with a wider ellipsoid (Appendix I).

5) Direct Model Transformation Matrices: All the pixels in

the raw image are associated with Cartesian geocentric coor-

dinates, which can be converted into geodetic coordinates and

then into Universal Transverse Mercator (UTM) coordinates

[17], expressed in meters, like the ground displacements to be

measured. These ground coordinates are stored in two matrices

N and E representing the Northing and Easting components.

The pixel of coordinates (c, r) in the raw image will then have

the ground coordinates {E(c, r), N(c, r)}. The transformation

matrices provide necessary information to resample the raw

image and to produce an ortho-rectified image.

However, this approach contains an important drawback:

It projects the regular pixel grid from the instrument focal

plane to an irregular grid on the ground. On a large scale,

irregularities result from the global rotation between the raw

and ortho-rectified images due to the satellite orbit inclination.

On a more local scale, irregularities are due to changing in the

satellite attitudes and to the topography roughness. For specific

applications in seismotectonics, coseismic displacements are

typically of a subpixel scale. The resampling of the images

therefore needs particular attention to preserve subpixel infor-

mation from the raw images; resampled images have to re-

spect the Shannon–Nyquist sampling criterion to avoid aliasing

(Section III-A).

B. Inverse Orthorectification Model

To allow for the rigorous resampling of the images to ortho-

rectify, we determine the noninteger pixel coordinates in the

raw image of a predefined regular grid on the ground. This

operation, called the inverse orthorectification model, has been

investigated in several studies [18]–[20]. However, they are all

based on the collinearity equations stating that a point in the

focal plane, the optical center, and the imaged point on the

ground are all aligned. This assumption is no longer valid in

the presence of aberrations or distortions from the imaging

system. Modern satellites, such as SPOT satellites, provide look

directions as a complete physical model of the imaging system

[15]. We therefore propose a new inverse orthorectification

scheme, which fully exploits the information from the ancillary

data, by inverting the direct orthorectification model.

Our scheme assumes that any given point on the ground

lying inside or in the close vicinity of the imaged area has one

and only one corresponding point in the image plane or in its

close vicinity. We extend the assumption to the close vicinity

of the image because we extrapolate attitude and sensor values

outside the image plane. In practice, this assumption is satisfied

when dealing with a stable imaging system and can be verified

a posteriori. We have never encountered limitations due to this

assumption.

1) Orthorectification Grid: To compare a set of coregistered

images, all images have to be rectified onto a common grid.

The orthorectification grid is therefore defined as the smallest

rectangular grid that includes the image footprint and whose

starting coordinates (UTM) are multiple of the desired image

Fig. 3. Inverse orthorectification model principle.

resolution. Comparable images (ortho-rectified at the same

resolution) will then not suffer from grid misalignment. The

image footprint is determined by application of the direct

orthorectification model to the four corners of the raw image.

2) Inverse Orthorectification Principle: Given a point M
on the ground (on the orthorectification grid), its elevation is

determined from bicubic interpolation of the DEM, and its

coordinates converted into the Earth centered Cartesian WGS

84 system [17].

Equation (5) gives the look directions �u3(c, r) for all c, r =
1, . . . , N . Now, we consider a continuous version of the look

directions with the notation �u3(x, y) and (x, y) ∈ R2. Finding

the pixel coordinates (x, y) in the raw image that are associated

with a given point M(xM , yM , zM ) on the ground is equivalent

to finding (x, y) ∈ R2 that minimize the function

Φ(x, y) =
∥∥∥−−−→O3M −−−−→

O3M
′(x, y)

∥∥∥
2

2
(7)

where M ′(x, y) should be the point on the ground seen from

the look direction �u3(x, y). Let
−−→
O3P = (Px, Py, Pz) be the

satellite position for the look angle �u3. Assuming a rectilinear

propagation of light through the atmosphere, the line of sight

implied by �u3 = (u3x
, u3y

, u3z
) is �s =

−−→
O3P + t · �u3, for some

t > 0. If M ′ lies at the intersection between �s and the topogra-

phy, determining its coordinates is extremely tedious, and the

nonlinearities of the topography may cause the minimization

of Φ to fail. For both simplicity and efficiency, we construct a

projection plane for each point M on the orthorectification grid,

on which M ′ actually lies. The projection plane P(M) is the

plane passing through M and perpendicular to
−−−→
O3M (Fig. 3).

Since M ∈ P(M), the solution of the minimization of Φ is

unchanged, but the straightforward computation of M ′ and

the near-quadratic regularity of Φ are now ensured. All points

M ′(α, β, γ) in P(M) must satisfy
−−−→
O3M · −−−→MM ′ = 0. Hence,

the projection plane is explicitly defined by

xMα + yMβ + zMγ −
(
x2
M + y2

M + z2
M

)
= 0. (8)

�s then intersects P(M) for

t = t∗ =
d− xMPx − yMPy − zMPz
xMu3x

+ yMu3y
+ zMu3z

(9)
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with

d = x2
M + y2

M + z2
M .

The solution of the inverse orthorectification problem (x∗, y∗)
is therefore obtained by minimizing the function

Φ(x, y) =
∥∥∥−−−→O3M −−−−→

O3M
′(x, y)

∥∥∥
2

2
(10)

with

−−−→
O3M

′(x, y) =
−−→
O3P (y) + t∗ · �u3(x, y) (11)

for all points M in the orthorectification grid.

3) Minimizing Φ: By projecting M ′ onto the plane surface

P(M), the nonlinearities of Φ are now only due to the satellite

optical distortions and changing attitudes, which are smoothly

varying in the vicinity of the solution. The problem of mini-

mizing Φ is then quasi-linear, and the near-quadratic regularity

of Φ makes an unconstrained gradient minimization approach

appropriate.

The algorithm requires that Φ be a continuous function for

all x, y ∈ R, while it is only given at integer pixel locations.

Satellite velocities, positions, attitudes, and sensor orientations

are then linearly interpolated between pixels and linearly ex-

trapolated beyond the image limits (to satisfy the unconstrained

minimization process). The linear extrapolation should preserve

the continuity of the values as well as the global motion of the

satellite. We have chosen extrapolated points to lie on the line

joining the values at the image limits in both x and y directions.

Several classical gradient minimization procedures were

tested, namely the quasi-Newton, the steepest descent, or the

conjugate gradients algorithms, but we occasionally experi-

enced convergence problems when the initialization guess was

not accurate. The two-point step size (TPSS) gradient algorithm

[21] proved to be more robust and efficient. Implementation

details are provided in Appendix II.

4) Inverse Model Transformation Matrices: Outputs of the

minimization are stored into two matrices with dimensions

determined by the orthorectification grid. x∗ values are stored in

the X matrix and y∗ values in the Y matrix. If the ground coor-

dinates of the upper-left-corner grid element are (E0, N0) and

the grid resolution is r, then at the ground location (E0 + i · r,
N0 − j · r), the pixel of coordinates (X(i, j), Y (i, j)) in the

raw image has to be projected. This inverse orthorectification

model is used next to resample raw images and to produce

precise ortho-rectified images.

III. IMAGE RESAMPLING

In the image processing literature the nearest neighborhood,

bilinear and bicubic resampling methods are the most com-

monly used [22]. These methods have been designed with

the constraint of keeping a small kernel size to minimize the

computational cost inherent to any convolution process. These

resampling methods can be seen as a zeroth-, first-, and third-

order polynomial approximations of the theoretical resampling

kernel, the sinc function. Unlike the sinc function, approxi-

mating kernels introduce a certain amount of aliasing in the

Fig. 4. General regular resampling scheme.

resampled images [22], which may reduce the accuracy of any

correlation process, hence any registration process. For exam-

ple, it has been observed systematic correlation biases when

images were resampled from these methods [4]. Moreover, it

will be shown next that an explicit formulation of the irregular

resampling problem is required to avoid addition of aliasing

while constructing ortho-rectified images.

A. Resampling Regularly Spaced Data: Changing the

Sampling Rate

Consider the continuous band-limited low-pass signal xc(t)
sampled at the Nyquist rate 2π/T0 (with T0 as the sampling

period). The sampled signal is called xsT0
(t). Resampling a

given sampled signal can be done by sampling its reconstructed

continuous version at a new rate 2π/T1.

If T1 > T0, appropriate low-pass filtering of the recon-

structed signal, which is equivalent to reconstructing a lower

band-limited version of xc(t), is needed to avoid aliasing in the

resampled signal xsT1
(t). From the Shannon–Nyquist sampling

theorem [23], a general ideal reconstruction filter is written as

hrd
(t) =

{
sin( πt

d )
πt
d

, for t 
= 0

1, for t = 0
(12)

where d can be seen as the effective reconstruction period.

A general resampling scheme that allows for up-sampling as

well as for down-sampling regularly spaced data is designed by

setting the parameter d = Max(T0, T1) (Fig. 4). It is to note

that up-sampling does not add information and that xsT1
(t) is

then oversampled.

B. Resampling Irregularly Spaced Data

We present an aliasing-free resampling scheme for irregu-

larly spaced data, meaning that either the original sampled sig-

nal is irregularly sampled and has to be regularly resampled or

the original signal is regularly sampled and has to be irregularly

resampled, or any combination of both situations.

For simplification, we assume that sampling irregularities

account for a small fraction of the mean sampling period.

Denote by {T0} the set of sampling periods of the signal to

be resampled and by {T1} the set of sampling periods of the

resampled signal. It is supposed that µ({Ti}) ≫ σ({Ti}), for

i = 0, 1. Here, µ(·) represents the mean operator and σ(·) the

standard deviation operator. µ({Ti}) = Ti and σ({Ti}) = 0 for

regularly sampled signals. Therefore, the parameter d of a gen-

eral reconstruction filter for irregularly spaced data is such that

d = max ({T0}, {T1}) . (13)
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This ensures that the resampled signal is aliasing free.

However, it is locally subjected to oversampling since this

scheme is equivalent to reconstructing the signal at its lower

regularly sampled resolution. As it will be shown later, this

nonoptimality is not a problem for most applications.

1) 2-D Resampling Kernel: For simplicity and computa-

tional efficiency, we concentrate on separable resampling ker-

nels. The reconstruction filter is an ideal low-pass filter of

the form

hrdx,dy
(x, y) =

{
sin( πx

dx
)

πx
dx

· sin
(

πy

dy

)
πy

dy

, for x, y 
= 0

1, for x, y = 0

where dx and dy are called the “resampling distances.” They

represent the maximum distance between adjacent samples in

the x and y directions.

Practically, a finite length approximation is derived from

weighting by a nonrectangular window that tapers close to the

edges, the Kaiser window. This helps minimizing the maximum

reconstruction error [23] that mostly manifests itself as ringing

in the reconstructed image (Gibbs phenomenon). By setting

the kernel length to 2N + 1 samples, the 2-D separable Kaiser

window is defined by

wKdx,dy
(xn, yn)

=





I0

(
βx

(
1−( xn

Ndx
)
2
) 1

2

)

I0(βx)

·
I0

(
βy

(
1−
(

yn
Ndy

)2) 1
2

)

I0(βy) , for

{
−Ndx ≤ xn ≤ Ndx
−Ndy ≤ yn ≤ Ndy

0, otherwise

where I0(·) represents the zeroth-order modified Bessel func-

tion of the first kind and β the shape parameter. Practically, the

shape parameters are set to βx = βy = 3 and N = 12 samples.

This set up is a reasonable compromise between the mean-

square reconstruction error measured on a set of SPOT images

and the computational cost.

If we call i0 as the image to be resampled and i1 as the

resampled image, then i1 is obtained by the following 2-D

discrete convolution:

i1[x, y] =
1

c(x, y)

∑

xn∈Dx

∑

yn∈Dy

i0[xn, yn]

×hrdx,dy
(x− xn, y − yn)wKdx,dy

(x− xn, y − yn) (14)

with

c(x, y) =
∑

xn∈Dx

∑

yn∈Dy

hrdx,dy
(x− xn, y − yn)

×wKdx,dy
(x− xn, y − yn)

where Dx = [x−Ndx, x + Ndx] and Dy = [y −Ndy,
y + Ndy]; {xn, yn} are the original data samples and {x, y}
are the resampled data points.

2) Resampling Using Direct Transformation Matrices: The

direct transformation matrices allow to project pixels of the

raw image onto the ground at locations that do not belong to

a regular grid. According to the previous notations, the signal

xsT0
is then irregularly sampled, and we are seeking a way

to resample it, yielding xsT1
, which is regularly sampled on

the ground. Here, T0 and T1 are sampling periods expressed in

geographical units (meters if the UTM projection is chosen).

Resampling distances dx and dy are obtained from the

maximum absolute differences between adjacent entries in, re-

spectively, the E and N direct transformation matrices. Denote

by di,jE and di,jN the local direct resampling distances, taken

over eight neighbors, such that

{
di,jE = max (|E(i, j) − E(i± 1, j ± 1)|)
di,jN = max (|N(i, j) −N(i± 1, j ± 1)|)

for all entries (i, j) of the direct transformation matrices. If the

ortho-rectified grid resolution is given by Rx in the east/west

direction and by Ry in the north/south direction, the global

resampling distances are given by

{
dx = max ({di,jE} , Rx)
dy = max ({di,jN } , Ry) (15)

over all local resampling distances.

However, difficulties in applying the general resampling

scheme described in Section III-A arise from the computation

of the discrete convolution. The convolution is indeed to be

performed on the ground-projected pixels. For each pixel of

the ortho-rectified image, projected raw pixels falling within the

resampling kernel extent, given by Dx and Dy in (14), have to

be determined. A search in the direct transformation matrices

is then needed for all points to be resampled, leading to a

computationally inefficient scheme [19]. It is also non-rigorous

since the resampling kernel cannot be discretized regularly; its

discretization depends on the raw pixels projection.

3) Resampling Using Inverse Transformation Matrices:

The inverse transformation matrices map a regular grid on the

ground onto an irregular grid in the raw image. This is equiv-

alent to considering {T0} = {1} (raw image sampled at every

pixels) regular and {T1} irregular, with both expressed in pixels

since they are defined in the raw image space. We define dx and

dy , which must each verify

d = max (T0, {T1}) . (16)

If we denote by di,jx the local distances of the X matrix, then

di,jx = max




|Xi,j −Xi−1,j−1|, |Xi,j −Xi,j−1|
|Xi,j −Xi−1,j |, |Xi,j −Xi+1,j−1|
|Xi,j −Xi+1,j+1|, |Xi,j −Xi,j+1|
|Xi,j −Xi−1,j+1|, |Xi,j −Xi+1,j |


 (17)

for all points (i, j) in the matrix X whose coordinates

X(i± 1, j ± 1) are within the raw image. Then, to avoid

aliasing, one should choose dx = max(1,max({di,jx})). dy is

determined using the same procedure applied to the Y matrix.

Resampling is now straightforward because the points to be re-

sampled are defined within the regular dataset of the raw image.
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4) Direct and Inverse Resampling Differences: From (15),

we notice that there exists a ground resolution (Rx, Ry) be-

yond which the resampling distances of the direct scheme will

everywhere be (Rx, Ry). The irregularities in the resampling

distances are smaller than the nominal ground resolution of the

image σ({Ti}) ≪ µ({Ti}); then in the case of a direct resam-

pling scheme, if images are resampled at half their nominal

resolution or lower, the resampling distances will always equal

the ortho-rectified grid resolution.

With the inverse model procedure, since the resampling

points are only computed at the ortho-rectified grid resolu-

tion, the resampling distances will always be subjected to

irregularities. Concretely, if the satellite nominal resolution

is 10 m and a 20-m ortho-rectified image is constructed, it

will lead to dx = dy = 20 m when resampling with the di-

rect scheme and to dx > 2 pixels and dy > 2 pixels when

resampling with the inverse scheme. The image resampled with

the inverse model will contain less high frequencies (due to

more oversampling), and the image obtained from the direct

model will have a higher effective resolution. This difference

does not exist if images are resampled close to their nominal

resolution, which is generally the case. It is also minimized

if images are resampled lower than half their nominal reso-

lution. The complexity of the direct scheme is therefore not

justified.

C. Inverse Resampling Results

We present some results from an image that has been

processed using the inverse orthorectification model and the

inverse resampling procedure. The raw image is a SPOT 5 PAN

image of the Hector Mine area in California with a nominal

ground resolution of 5 m, and the scene orientation is 13.6◦. It is

ortho-rectified at a ground resolution of 10 m on a UTM projec-

tion. The computed resampling distances are dx = 2.501 pixels

and dy = 2.413 pixels. The raw and the ortho-rectified

images are presented in Figs. 5 and 6.

1) Resampling Distances: The rescaling factor is 1/2 (the

resolution is lowered by a factor of two). The resampling

distances should then be dx = dy = 2 pixels. The rotation angle

corresponds to the scene orientation α = 13.6◦. Geometrically,

if we take a square of side length a, rotating it by an angle α,

then the smallest nonrotated square that will contain the rotated

one will have a side length d = a
√

2 cos((π/4) − α). Taking

a = 2 pixels, the first-order approximation of the resampling

distances is then dx = dy = 2.414 pixels. Accounting for local

distortions due to topography and satellite attitude variations,

the resampling distances computed from the transformation

matrices differ slightly from this estimate. This validates the

resampling distance computation. Moreover, this computation

is done with no a priori knowledge on the scene orientation,

making this resampling scheme suitable for all optical imaging

systems.

Fig. 7 shows that the irregularities of the sampling periods are

much smaller than the average sampling periods, as assumed

above. In this particular case, µ({di,jx}) = 2.41 pixels with

σ({di,jx}) = 0.020 pixel, and µ({di,jy}) = 2.40 pixels with

σ({di,jy}) = 0.036 pixel.

Fig. 5. Raw image.

Fig. 6. Ortho-rectified image.

Fig. 7. Distribution of local resampling distances (in pixels) for each transfor-
mation matrix.

2) Fourier Spectrum of Ortho-Rectified Images: Figs. 8

and 9 represent the Fourier spectrum of the raw and ortho-

rectified images. These spectrums have been computed over

small corresponding areas. The zero frequency is at the center

of the images.

The rotation seen in the ortho-rectified image spectrum re-

flects the general rotation applied to the raw image [24] when

producing the ortho-rectified image. However, distortions due

to the local topography are here producing a shear effect. The

truncation of the spectrum is visible since it fits within the

bandwidth defined by the Nyquist resampling frequency. As no

aliasing (no frequency folding on the edges) is noticed in the

ortho-image spectrum, we conclude that resampling distances

are correctly computed. The dark areas of the ortho-rectified

spectrum denotes oversampling, making this resampling
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Fig. 8. Raw image log-spectrum.

Fig. 9. Ortho-rectified image log-spectrum.

scheme not optimum: Even though the image is being resam-

pled on a 10-m grid, the frequency content is the one of an

image that would be “optimally” resampled at a resolution

of approximately 12.5 m. An objective sense of “optimal”

resampling is defined from the sampling efficiency.

Sampling efficiency.: The sampling efficiency η of a sam-

pling scheme that allows no aliasing is defined as the ratio

between the area S, support for the information (where the

spectrum is not zero) within the Fourier elementary cell, and the

area of the Fourier elementary cell. The cell that periodically

tiles the Fourier plane of a discrete signal is defined as the

Fourier cell.

By applying in the Fourier domain the formula we used

in Section III-C1 to deduce the smallest size of a square

containing a rotated square, the efficiency of the resampling

scheme presented is therefore

η(α) =
1

2 cos2
(
π
4 − α

) , for α ∈
[
0,

π

4

]
(18)

where α is the scene orientation. Hence, for a general applica-

tion, η ∈ [1/2, 1], at most. In this particular example, this gives

ηSPOT ≈ 0.69 (η is a decreasing function of α).

3) Possible Improvements: The main limitation of this re-

sampling scheme comes from the separability of the kernel.

Ideally, the resampling kernel would be locally rotated, so that it

would be aligned with the grid defined by the resampling points

in the raw image. Consequently, the vanishing high-frequency

points in the Fourier spectrum will all correspond to the Nyquist

frequency, the spectrum will not be rotated anymore, and the

scene orientation will not induce oversampling. The rotation of

the resampling grid could be estimated from the local rotations

in the inverse transformation matrices.

Another improvement would be to use locally adaptive re-

sampling distances. In areas of steep topography, the resam-

pling distances take high values, while lower values correspond

to areas of flatter relief. By imposing the maximum resampling

distances to be used for the whole image, oversampling is intro-

duced in flatter topography areas, limiting the image effective

resolution in those regions. This could be the main limiting

sampling efficiency factor with high-resolution images. These

possible improvements would ensure the sampling efficiency of

the ortho-rectified image to come close to unity.

IV. CORRELATION OF OPTICAL IMAGES

A. Statement of the Problem

We discuss a technique to accurately and robustly measure

the relative displacement between two images of the same

resolution, one being the shifted version of the other. The

problem to solve is an image registration problem [25] that we

have chosen to tackle with correlation methods: two similar

images are said to be registered when their cross correlation

attains its maximum. The relative displacement is then deduced

from the position of best registration.

The registration/correlation algorithm needs to meet several

requirements.

1) We are primarily interested in measuring coseismic dis-

placements from pre- and postearthquake images. For

SPOT 1, 2, 3, and 4 images, the finest resolution available

is 10 m. Commonly, horizontal coseismic displacements

are less than 10 m. The correlation algorithm must then

allow for subpixel measurements with an accuracy of a

few tens of centimeters. The required accuracy is there-

fore at least 1/20 of a pixel.

2) During the image coregistration process, correlation is

needed to measure the misregistration to be corrected

even though it can be large. The correlation should then

also give precise measurements at the multipixel scale,

typically half the correlation window size. The image

coregistration accuracy should be better than the coseis-

mic displacement measurement accuracy.

3) The spatial resolution of the coseismic offset field mea-

sured depends on the size of the sliding correlation

window. We therefore seek a method that is reliable on

small correlation windows, typically 32 × 32 pixels.

4) Correlation should be as insensitive as possible to tem-

poral decorrelations, data quantization, or other noise

sources.

5) For general use, the parameters of the algorithm should

not depend on the window size.

6) This algorithm has to be general so that it can process

any digital images. We saw that the Fourier spectrum

of the ortho-rectified images may be quite peculiar. The

algorithm should then adapt to any given spectrum. When

extending the global coseismic offset measurement tech-

nique to other optical devices (other satellite systems

or aerial photographs), this correlation scheme should

remain valid.
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B. Phase Correlation Methods

We focus on particular correlation methods, the phase cor-

relation methods, which have already shown good results for

similar applications [4], [6], [7], [10]. All phase correlation

methods rely on the Fourier shift theorem [23]: The relative

displacement between a pair of similar images is retrieved from

the phase difference of their Fourier transform. Let i1 and i2
be two images that differ only by a displacement (∆x,∆y)
such that

i2(x, y) = i1(x− ∆x, y − ∆y). (19)

By denoting by I1 and I2 their Fourier transform, from the

Fourier shift theorem, we have the relation

I2(ωx, ωy) = I1(ωx, ωy)e
−j(ωx∆x+ωy∆y) (20)

where ωx and ωy are the frequency variables in column and

row. The normalized cross-spectrum of the images i1 and i2
is then

Ci1i2(ωx, ωy) =
I1(ωx, ωy)I

∗
2(ωx, ωy)

|I1(ωx, ωy)I∗2(ωx, ωy)|
= ej(ωx∆x+ωy∆y)

(21)

where ∗ denotes the complex conjugate. The images’ relative

displacement can thus be estimated from the 2-D slope of

the cross-spectrum’s phase. By applying the inverse Fourier

transform F−1 to (21), we have the correlation function

F−1
{
ej(ωx∆x+ωy∆y)

}
= δ(x + ∆x, y + ∆y). (22)

The images’ relative displacement can then alternatively be

estimated from the coordinates of the correlation peak. In

case of subpixel displacements, this peak is not a Dirac delta

function anymore, but a down-sampled version of a Dirichlet

kernel [26]. Further processing is then required to recover the

image shift.

These approaches show that phase correlation methods fall

into two categories. In the first category, the relative images’

shift is recovered by explicitly estimating the linear phase of the

images’ cross-spectrum [4], [27], [28]. In the second category,

the relative displacement is calculated by determining the exact

location of the correlation peak [26].

In [26], images to be correlated are supposed to be sampled

with a sampling efficiency η = 1. This is generally not the case

when images have been resampled for orthorectification. Also,

to avoid correlation bias, frequency masking should be applied

to only select parts of the cross-spectrum where the phase infor-

mation is valid (images may be corrupted by aliasing or optical

aberrations). For these reasons, a correlation algorithm whose

main scheme belongs to the first category will be described,

adaptive masking being applied on the cross-spectrum.

C. Phase Correlation Properties

We review some properties of the phase correlation methods

and evaluate the sensitivity to additive white noise and blur,

which are two common phenomena [29]. We also discuss the

range of measurable image shifts.

1) Image Blur: The image i1 of a natural scene u1, ac-

quired by an imaging device using incoherent illumination, is

modeled as

i1(x, y) = u1(x, y) ∗ |h1(x, y)|2 (23)

where h1 is the instrument point spread function [30] and ∗
denotes the continuous time convolution. The optical transfer

function (OTF) of the device is

H1(ωx, ωy) = F
{
|h1(x, y)|2

}
(24)

where F denotes the forward Fourier transform. Then

I1(ωx, ωy) = U1(ωx, ωy)H1(ωx, ωy) (25)

where U1(ωx, ωy) = F{u1(x, y)}. If the same scene is ac-

quired at a different time with possibly another instrument of

OTF H2, considering the two scenes displaced by (∆x,∆y)
such that u2(x, y) = u1(x− ∆x, y − ∆y), then (21) becomes

Ci1i2(ωx, ωy) = ej(ωx∆x+ωy∆y) H1(ωx, ωy)H
∗
2(ωx, ωy)

|H1(ωx, ωy)H∗
2(ωx, ωy)|

.

(26)

If both images are acquired by the same instrument, then

H1 = H2, Ci1i2(ωx, ωy) = ej(ωx∆x+ωy∆y), and the measure-

ment of (∆x,∆y) is not biased. If the two optical devices

are different (e.g., SPOT and aerial camera or SPOT-4 and

SPOT-5), H1 
= H2, and the measurement is potentially biased.

From (24), it follows that, for an aberration-free and diffraction-

limited optical system, the OTF is always real and nonnegative.

In such cases, Ci1i2(ωx, ωy) is therefore not biased. However,

aberrations can cause the OTF to have negative values in

certain bands of frequencies [30]. For SPOT satellites, only 3/5

of the spectral bandwidth is aberration-free [29]. Hence, this

motivates the masking of high frequencies to achieve a bias-

free correlation. It thus turns out that the suboptimality of the

resampling efficiency does not appear to be a serious drawback

since oversampling contributes in masking possible aberrations.

2) Phase Correlation and Noise: From the Wiener–

Khintchine theorem [31], the interspectral density Sxy(ω) of

two jointly wide sense stationary (WSS) random processes x(t)
and y(t) is defined as the Fourier transform of their cross-

correlation function

Sxy(ω)
△
= F {Rxy(τ)} (27)

with Rxy(τ) = E{x(t)y∗(t− τ)} and E{.} denotes the expec-

tation over all possible outcomes of x and y. It can be shown

that the relation (26) also holds if we consider the images as

random stationary processes [29], [32]

Si1i2(ωx, ωy)

|Si1i2(ωx, ωy)|
= Ci1i2(ωx, ωy). (28)

Consider two theoretical images u1 and u2 with no noise

such that u2(x, y) = u1(x− ∆x, y − ∆y). Assume that the
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Fig. 10. Modeling of the acquisition systems.

noises from the scenes (temporal decorrelation, atmospheric

noise, topographic effects, shadows, etc.) and from the sensor

(quantization, thermal fluctuations, etc.) are all white and addi-

tive. The complete acquisition system is sketched in Fig. 10,

where ni(x, y) and nii(x, y) are white noises, thus WSS by

definition. The interspectral density of the acquired images i1
and i2 is then given by [29], [32]

Si1i2(ωx, ωy) = H1(ωx, ωy)e
j(ωx∆x+ωy∆y)H∗

2(ωx, ωy).

Under the assumption of additive white noises, the displace-

ment of the scenes is only altered by optical aberrations. In

the case of aberration-free imaging systems or when it can be

assumed from some appropriate frequency masking, then

Si1i2(ωx, ωy)

|Si1i2(ωx, ωy)|
= ej(ωx∆x+ωy∆y). (29)

Hence, the measurement of ground displacements is not biased

by either additive white noise or blurring, or a combination of

the two phenomena.

3) Solution Periodicity and Largest Measurements: Define

two discrete images of size N ×N pixels such that

i2[x, y] = i1[x− ∆x, y − ∆y]. (30)

The discrete normalized cross-spectrum is given by

Ci1i2 [kx, ky] = ej
2π
N

(kx∆x+ky∆y) (31)

for kx, ky = 0, . . . , N − 1. Now, examine the case where im-

ages are shifted by (∆x,∆y) + (nx, ny)N samples so that

i′2[x, y] = i′1[x− ∆x + nxN, y − ∆y + nyN ]

for (nx, ny) ∈ Z2. The cross-spectrum becomes

Ci′
1
i′
2
[kx, ky] = ej

2π
N

(kx(∆x+nxN)+ky(∆y+nyN))

= ej2πkxnxej2πkynyej
2π
N

(kx∆x+ky∆y)

=Ci1i2 [kx, ky].

Therefore, if (∆x,∆y) is a solution of the i1, i2, N ×N pixels

image translative registration problem, then (∆x + nxN,
∆y + nyN) is also a solution, for any (nx, ny) ∈ Z2. We have

a periodic set of solutions.

We define the physical solutions as the solutions for which

the two images to be correlated share a common area when

overlapped. The physical solution must be unique and is at-

tained for nx = 0 and ny = 0. From any solution in the solution

set, the physical solution can be uniquely determined if and only

if |∆x| < (N/2) and |∆y| < (N/2). Otherwise, there is ambi-

guity: two different physical solutions in each x and y directions

may exist and wrapping of the solution set occurs. Therefore, to

avoid measurement ambiguity, displacements to be measured

should be constrained to the range −N/2 to N/2 pixels, if the

correlation window is of size N ×N pixels.

D. Discrete Fourier Transform of Finite-Length Signals

From the point of view of the discrete Fourier transform,

infinite periodic images whose period corresponds to the finite

extent of the selected image patches are being analyzed [23].

Periodicity creates sharp discontinuities, introducing “cross

pattern” artifacts in the Fourier transform (Figs. 8 and 9). In [4],

it has then been chosen to mask the low frequencies. However,

we previously showed that the low frequencies are the less

likely to be corrupted by optical aberrations or aliasing. These

artifacts are importantly attenuated by weighting the image

patches with a Blackman window so that image discontinuities

are smoothed out [28], but it removes a significant amount

of the signal energy [27]. The raised-cosine window achieves

a good compromise between reducing both the frequency ar-

tifacts and the image loss of information. In one-dimension,

the raised-cosine window of length N , with N being even, is

given by

wrc(x)=





cos2
(
π

2βN

(
|x|−N

(
1
2−β
)))

, for N
(
1
2−β
)
≤|x|≤N2

1, for |x|<N
(

1
2−β
)

0, otherwise

where β, called the roll-off factor, ranges from 0 to 1/2. The

2-D window is constructed assuming a separable window. For

β = 0, it is equivalent to the rectangle window. For β = 1/2, it

is equivalent to the Hanning window.

E. Finding the Images Phase Difference

1) Previous Work: Several approaches have been thought of

to find the best approximation to the phase difference between

two images, one being a shifted version of the other. According

to (21), the phase of the normalized cross-spectrum is a linear

function of the displacement vector, namely

ϕ(ωx, ωy) = ωx∆x + ωy∆y (32)

where ωx and ωy are radian frequencies, ranging from −π
to π. The phase slope might be estimated by least square

adjustment with possibly some weighting to filter out the effect

of noise and aliasing at high frequencies [28]. However, this

is a valid approach only when the phase is not wrapped,

i.e., under the condition |ϕ(ωx, ωy)| ≤ π. This condition is

always satisfied when |∆x| ≤ 0.5 and |∆y| ≤ 0.5. Hence, only

displacements less than half the pixel size are measurable.

This technique needs to be complemented with another one to

solve for multipixels displacements. These might be estimated

from the coordinates of the correlation peak (22). However,

accurate subpixel measurement could not be obtained from

this technique, thus providing only the nearest integer pixel

estimation. The domains of validity of these two successive
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approaches are then nonoverlapping. As a result, a two-step

method consisting of first estimating the displacement at the

multipixel scale and then at the subpixel scale from plane fitting

is not stable when the displacements to be measured are close

to half the pixel size.

In [27], a more robust approach has been proposed to

evaluate the images phase difference. The normalized cross-

spectrum matrix C(ωx, ωy) is, theoretically, a rank one ma-

trix since C is separable, i.e., C(ωx, ωy) = ej(ωx∆x+ωy∆y) =
ejωx∆xejωy∆y = c1(ωx)c2(ωy). From the Eckart–Young–

Mirsky theorem [33], the best low-rank approximation X̂ to

an N ×M matrix X , with rank{X} = r with respect to both

the Frobenius and the L2 norms, is obtained from the singular

value decomposition (SVD). If X = UΣV T =
∑r
i=1 uiσiv

T
i

with singular values σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0, then the best

low-rank k approximation X̂ is given by

X̂ =

k∑

i=1

σiuiv
T
i (33)

where k ≤ r. The Frobenius norm of a matrix X is defined as

‖X‖F =

√√√√
N∑

i=1

M∑

j=1

|xij |2. (34)

The idea of the study in [27] is therefore to determine the

best rank one approximation to the normalized cross-spectrum

matrix. The displacement vector is recovered by calculating the

slope of the unwrapped phase of the two singular vectors u1 and

vT
1 . This method has proven a strong robustness against noise.

However, there are two main drawbacks remaining. First, it is

also subjected to phase wrapping. Even though this approach

involves only 1-D unwrapping, it still remains a sensitive step.

The second drawback, which is the main concern, is that

the whole normalized cross-spectrum matrix (or a rectangular

subset of it) has to be used to compute the best rank one

approximation. This computation is potentially biased with

corrupted phase values. A solution would be to use a weighted

SVD, but most of these algorithms require the weight matrix to

be positive definite symmetric [34]. Frequency weights with no

a priori constraint on the spectrum orientation or separability

should be applied.

In [4], another approach is proposed based on the Hermitian

inner product of two functions f and g defined as

〈f, g〉 =

∞∫

−∞

f(x)g∗(x)dx. (35)

Define the theoretical normalized cross-spectrum of the images

by C(ωx, ωy) = ej(ωx∆x+ωy∆y) and the one actually computed

by Q(ωx, ωy). The projection of Q onto the continuous space

defined by the theoretical cross-spectrums is defined as

PQ,C(∆x,∆y) =
∑

ωx

∑

ωy

Q(ωxωy)C
∗(ωx, ωy)

=
∑

ωx

∑

ωy

Q(ωxωy)e
−j(ωx∆x+ωy∆y). (36)

The values of ∆x and ∆y that maximize the norm of this

projection are the ones that are the most likely used to solve

the registration problem. It is then proposed to find (∆x,∆y)
that maximizes the modulus |MPQ,C(∆x,∆y)|, where

MPQ,C(∆x,∆y) =
∑

ωx

∑

ωy

M(ωx, ωy)

× Q(ωx, ωy)e
−j(ωx∆x+ωy∆y)

and M(ωx, ωy) is a binary mask to filter out some fre-

quencies. This technique is effective and insensitive to phase

wrapping. Therefore, it is suitable for both large and small

displacement measurements. However, the resolution method

proposed, based on a dichotomy, is computationally inefficient.

Also, as previously mentioned, the frequency masking is not

properly set.

2) Proposed Method: We propose to minimize, with respect

to the Frobenius norm, the weighted residual matrix between

the computed normalized cross-spectrum and the theoretical

one. This approach allows us to explicitly solve the phase

wrapping ambiguity, yielding accurate and robust displacement

measurements at both subpixel and multipixel scales. This

scheme also allows for flexibility on the frequency weighting.

Q(ωx, ωy) denotes the normalized cross-spectrum computed

from the images and C(ωx, ωy) the theoretical one. Define

the function

φ(∆x,∆y) =
π∑

ωx=−π

π∑

ωy=−π
W (ωx, ωy)

×
∣∣∣Q(ωx, ωy) − ej(ωx∆x+ωy∆y)

∣∣∣
2

where W is some weighting matrix with positive entries. We

are looking for (∆x,∆y) that minimize φ. Let

ϕ∆(ωx, ωy) = W (ωx, ωy) |Q(ωx, ωy) − C(ωx, ωy)|2 . (37)

We can write

ϕ∆(ωx, ωy)=W (ωx, ωy) [Q(ωx, ωy) − C(ωx, ωy)]

· [Q(ωx, ωy) − C(ωx, ωy)]
∗

= 2W (ωx, ωy) [1 −QR(ωx, ωy)

cos(ωx∆x+ ωy∆y)−QI(ωx, ωy)

sin(ωx∆x + ωy∆y)]

by setting Q(ωx, ωy) = QR(ωx, ωy) + jQI(ωx, ωy) and by

noticing that Q2
R(ωx, ωy) + Q2

I(ωx, ωy) = 1, by definition

of Q.

So far, it can be noted that minimizing φ is equivalent to

maximizing ℜ{MPQ,C(∆x,∆y)} if M = W , ℜ{·} being the

real part operator. We have the relation

φ(∆x,∆y) = 2
∑

ωx

∑

ωy

W (ωx, ωy)−2ℜ{MPQ,C(∆x,∆y)} .
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Considering ideal noiseless measurements and for a null ex-

pected translation between image patches, we approximate φ
by φ̃ such that

φ̃(∆x,∆y) ∝
(
ab− sin(a∆x)

∆x

sin(b∆y)

∆y

)
(38)

for (∆x,∆y) in the physical solution set. Here, the frequency

masking is modeled as an ideal rectangular low-pass filter

with cutoff frequencies Ωx = a and Ωy = b. Without masking,

a = b = π. With appropriate initialization, a gradient descent

algorithm to find (∆x,∆y) that minimizes φ can be considered.

The TPSS algorithm [21], already introduced in Section II-B3,

is used. It is robust and converges rapidly, in typically less

than ten iterations. Details of the algorithm are provided in

Appendix III. The initialization of the algorithm is described

in Section IV-E5.

The proposed minimization algorithm is unconstrained and

may provide a nonphysical solution. Assuming that no dis-

placement exceed half the correlation window size, the physical

displacement is given by

∆ϕ = ∆ −
[

∆

N

]
N (39)

where ∆ is the optimum displacement returned by the algo-

rithm, N is the 1-D correlation window size, and [·] is the

rounding to the nearest integer operator.

3) Adaptive Frequency Masking: A bias-free correlation

can be achieved through frequency masking (Sections IV-C1

and C2). Although any weighting matrix W with positive

entries would be possible, we set the values W (ωx, ωy) to be

either zero (for corrupted frequencies) or one (for noncorrupted

frequencies). As previously mentioned, high frequencies are

the most likely to be corrupted due to optical aberrations and

aliasing. The power spectrum of natural scenes is exponentially

decreasing with frequency [35]–[37]. In the Fourier domain,

the modulus of a white noise remains constant, and assuming

that the images are degraded with some additive white noise,

the phase information is then most likely to be biased in the

high frequencies. We also want to filter out frequencies that

correspond to the zeros of the resampling transfer function used

for orthorectification (Section III-C2). Thus, all frequencies,

where the phase information is the most likely to be corrupted,

share the same property: The magnitude of the cross-spectrum

is much lower at these frequencies than at those where the phase

is less likely to be corrupted. The mask is therefore defined

by retaining only the frequencies where the magnitude of the

cross-spectrum exceeds some threshold.

One of the initial requirements listed was that correlation

parameters, hence the mask pattern, must not depend on the

image correlation size. A possible solution is to define

{
LSi1i2(ωx, ωy) = log10 |I1(ωx, ωy)I

∗
2(ωx, ωy)|

NLSi1i2(ωx, ωy)=LSi1i2(ωx, ωy)−max {LSi1i2(ωx, ωy)}

where I1 and I2 are the Fourier transform of the images

to be correlated. LS stands for “log-spectrum” and NLS for

Fig. 11. Log-spectrum (left) of 256 × 256 pixels 1A-SPOT 5 THR 2.5-m
resolution image, weighted by a raised-cosine window with β = 0.5. The tilted
cross results from the original image features. Corresponding mask (right) for
m = 1.0. White represents unity weights and black null weights.

Fig. 12. (Upper left) log-spectrum of 256 × 256 pixels ortho-rectified SPOT 5
HRG 5-m resolution image, weighted by a raised-cosine window with β = 0.5
and (upper right) corresponding masks for 256 × 256 pixels window, m = 1.0.
(Lower right) computed mask on 64 × 64 pixels window and m = 1.0.

“normalized log-spectrum.” The frequency mask is then de-

fined according to the parameter m such that

Wi1i2(ωx, ωy)

=

{
0, if NLSi1i2(ωx, ωy) ≤ m · µ {NLSi1i2(ωx, ωy)}
1, otherwise.

A value of m close to unity gives satisfactory results for most

of the images.

The log-spectrum and corresponding mask of a level

1A-SPOT 5, THR 2.5-m resolution image is presented in

Fig. 11. The 2.5-m resolution image is characterized by its

quincunx sampling scheme [38], leading to a diamond shape

spectrum. The mask figure shows that only the frequencies that

are the most likely to be corrupted are filtered out. In Fig. 12,

the log-spectrum and the corresponding masks of an ortho-

rectified SPOT 5 HRG 5-m resolution image are presented.

Frequencies within the bandwidth of the resampling kernel are

accurately selected, and the mask pattern remains unchanged

as the window size changes. These characteristics warrant

unbiased correlation and ensure flexibility of the algorithm.

4) Adding Robustness, Resampling in Frequency, and Fine

Tuning of Frequency Mask: The robustness and accuracy of

the algorithm are improved by iterating it. Denote by (∆0
x,∆

0
y)
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the displacement measured after the first convergence of the

algorithm and by Q0(ωx, ωy) the normalized cross-spectrum

measured from the images to correlate. Once (∆0
x,∆

0
y) have

been obtained, it is possible to compute (∆1
x,∆

1
y) from

Q1(ωx, ωy) defined as

Q1(ωx, ωy) = Q0(ωx, ωy)e
−j(ωx∆0

x+ωy∆0
y). (40)

If the sequence {(∆i
x,∆

i
y)} converges toward zero, then the

uncertainty on the measurement decreases. It is seen as a

successive resampling of the images, done in the frequency

domain by compensating the shift measured.

The frequency mask is similarly adjusted. One may assign

less weight to frequencies that have an original weight equal

to unity but whose fit to the theoretical cross-spectrum is poor.

Since Q and C are normalized, |Q(ωx, ωy) − C(ωx, ωy)| ≤ 2.

Hence, if 0 ≤ W (ωx, ωy) ≤ 1, ϕ∆(ωx, ωy) ∈ [0, 4]. Denote by

C0(ωx, ωy) = ej(ωx∆0
x+ωy∆0

y) the best match for the normal-

ized cross-spectrum that has been first deduced from minimiza-

tion. The residual per frequency after the first minimization is

ϕ0
∆(ωx, ωy) = W 0(ωx, ωy)

∣∣Q0(ωx, ωy) − C0(ωx, ωy)
∣∣2

where W 0 is the original weighting matrix. A new weighting

matrix is then defined as

W 1(ωx, ωy) = W 0(ωx, ωy)

(
1 − ϕ0

∆(ωx, ωy)

4

)n
. (41)

We have chosen n = 6. This scheme forces the algorithm to

converge toward a solution which is close to the first solution

obtained, but it adds more robustness against noise in practice.

Based on these principles, we define the robustness iterations

as follows:




Qi+1(ωx, ωy) = Qi(ωx, ωy)e
−j(ωx∆i

x+ωy∆i
y)

ϕi∆(ωx, ωy) = W i(ωx, ωy)
∣∣Qi(ωx, ωy) − Ci(ωx, ωy)

∣∣2

W i+1(ωx, ωy) = W i(ωx, ωy)
(

1 − ϕi
∆

(ωx,ωy)

4

)n
.

The global shift between the two images is then given by





∆x =
∑
i

∆i
x

∆y =
∑
i

∆i
y.

(42)

The robustness iterations can stop when the sequence of

{(∆i
x,∆

i
y)} becomes lower than some prescribed threshold. In

practice, we prefer imposing a fixed number of iterations (up to

four). It achieves good noise and bias reduction in the measure-

ments while maintaining a reasonable computational cost.

From the quantities calculated above, the signal-to-noise

ratio (SNR) of the measurement is given by

SNRi = 1 −
∑
ωx

∑
ωy

ϕi∆(ωx, ωy)

4
∑
ωx

∑
ωy

W i(ωx, ωy)
. (43)

It quantifies the quality of the correlation and ranges from zero

(no correlation) to one (perfect correlation).

5) Initializing the Minimization Algorithm: The minimiza-

tion algorithm needs to be initialized with some displacement

(∆x0
,∆y0). According to (38), a gradient descent algo-

rithm should be initialized with (∆x0
,∆y0) = (∆∗

x ± 1,∆∗
y ±

1) to converge toward the solution (∆∗
x,∆

∗
y). The function

φ(∆x,∆y) could then be scanned with steps ∆x < 1 pixel and

∆y < 1 pixel in the physical solution set, with the scanning

point minimizing φ being used as initialization. However, this

solution is computationally expensive, in particular, for large

image patches. We therefore rather use the peak correlation

method defined by (22) to approximate the solution. By pro-

viding that the displacement to be measured is less than half

the correlation window size, this directly provides the physical

solution.

Designate by (x0, y0) the integer coordinates of the corre-

lation peak. According to (22), in case of a pure integer shift,

we should have (∆x0
,∆y0) = (−x0,−y0). Denote by pxiyj

the

amplitude of the correlation at coordinates (xi, yi). We obtain

a better estimate by setting





∆x0
= −
∑

1

i=−1

∑
1

j=−1
xipxiyj∑

1

i=−1

∑
1

j=−1
pxiyj

∆y0 = −
∑

1

i=−1

∑
1

j=−1
yipxiyj∑

1

i=−1

∑
1

j=−1
pxiyj

.

(44)

This approximation is computationally efficient and is used to

initialize the minimization algorithm.

F. Image Correlation, Complete Algorithm

Denote by i1 a reference image (the master image) and by i2
(the slave image) an image representing the same scene shifted

by a translation. It is assumed that i1 and i2 share the same

resolution. Let p1 and p2 be two overlapping patches extracted

from i1 and i2. Let p1 and p2 be of size 2M × 2M pixels with

M such that 2M is larger than twice the largest translation to be

estimated.

The SNR, thus the correlation accuracy, is higher when the

overlapping area of patches to correlate is maximum. Patches

to correlate are then iteratively relocated to compensate for

their relative displacement. These iterations (usually at most

two) are done from the peak correlation method to lower the

computational cost. This method has been found as robust

against noise as the minimizing algorithm for pixel scale mea-

surements. The minimization algorithm is performed last on

relocated patches.

Step 1) Define two raised-cosine windows of size 2M × 2M .

wrc1 with β1 = 0.35 and wrc2 with β2 = 0.5.

Step 2) Let p0
2 = p2. Correlate p1(x, y)wrc1(x, y) with

p0
2(x, y)wrc1(x, y) using the peak correlation

method [and applying the subpixel approximation as

defined by (44)]. The estimated translation is given

by (∆̃0
x, ∆̃

0
y). Let (t0x, t

0
y) = ([∆̃0

x], [∆̃0
y]), where [·]

is the rounding to the nearest integer operator. De-

fine p1
2(x, y) = p0

2(x + t0x, y + t0y). Iterate Step 2)

until tix ≤ 1 and tiy ≤ 1. If convergence is not

reached, then stop and set SNR = 0. Else, let n + 1
be the number of iterations needed to achieve
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convergence. Then, define (∆x0
,∆y0) = (∆̃n

x , ∆̃
n
y )

and set




Tx =
n∑
i=0

tix

Ty =
n∑
i=0

tiy.

Step 3) By taking (∆x0
,∆y0) as initialization values, cor-

relate using the phase minimization algorithm the

patches p1(x, y)wrc2(x, y) and pn2 (x, y)wrc2(x, y).

Set m close to unity. If the minimization does con-

verge, let (∆xϕ
,∆yϕ

) be the physical solution de-

rived. Otherwise, stop and set SNR = 0. If |∆xϕ
| >

1.5 or |∆yϕ
| > 1.5 then stop and set SNR = 0.

Step 4) (optional): Set Tx = Tx + ∆xϕ
and Ty = Ty +

∆yϕ
. Using sinc interpolation with resampling dis-

tances dx = dy = 1 pixel, interpolate p2 such that

pn2 (x, y) = p0
2(x + Tx, y + Ty). Set (∆x0

,∆y0) =
(0, 0). Then, go back to Step 3) only once.

Step 5) Return

(∆x,∆y,SNR) = (Tx + ∆xϕ
, Ty + ∆yϕ

,SNR).

In Step 2), the convergence within 0.5 pixel between two

image patches cannot always be achieved. The correlation

peak method exhibits some bias, and in noisy images, if a

displacement of 0.5 pixel is to be measured, it can be sys-

tematically overestimated. Therefore, if a stopping condition

such that tix = 0 and tiy = 0 were set, displacements that could

effectively be recovered in Step 3) would be lost. This situation

has been encountered in practice. The consequence is that,

in Step 3), offsets theoretically up to 1.5 pixels have to be

measured.

Step 4), which consists in precisely relocating the patch p2

to maximize the overlap with the patch p1, is optional. Precise

relocation is achieved from sinc interpolation. A larger patch

has to be considered to avoid edge effects in the interpolated

patch. The resampling kernel is of size 25 × 25 pixels. Only

one iteration of this optional step is applied since improvements

on subsequent iterations are insignificant.

G. Correlation Tests and Results

We have produced a set of test images from raw SPOT 5

HRG 5-m resolution images. Translated images have been

generated from sinc resampling. To simulate ortho-rectified

images or oversampled images such as the SPOT 5 THR

2.5-m resolution images, the test images have been oversam-

pled by 33% by setting the resampling distances to dx = dy =
1.5 pixels. We used a resampling kernel of size 25 × 25 pixels.

We have consistently verified that the larger the correlation

window, the lower the correlation uncertainty and bias. There-

fore, only cases with small, 32 × 32 pixels, correlation windows

are presented. Correlation windows scan the test images with a

constant step of 16 pixels in each dimension. The test images,

subsets of the SPOT full scene, are composed of 3000 ×
3000 pixels. Thirty-two thousand four hundred correlation mea-

sures are gathered at each test. Correlation quality is assessed

Fig. 13. (a) Evolution of the mean bias (black line) and standard deviation
(shaded area) of the correlation measurements when the masking parameter m
is varying. No robustness iterations are applied. Measurements are given for a
half pixel offset. (b) Evolution of the mean bias and standard deviation of the
correlation measurements when adding robustness. Measurements are given for
a half pixel offset and m = 0.9.

by examining the distribution of these measurements when the

offset introduced between the test images is varying. Since

results in both x and y directions are nearly identical, only

variations along the x axis are presented.

1) Masking Test: We consider the correlation algorithm

with no Step 4), no frequency masking, and no robustness itera-

tions. If the test images are shifted by 0.5 pixel, the distribution

of the measurements (Fig. 14) yields µ{∆x} = −0.42 pixels

and σ{∆x} = 0.017 pixels. In this case, the correlation is nei-

ther precise (the error is 8% of the pixel size) nor very accurate.

Let us now examine the distribution of the correlation measures

when the masking parameter m is varying [Fig. 13(a)]. The

solid black line represents the mean bias B = ∆xth
− µ{∆x},

where ∆xth
is the theoretical displacement to be evaluated, and

the shaded area represents the two-sigma (±σ{∆x}) deviation

of the measurements. Measurements are biased toward the

nearest integer pixel. When m ≥ 1.4, the masking effect no

longer exists. When m ≤ 0.7, the mask is discarding too much

information, and the correlation loses precision and accuracy.

An optimum value is attained for m = 0.75−0.9. By setting

m = 0.9 (Fig. 14), it is now measured µ{∆x} = −0.47 pixels

and σ{∆x} = 0.010 pixels.

2) Robustness Iterations: With the robustness iterations, the

frequency mask is adapted at each iteration. The algorithm is

then initialized with a suboptimal value of the masking parame-

ter, typically m = 0.9. Fig. 13(b) represents the evolution of the

mean bias and error deviation of the correlation measurements

when the robustness iterations are increasing. The maximum

improvement is reached after four iterations. More iterations do

not degrade the results. If the algorithm is initialized with m ≤
0.75, the robustness iterations have no significant effect on the

correlation. The histogram of the measurements for m = 0.9
with four robustness iterations is presented in Fig. 14. Preci-

sion and accuracy of the correlation are greatly improved. We

measure µ{∆x} = −0.48 pixels and σ{∆x} = 0.003 pixels.
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Fig. 14. Histograms of the correlation measurements for a constant offset
∆x = −0.5 pixels. A constant bin size of 1/1000 pixel is used. Bias and
error are characterized for four configurations of the algorithm. Suggested
improvements such as masking, robustness iterations, and sinc interpolation
allow for precise and accurate correlation, even with small image patches.

Fig. 15. Mean correlation bias (black line) and standard deviation (shaded
area) are plotted with respect to the relative displacement between the test
images. The simplest form of the algorithm is characterized here, without the
Step 4). m = 0.9, and four robustness iterations are applied. The correlation
measurements exhibit a nearly linear bias with respect to the offsets to be
estimated. The sharp discontinuities around ±1.5 pixels are due to the patches
relocation to the nearest integer pixel. They highlight the convergence condition
in Step 2).

3) Global Performances, Simplest Form: We consider the

simplest form of the algorithm, with no Step 4). Due to the

convergence condition imposed in Step 2), measurements fall

within the range of −2 to +2 pixels. Fig. 15 shows the mean

bias and the measurements’ standard deviation with respect to

the offsets to be estimated. For 32 × 32 pixels windows, the

maximum error is about of 1/20 of the pixel size.

4) Global Performances, Extended Form: We consider the

extended form of the algorithm, including Step 4). Fig. 16

shows the mean bias and measurements’ standard deviation

with respect to the offsets to be estimated. This step increases

the processing time by almost a factor of ten, but the correlation

bias is significantly reduced by a factor of ten. The maximum

uncertainty, considering 32 × 32 pixels windows, is only about

1/200 of the pixel size.

Fig. 16. Mean correlation bias (black line) and standard deviation (shaded
area) are plotted with respect to the relative displacement between the test
images. The complete form of the algorithm that includes Step 4) is charac-
terized here. m = 0.9, and four robustness iterations are applied. Considering
the optional step in the algorithm allows for a reduction of the mean bias by a
factor of ten. The maximum measurement uncertainty is about 1/200 pixel for
patches of size 32 × 32 pixels.

V. PROCESSING CHAIN

From the technical data related to the SPOT 1, 2, 3, and

4 satellites [39], the absolute location error when no ground

control points (GCP) are used, considering a flat terrain, is

less than 350 m. It is at most 50 m on SPOT 5. Registration

errors are then up to 700 m when coregistering SPOT 1–4

images and up to 100 m when coregistering SPOT 5 images.

For our application, we need to coregister the images with an

accuracy of a few tens of centimeters by optimizing the ortho-

rectification parameters. To remain of general use, this tech-

nique should not involve additional information other than the

one from the satellite and the topography.

A. Corrected Orthorectification

1) Problem Modeling: For an ideal topographic model,

image misregistrations result from cumulative errors on the

satellite viewing parameters, i.e., errors on the satellite look

angles �u1 that are modeling the optical system; the attitude

variations of the platform given by the roll, pitch, and yaw

angles; the spacecraft position; and velocity. On the SPOT

systems, information on the satellite trajectory (position and

velocity) is sampled every 30 s, while the image acquisition

time is around 9 s. However, these data are recorded with a very

high accuracy owing to the onboard Doppler Orbitography and

Radio positioning Integrated by Satellite receiver system [40].

Root-mean square (RMS) error on the satellite position is less

than 70 cm in each of the three satellite reference axes [15], and

compared with the 830-km satellite altitude, it appears negligi-

ble. This high position accuracy combined with a very smooth

trajectory of the satellite allows for a precise estimation of the

satellite trajectory during the time of the image acquisition.

Major uncertainties on the viewing parameters are therefore not

likely to come from erroneous positions and velocities.

All the remaining parameters that are composing the view-

ing geometry, i.e., optical model and attitude variations, are
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combined in the global look directions �u3 (5). The various

sources of errors on each individual parameter might then be

considered to contribute only to a global error on the resulting

look directions. From this perspective, the strict constraint on

the trajectory accuracy is loosened since an error in position

can be modeled from different imaging parameters [41]. For

example, changes on the altitude can be compensated from

changes on the instrument focal length, which is a constituting

parameter of the instrument modeling vectors �u3.

2) Look Directions Correction: Assume that the exact

ground coordinates where a particular pixel has to be projected

are known; say, the pixel p(x0, y0) in the raw image is as-

sociated with the ground point M0. The set {p(x0, y0),M0}
is called a GCP. Theoretically, the associated look direction

�u3th
(x0, y0) is determined by

−−−→
O3M0 =

−−→
O3P (y0) + t · �u3th

(x0, y0), for some t > 0.

Hence, this gives

�u3th
(x0, y0) =

−−−→
O3M0 −−−→

O3P (y0)∥∥∥−−−→O3M0 −−−→
O3P (y0)

∥∥∥
2

(45)

where
−−→
O3P (y0) is the given satellite position at the time

when the line y0 was being acquired. Define �u3(x0, y0) as the

look direction at the pixel p(x0, y0), derived from the satel-

lite ancillary data. The discrepancy with the theoretical look

direction is

−→
du3(x0, y0) = �u3th

(x0, y0) − �u3(x0, y0)

=

−−−→
O3M0 −−−→

O3P (y0)∥∥∥−−−→O3M0 −−−→
O3P (y0)

∥∥∥
2

− �u3(x0, y0). (46)

If three GCPs are given, the three discrepancies
−→
du3(xn, yn)

computed for n = 0, 1, 2 can be linearly extrapolated in each of

the three dimensions to correct all the look directions �u3(x, y)
in the image. This correction compensates for any linear drift

along the satellite trajectory, including linear drifts of the roll,

pitch, and yaw angles. It yields a nonlinear correction in terms

of ground coordinates, in particular, due to the topography.

If more than three GCPs are available, higher order cor-

rections can be applied. Here, we determine the best linear

correction in the least square sense. Given N pixels p(xn, yn)
associated to N ground coordinates Mn, N discrepancies−→
du3(xn, yn) for n = 0, . . . , N − 1 are computed

−→
du3(xn, yn) =

−→
du3(n) =




du0
3(n)

du1
3(n)

du2
3(n)


 , for n = 1, . . . , N.

We assign a confidence level to each GCP through some

weights wn. Three corrective planes, each best approximating

in the weighted least square sense the set of discrepancies−→
du3(n) in all three dimensions, must be computed. We are

then to find the coefficients (ai, bi, and ci) for i = 0, 1, 2
such that

ǫi=
∑

(xn,yn)

[
wn
(
aixn+biyn+ci−dui3(n)

)]2
, for i=0,1,2

is minimum. The solution is obtained by equating the partial

derivatives of ǫi to zero. Define the constants

α1 =

N∑

n=1

w2
nx

2
n β2 =

N∑

n=1

w2
ny

2
n

α2 =

N∑

n=1

w2
nxnyn β3 =

N∑

n=1

w2
nyn

α3 =

N∑

n=1

w2
nxn γ3 =

N∑

n=1

w2
n. (47)

Then, for each dimension i of �u3, compute

δi1 =

N∑

n=1

w2
nxndu

i
n

δi2 =

N∑

n=1

w2
nyndu

i
n

δi3 =

N∑

n=1

w2
ndu

i
n. (48)

Hence, the sets of coefficients are determined by



ai

bi

ci


 =



α1 α2 α3

α2 β2 β3

α3 β3 γ3


 .



δi1
δi2
δi3


 , for i = 0, 1, 2.

A global correction matrix C is thus defined as

C =



a0 b0 c0

a1 b1 c1

a2 b2 c2


 . (49)

At any pixel (x, y) in the raw image, the approximated look

direction discrepancy is therefore given by

−→
du3app

(x, y) = C



x
y
1


 . (50)

Assuming N GCPs to be known prior to orthorectification,

calculating C is a preprocessing step. During the orthorectifi-

cation, once the look direction �u3(x, y) has been determined

from the ancillary data (5), it is corrected by the corresponding

approximated look direction discrepancy such that the new

corrected look direction becomes

�u3cor
(x, y) = �u3(x, y) +

−→
du3app

(x, y). (51)

The orthorectification process is then pursued following the

standard procedure. In case of a noncorrected orthorectification

or if no GCPs are provided, entries of C are set to zero. Then,

�u3cor
(x, y) = �u3(x, y).
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B. Look Directions Optimization From Precise

GCPs Generation

Instead of optimizing the viewing parameters from a given

set of GCPs, we describe a global scheme that iteratively

refines a rough selection of GCPs such that the look directions

correction implied allows for precise image georeferencing

and coregistration. This general principle is described next,

followed by its particular application to image georeferencing

and then to image coregistration.

1) Acquiring Precise GCP Principle: Given a raw image,

selected patches are roughly ortho-rectified using only the

satellite ancillary data. GCPs are then determined from the mis-

registration, measured from correlation, between these image

patches and a ground reference image. A global methodology

is as follows.

1) Select a set of at least three pixels in the raw image.

Call this set of pixels {p(xi, yi)}, with xi, yi integers, the

image control points (ICP). They have been designated to

become the future GCPs.

2) From the satellite ancillary data and a given set of GCPs

{GCP 0}, deduce the correction matrix C0.

3) From the satellite ancillary data and the matrix C0,

project on the ground the ICPs. The direct corrected

model orthorectification is applied here (Section II-A).

All ICPs p(xi, yi) are associated with ground coordinates

(λ0
i , ϕ

0
i , h̃

0
i ), then forming approximated GCPs.

4) Locate in the reference image the closest integer pixels to

the points of coordinates (λ0
i , ϕ

0
i ). Call these pixels p0

refi
.

In the reference image, select N ×N pixels patches,

P0
refi

, centered on the pixels p0
refi

.

5) According to the ground grids defined by the patches

P0
refi

(ground resolution and coordinates), ortho-rectify

onto the same grids, using the inverse model orthorec-

tification method and the correction implied by C0,

the raw image. It produces the roughly ortho-rectified

patches P̃0
i .

6) Correlate the reference patches P0
refi

with the patches P̃0
i .

Deduce the north/south and the east/west geographical

shifts (∆λ0
i ,∆ϕ0

i ) between the patches. SNRs of the

correlations are designated by SNR0
i .

7) From the DEM, determine from bicubic interpolation

the elevations h0
i of the ground points (λ0

i + ∆λ0
i , ϕ

0
i −

∆ϕ0
i ). Define the new set of GCPs such that {GCP1

i } =
{(λ0

i + ∆λ0
i , ϕ

0
i − ∆ϕ0

i , h
0
i ,SNR0

i )}.

8) Go back to 2) and iterate the global process by providing

the set of refined GCPs {GCP1
i } as a priori knowledge

for the next round. The SNR on the GCPs is used as

a confidence weight to determine the new correction

matrix C1.

This process is repeated until both the mean and the stan-

dard deviation of the ground misregistrations (∆λi,∆ϕi),

weighted by the SNR and taken over all GCPs, become sta-

ble. When this procedure is stopped, we are left with an

accurate set of GCPs: {GCPk+1
i } = {(xi, yi, λ

k
i + ∆λki , ϕ

k
i −

∆ϕki , h
k
i ,SNRki )} if k + 1 is the total number of iterations. This

set of GCPs is then utilized to ortho-rectify the raw image from

the inverse corrected orthorectification scheme.

The algorithm is initialized by the GCP set {GCP0}, from

which C0 is calculated. This initial correction ensures a signifi-

cant overlap of the patches to correlate, even though the satellite

parameters maybe largely biased. This initial correction is not

needed when processing SPOT 5 images. The set {GCP0} is

then empty and C0 = 0. However, when dealing with SPOT 1,

2, 3, and 4 images, the initial misregistration between patches

may be quite large (only attitude angular velocities are pro-

vided, so that attitude angles are known up to a constant). The

set {GCP0} can then consist of three GCPs, which are manually

selected.

2) Georeferencing With Precise GCPs and Statistical

Correlation: Georeferencing consists in associating pixels to

absolute ground coordinates. In the context of processing satel-

lite images, the georeferencing is seen as the coregistration of

the images with a ground truth, which is a topographic model

in our case. The absolute georeferencing error is therefore from

the DEM.

The accurate registration of a set of images with the topo-

graphic model aims at limiting artifacts due to parallax when

comparing images. The process of precise orthorectification

therefore starts with a precise GCP generation according to the

topography. A shaded DEM is generated from the scene sun

elevation and azimuth during acquisition, provided in ancillary

data [13]. This shaded topography model is used as the first

reference image for the GCPs optimization procedure.

GCPs are derived from a correlation algorithm that measures

the misregistration between ortho-rectified image patches and

a reference image. Comparing satellite images with a shaded

topography is a valid approach owing to the large swath of

imaging satellites (60 km for SPOT and ASTER satellites).

Some topographic features in the raw image are then very

likely to be recognized in the shaded relief image. However, the

nature of the two images to be correlated is quite different. The

satellite image is acquired by an optical sensor, and the relief

image is a synthetic image. Their Fourier transform is therefore

hardly comparable, and at this point, rather than the correlation

algorithm presented in Section IV-F, we use a simpler less

accurate but more robust method: the statistical correlation.

The statistical correlation is defined as the absolute value

of the correlation coefficient taken between a roughly ortho-

rectified patch and the corresponding reference patch [42], [43].

This computation is carried out on patches surrounding the

reference patch, such that a statistical correlation matrix is

built. The estimated misregistration, expressed in pixels, is

found from quadratic approximation, separately in each x and

y dimensions, of the maximum of the correlation matrix. We

chose a C1-continuous approximating quadratic B-spline [44]

for its simplicity and because it was showing little biases at the

subpixel scale. The SNR is computed from the average of the

two approximated maxima in each dimension.

In over 30 GCPs, the optimization algorithm converges to-

ward an uncertainty on the set of the generated GCPs that is

smaller than the topography resolution (typically within half the

resolution at 1 − σ).

3) Coregistration With Precise GCPs and Frequency

Correlation: Starting with a set of raw images, designate a

particular image to be ortho-rectified and coregistered with the
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topography. This ortho-rectified image next becomes the new

reference. Correlation between comparable satellite images is

more accurate than between the satellite images and the relief

image. New ICPs, chosen in the remaining raw images, are

then optimized to become GCPs relative to the reference image.

The frequency correlator described in Section IV-F is used to

optimize the GCPs. The optional Step 4) is not needed since the

iterative resampling is implicit in the GCPs generation scheme.

Only a few ICPs are necessary in this process.

Ultimately, the goal of this study is to retrieve the horizontal

coseismic displacement field from pre- and postearthquake im-

ages. If we assume the pre-earthquake image to be coregistered

according to the topography, the ortho-rectified pre-earthquake

image becomes the registration reference for the postearthquake

image. In this case, ICPs on the raw postearthquake image

should be chosen as far away as possible from the zone of

ground deformation. Coseismic displacements could otherwise

be partly compensated and biased from the look directions

correction.

C. Complete Processing Chain

We summarize the procedure to accurately ortho-rectify and

coregister a set of pushbroom satellite images and to retrieve

coseismic displacements from pre- and postearthquake images.

It is assumed that ancillary data on the satellite viewing geom-

etry are available with the raw images. It is also assumed that

a topographic model whose resolution is close to the ground

resolution of the images is provided.

1) One image of the set is chosen to be the reference image.

A shaded version of the topographic model is generated

as described above. If the satellite viewing parameters

for this particular image are largely biased, three GCPs

are visually selected from the shaded topographic model.

On visually recognizable topographic features, ICPs are

selected from the raw image, and GCPs are generated

using statistical correlation on the shaded topography.

2) From the set of GCPs obtained, the mapping of the raw

image onto the ground is computed with the inverse

orthorectification model. Two inverse transformation ma-

trices, one for each of the two dimensions of the image,

are created.

3) The reference image is resampled according to the trans-

formation matrices.

4) Another raw image of the set is chosen. Three GCPs are

manually selected from the first ortho-rectified image,

if needed. ICPs are chosen from the raw image, and

GCPs are generated using frequency correlation on the

reference image.

5) The raw image is ortho-rectified according to the set of

GCPs devised. It is then resampled. An accurately ortho-

rectified and coregistered image is produced. Steps 4) and

5) are repeated if more than two images of the same area

have to be coregistered.

6) The image ground projection grids have been designed

so that they all align exactly. Any change detection

algorithm can then be applied on overlapping areas.

In the case of coseismic deformation measurements,

correlation using the frequency correlation detailed in

Section IV-F is performed between sliding windows scan-

ning the pre- and postearthquake images. Each corre-

lation results in a measure of displacement along the

lines (east/west displacements) and along the columns

(north/south displacements) of the ortho-images

The correlation grid is defined from three parameters: the

correlation window size, the step size (defining the correlation

image pixel size), and the coordinates in the master image

where the correlation starts. The starting pixel is the closest to

the upper-left master image corner whose ground coordinates

are multiple of both the image resolution and the correlation

step size. Doing so allows us to mosaic or stack correlation

images without further resampling.

VI. TESTS AND RESULTS

Tests of the performance and limitations of the technique are

carried on cloudless pairs of SPOT images acquired above the

Hector Mine area in California, where a Mw 7.1 earthquake

occurred in 1999. The Shuttle Radar Topography Mission

(SRTM) DEM [45] with a ground resolution of 1′′ (30 m) is

used. It has an absolute height accuracy of 16 m and a relative

height accuracy of 10 m. The absolute horizontal accuracy

is 20 m, and the relative horizontal accuracy is 15 m. These

accuracies are quoted at the 90% level.

The SRTM mission initially measured ground positions in

Cartesian coordinates but delivers ortho-metric heights, ex-

pressed with respect to the EGM 96 geoid. According to the

orthorectification procedures described, ground elevations

should be expressed with respect to the WGS 84 ellipsoid, and

the DEM should be compensated by adding the geoid undula-

tions. However, for the EGM 96 geoid, the shortest wavelength

resolved is of 111 km and corresponds to the spherical har-

monic of 360◦ [46]. Neglecting the deflection of vertical, the

difference between the ellipsoid and geoid heights is then con-

sidered constant at the scale of an image footprint (60 × 60 km),

and the DEM is not compensated for. This constant height offset

is then absorbed during the GCPs optimization.

Two experiments are done. First, the orthorectification and

the coregistration are examined from a set of two images ac-

quired after the earthquake. Second, a set of two images brack-

eting the 1999 Mw 7.1 Hector Mine earthquake is considered.

A. Measuring a Null Displacement Field From SPOT 5 Images

This experiment involves the coregistration of two ortho-

rectified SPOT 5 images, denoted by image 1 and image 2.

Table I case A displays their general characteristics. Acquired

six months apart, they share a nominal ground resolution of 5 m.

In addition, they have very similar incidence angles so that geo-

metric artifacts, if present, should be negligible. Although they

were acquired at the same time of the day, the shadows are quite

different due to the seasonal difference of the sun elevation.

These two images were acquired by two different instruments

HRG 1 and HRG 2, which are theoretically identical.

The Hector Mine area is a desert region, and in over a

period of 6 months, landscape modifications due to vegetation
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TABLE I
RELEVANT PARAMETERS FOR THE SPOT SCENES

changes or man-made constructions were very limited. No

major seismic activity was reported in this area between the

acquisition of these two images [47]. Additionally, the Hector

Mine earthquake did not produce any measurable afterslip at the

surface [48], so there should be no terrain change in this dataset.

Overall, these images have nearly identical characteristics

and are as similar as two satellite images, which are acquired

at different periods of time, can be.

1) Processing Steps: The first processing step is to coreg-

ister image 1 to the topography. Since we are using SPOT 5

images, no manually selected GCPs are needed.

To minimize the resolution difference between the DEM

(30 m) and the image (5 m), the DEM is resampled on a

10-m UTM grid. A sinc kernel (theoretically C∞) is used to

later avoid griding artifacts in the shaded relief image. This

interpolation is not required, but it has been found to improve

the GCPs accuracy by up to 15%–20%. The sun elevation and

azimuth of image 1 are used to construct the shaded image.

Thirty five ICPs are chosen in the raw image on visually

recognizable topographic features. The GCPs optimization is

carried out through statistical correlation with the shaded DEM

on patches of 300 × 300 pixels corresponding to 3 × 3 km on

the ground. Several iterations of the algorithm are performed,

and at each round, the average and the standard deviation of

the misregistrations are measured over all GCPs [Fig. 17(a)].

The initial misregistration measured (µ = 20.97 m and σ =
14.07 m) is within the SPOT specifications; the global error

is less than 50 m. Convergence of the algorithm is reached

after three iterations. The average residual misregistration is

evaluated to 40 cm, while the standard deviation residual is

estimated to 13.1 m. This last uncertainty is consistent with

the 15-m relative horizontal accuracy of the SRTM DEM. This

shows clearly that the DEM resolution and accuracy limits the

use of such approach. The georeferencing quality is therefore

limited by that of the DEM.

Using this set of GCPs, image 1 is ortho-rectified onto a

UTM grid with a 5-m resolution. It is then resampled. The re-

sampling distances are dx = 1.26 pixels and dy = 1.21 pixels,

consistent with the scene orientation of 13.61◦ (theoretical

resampling distances are dth = 1.20 pixels: Section III-C1,

a = 1 pixel).

Fig. 17. Evolution, with respect to the iterations of the look directions
correction algorithm, of the misregistration of the GCPs to be generated. The
mean bias (black line) and the standard deviation (shaded area) are calculated
from the local misregistration of each GCP, weighted by their relative SNR.
(a) Convergence of the GCPs between the raw image 1 and the shaded relief
image. (b) Convergence of the GCPs between the raw image 2 and the ortho-
rectified image 1.

Image 2 is then coregistered with the ortho-image 1. No

manual GCPs are needed. Three ICPs distant from each other

are chosen from the raw image 2. These points are optimized

from frequency correlation on the ortho-image 1, and a set of

three GCPs is generated. Correlation patches of size 512 ×
512 pixels corresponding to 2.56 × 2.56 km on the ground are

chosen. The correlation mask parameter is set to m = 0.9, and

two robustness iterations are performed for each correlation.

The misregistration residuals on the GCPs with respect to the

number of iterations are presented in Fig. 17(b). Once again,

with no a priori knowledge, the average and the standard

deviation of the initial misregistrations are within the SPOT 5

specifications. It is measured as µ = 22.74 m and σ = 11.98 m.

Convergence is reached after three iterations. The average

residual misregistration measured is µ = 1.2 cm for a standard

deviation σ = 1.6 cm. Since a linear correction based upon

three GCPs is applied, this small coregistration error reflects

the maximum accuracy of the correlation given the correla-

tion patches size and the noise contained within the patches.

This proves the convergence of the process. When increasing

the number of GCPs, the coregistration accuracy commonly

stays below 1/50 of a pixel. The image 2 is ortho-rectified

and resampled on a 5-m UTM grid using these three GCPs.

The computed resampling distances are dx = 1.26 pixel and

dy = 1.21 pixel.

Correlation between sliding windows is performed on the

overlapping ortho-rectified images. The frequency correlation

from Section IV-F is used. Correlation is executed on 32 ×
32 pixels windows (160 × 160 m on the ground) and with a

sliding step of 8 pixels (40 × 40 m on the ground). The mask

parameter is set to m = 0.9, and four robustness iterations are

applied.

2) Results Analysis: The result of the correlation process is

presented in Figs. 18 and 19 , where each image represents one
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Fig. 18. North/south component of the SPOT 5/SPOT 5 correlation. Displacements are positive toward the north. Shadowing biases are mostly visible in
this component since the sun azimuth of the two images is mostly north/south oriented (127.72◦ and 158.15◦). Decorrelation points are discarded and appear
in white.

component of the horizontal ground displacement field. Fig. 20

shows the SNR image associated with the measurements. Here,

only the simplest form of the correlation algorithm is presented

since the extended form failed to show any improvement.

Offsets measured with the two approaches agree within less

than 10 cm. The relative noise between the two images in-

duces a measurement uncertainty that overwhelms a possible

correlation bias. The correlation images, composed of 1748 ×
1598 measurements, need 3.25 h to be computed using the

algorithm’s simplest form on a personal computer with a

3.6-GHz Xeon CPU. On the same computer, the extended al-

gorithm needs 26.3 h. Only the simplest form of the correlation

process is considered hereafter.

Although images 1 and 2 are very similar, decorrelation

areas are present. Decorrelation is the loss of correlation, char-

acterized by a low or null (if the correlation algorithm does

not converge) SNR, or by extremely large unphysical mea-

surements (> 5 m here). These decorrelation points represent

here 0.1% of the total number of measurements. Inspection of

the decorrelation areas shows that correlation is lost in three

major circumstances. First, temporal decorrelation occurs when

windows to correlate contain drastic changes. These changes

may be caused by lateral surface processes, mainly due to allu-

vions. This is particularly clear in the surrounding of Emerson

Lake, a salt lake located on the west side of the scene (Fig. 20).

Vegetation changes, clouds, or snow is not a concern in this

desert region. New buildings or large man-made modifications

are also a source of temporal decorrelation. The second source

of decorrelation is the shadowing difference. Scene 2 was

acquired in winter when the sun elevation was much lower

(33.38◦) than when the scene 1 was acquired during summer

(68.27◦). In image 2, this results in topographic shadows where
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Fig. 19. East/west component of the SPOT 5/SPOT 5 correlation. Displacements are positive toward the east. No shadowing bias is noticed along this direction.
An unexplained wave artifact of a period of 5 km and with an amplitude of 40 cm on the ground is seen. Decorrelation points are discarded and appear white.

information is lost along with the correlation. The third source

of decorrelation involves ground features that are, at the cor-

relation window scale, translation invariant. The algorithm is

not capable of proposing a stable registration point between

the windows to correlate and does not converge. For instance,

this phenomenon occurs in areas of constant radiometry. The

interior of the Emerson Lake is an example. Large water

basins on the south–east side are another example. Straight and

isolated roads are also cases where correlation is lost along the

road direction.

After filtering out these decorrelation points, histograms in

each dimension are given in Fig. 21. They show an average

displacement of 7.8 cm. Therefore, on average, a registration

better than 1/50 of the nominal image resolution (5 m) is

achieved. The spread of the histograms is Gaussian and can

be seen as reflecting the noise on the measurements. However,

it does not characterize the noise level of the correlation tech-

nique, which should be much lower, as shown in Section IV-G3,

but rather the “natural” noise of the scenes. The noise is

indeed not distributed evenly as a function of the spatial

wavelength and is thus not white. The largest displacements

forming the tails of the histograms are found on topographic

features and alluvions. In alluvions and deposits areas, mea-

sured displacements are up to 1.5 m, with more typical values

around 60–70 cm. These measurements are most likely to be

physical. On the topographic features, displacements up to

2.5 m are observed. Visual inspection of the images reveals that

they are artifacts resulting from shadowing differences. Given

the close incidence angles of the two images, topographic bias

can only account for at most a few centimeters. The large dif-

ference in the sun elevation then largely contributes in biasing

the correlation measurements on topographic features. Also, the
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Fig. 20. SNR map assessing the quality of the measurements. SNR values range from zero to one, but it is only shown ranging from 0.9 to 1 since most of the
values are very close to one. Decorrelation areas are shown in black. Examples of the typical decorrelation situations are indicated. Cloud cover or vegetation
changes are not an issue in this desert region.

spread of the correlation histograms is larger in the sun azimuth

direction.

Looking at the east/west displacement field, a sinusoidal

artifact that covers the whole image is visible. The amplitude

is estimated around 40 cm, with a period of 5 km. We have not

yet found a definitive explanation for this artifact. If we exclude

areas where measurements are obviously biased, meaning away

from shading artifacts, alluvions, or decorrelation areas, the

measurements standard deviation is about 25 cm. Using 32 ×
32 pixels correlation windows, the intrinsic noise of the cor-

relation is therefore estimated at 1/20 pixel. This performance

is much lower than the theoretical one stated in Section IV-G.

Real scene images actually contain aliasing from the optical

system and are subjected to radiometric noise and quantization.

Reducing the effects of these noise sources then appears as a

priority to further improve the performance of the technique.

The measurement of disparities between a set of satellite

images is thus subjected to several kind of noises. The decor-

relation noise is modeled as a zero-mean impulse noise: some

measurements take random values within the range allowed by

the correlation window size (± half the correlation window

size). Another component of the noise has been described as

the “natural” noise of the scene. It is additive, Gaussian, and

zero mean with a standard deviation typically around 1 m.

On average, it determines the minimum displacement that can

confidently be retrieved from a set of images. This noise has

itself two additive components. It has a low-frequency com-

ponent that characterizes artifacts induced from the lack of
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Fig. 21. Histograms of the relative offsets between the two ortho-rectified
SPOT 5 images. 32 × 32 pixels correlation window have been used. Decor-
relation points are discarded. (a) It is measured µ{∆NS} = −0.058 m
and σ{∆NS} = 0.80 m. (b) It is measured µ{∆EW} = −0.051 m and
σ{∆EW} = 0.57 m.

Fig. 22. Section across the power spectral density of the north/south correla-
tion image.

topographic resolution, shadowing, or satellite induced artifacts

(due to attitudes or sensor uncertainties). It has also a high-

frequency component, modeled as white additive and Gaussian.

This noise accounts for the measurement uncertainty induced

by slight scene changes, aliasing, quantization, noise of the

sensors, and intrinsic correlation accuracy. Fig. 22 shows a

section across the power spectral density of the north/south cor-

relation image. The superposition of the noises clearly appears.

A white noise with lower power is superposed to a higher power

low-frequency noise. More confidence on the displacements

measured can therefore be obtained if these two noise sources

can be unambiguously isolated. The low-frequency noise tends

to be more localized in the correlation images.

B. 1999 Hector Mine Earthquake Imaged From SPOT

In this last example, we analyze SPOT 4 and SPOT 2 images

bracketing the 1999 Mw 7.1 Hector Mine earthquake. The

SPOT 4 image, acquired in August 1998, is referred to as

image 1. The SPOT 2 image, acquired in August 2000, is

referred to as image 2. Principal characteristics of these images

are reviewed in Table I case B.

This test is an opportunity to assess the performance of the

technique used to measure coseismic ground deformation. It

also allows us to test the registration quality when images show

a significant difference in their incidence angle. As stated in

the introduction, most of the techniques currently in use fail

to achieve precise image coregistration when incidence angle

difference exceeds 3◦. Here, it is 8.1◦.

1) Processing Steps: We follow the same procedure as in

the previous example, and the same 10-m sinc interpolated

DEM, obtained from the 1′′ SRTM DEM, is used. The only

difference is that three GCPs are visually selected between the

raw image 1 and the shaded DEM to initiate the GCPs optimiza-

tion. The initial misregistration corresponds to the uncertainty

on the three GCPs manually selected µinit = 32.72 m and

σinit = 23.6 m. Convergence is reached after three iterations,

and µfinal = 0.25 m and σfinal = 11.43 m. The raw image 1

is ortho-rectified and resampled, according to the GCPs gener-

ated, onto a 10-m UTM grid. Computed resampling distances

are dx = 1.29 pixels and dy = 1.16 pixels. Three GCPs are

visually selected from the raw image 2 with respect to the ortho-

image 1, and three ICPs are chosen from the raw image 2 such

that they are distant from each other and they do not belong

to the near fault deformation zone. Optimization is achieved

through frequency correlation of 256 × 256 pixels patches

(2.56 × 2.56 km). Convergence is reached after three iterations,

and the average residual misregistration is below 1.5 mm, with

a standard deviation below 2 mm. By using only three ICPs,

the convergence only reflects the accuracy of the correlation. In

this case, we notice a significant improvement, in comparison

to the previous test, because the shadowing of the scenes is

similar. The raw image 2 is ortho-rectified and resampled, ac-

cording to this set of three GCPs generated, onto a 10-m UTM

grid. Computed resampling distances are dx = 1.32 pixels and

dy = 1.17 pixels. The resampling distance dx increases as the

incidence angle increases: The foreshortening effect becomes

more important in the satellite across track direction.

Overlapping areas of the ortho-images 1 and 2 are cropped,

and correlation is performed with 32 × 32 pixels (320 × 320 m)

sliding windows and with a step of 8 pixels (80 m). The mask

parameter is set to m = 0.9, and four robustness iterations are

applied. The simplest form of the correlation algorithm is used.

2) Results Analysis: Figs. 23 and 24 represent, respectively,

the displacements along the north/south and the east/west

directions. Fig. 25 shows the SNR associated with the

measurements.

The ground deformation induced by the earthquake is clearly

visible. The surface rupture appears as a discontinuity in the

displacement field that is traced from the northwest corner to

the center of the correlation images. The horizontal slip vector

is measured from profiles taken perpendicular to the fault trace
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Fig. 23. North/south component of the SPOT 4/SPOT 2 correlation. Displacements are positive toward the north. The fault rupture is visible going from the
northwest corner to the center of the image. The maximum displacement on the fault along the north–south direction is 6 m. A secondary branch is also noticed.
Sensor artifacts lead to linear distortions in the satellite along the track direction. Decorrelation points are discarded and appear in white. The profile AA′ is
reported in Fig. 26.

(Fig. 26). Horizontal coseismic displacement measured on the

fault is up to 6 m in the north/south direction and up to 3.5 m in

the east/west direction. In the north/south correlation image, a

secondary rupture branches to the north where the main rupture

bends. The coseismic displacement measured on this secondary

branch is up to 1 m. The location of the fault trace and the

surface fault slip recovered from the SPOT images compare

well with the surface ruptures and fault slip measured in the

field [49], and from SAR images [48], [50], [51]. We observed

in Fig. 27 that the fault slip measured from the SPOT images is

generally close to the maximum slip measured in the field and

varies smoothly along strike. The horizontal coseismic fault slip

at the surface is therefore accurately and densely (every 80 m)

recovered from the proposed technique. With the nominal

images resolution of 10 m, all the measurements are in the

subpixel range, within ±3 m. Several sources of decorrelation,

noise, or artifacts are noticed.

Decorrelation areas are visible and are explicitly showed in

the SNR image. Some of them are the consequence of drastic

surface changes that occurred during the 2 years separating

the images acquisition. Decorrelation is easily identifiable on

the Emerson salt lake and the Lavic salt lake areas. Large

decorrelation areas going from the center of the correlation

images and toward the east are due to sensor saturation:

white sandy areas appear too bright on the postearthquake

image. Nonrecorded high radiometric contrasts induce a loss of

correlation.

By filtering out the decorrelation areas and away from

the major discontinuities, the displacements show a Gaussian

distribution centered on µNS = −4.4 cm in the north/south
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Fig. 24. East/west component of the SPOT 4/SPOT 2 correlation. Displacements are positive toward the east. The fault rupture is visible going from the northwest
corner to the center of the image. The maximum east/west component of the fault slip is estimated to be 3.5 m. Sensor distortions are inducing linear artifacts and
parallax effects on topographic features. Decorrelation points are discarded and appear in white.

direction and on µEW = 23.3 cm in the east/west direction. On

average, the registration of the images is on the order of 1/40

of the nominal image resolution. The standard deviations are,

respectively, 62.2 and 85.6 cm in the north/south and east/west

components. This noise level is consistent with the previous

example, given the longer time period between the images and

their lower resolution.

Linear artifacts in the satellite along-track direction are

biasing the mean displacements. They are due to the SPOT

4 and 2 CCD arrays misalignments. The PAN SPOT 1, 2,

3, and 4 satellite sensors are indeed composed of four CCD

linear sensors of 1500 pixels each, aligned together to form the

complete 6000 pixels sensor [13]. The discontinuities measured

range from 30–70 cm (0.03 to 0.07 pixel). This is in agreement

with the sensor discontinuities and distortions reported in [41]

and [4].

In the east/west component, a small horizontal linear offset is

present around the location 34◦31′N, 116◦17′W. Unexplained at

this time, it is identified as an artifact from image 2. This offset

is indeed not present when correlating the SPOT 4, 1998, and

SPOT 5, 2002, images, while it does appear in the correlation

of the SPOT 2, 2000, and SPOT 5, 2002, images.

The distortions of the CCD arrays (relative tilt between CCD

arrays as seen in [41]) also produce local look direction distor-

tions along the satellite across track direction. Some parallax

effects are therefore noticed in the east/west component of

the disparity field when these distortions occur on areas of

rough topography. Beside this small parallax effect due to the

CCD distortions, no other topographic artifacts are seen in the

east/west correlation images. The north/south correlation image

is free of topographic artifacts. No shadowing differences are

biasing the measurements since the SPOT images have been
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Fig. 25. SNR of the SPOT 4/SPOT 2 correlation. The SNR ranges from zero to one, but it is only shown ranging from 0.9 to 1 since most of the values are close
to one. Decorrelation areas are shown in black. In this particular case, decorrelations are mainly due to sensor saturation and alluvions.

acquired at the same period of the year. This test demonstrates

the performance of our procedure to coregister satellite images

with important incidence angle difference. It also indicates

that, when the DEM ground resolution and height accuracy are

“precise enough,” shadowing differences and CCD distortions

are the main sources of artifacts.

VII. CONCLUSION AND FUTURE WORK

This paper presents a complete procedure for automatic and

precise orthorectification and coregistration of optical satellite

images. The approach has been validated using SPOT images

and SRTM DEM, without any external information such as

GPS. In the test cases analyzed, the coregistration accuracy is

on the order of 1/50 of the image nominal resolution, and the

absolute georeferencing precision is similar to the one of the

DEM used.

The orthorectification takes into account the imaging system

distortions and the satellite attitude variations during the im-

age acquisition. Owing to the inverse orthorectification model,

the raw images are rigorously resampled to produce ortho-

rectified images without adding aliasing. The rigorous resam-

pling has proven to be a key for our application, and we

advocate for the use of near theoretical resampling kernels

for applications requiring geodetic accuracy. Based on our

analysis of the frequency correlation methods, improvements

have been suggested to improve accuracy, robustness, and

flexibility. Displacements smaller than 1/20 of a pixel, using
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Fig. 26. Profile AA′ from the SPOT 4/SPOT 2 north/south correlation im-
age. This profile shows the maximum displacement of 6 m measured in the
north/south direction. The high-frequency noise is clearly visible and account
for about 85 cm.

Fig. 27. Right lateral slip is determined by projecting the horizontal slip
vectors along the fault strike. Horizontal slip vectors are measured from linear
least square adjustment, on each side of the fault, and on each north/south and
east/west images of stacked profiles running perpendicularly to the rupture.
Profiles are stacked over a width of 880 m and a length of 8 km. Slip vectors
further north (0–4 km) do not fall within the image extent, and further south
(beyond 27 km) are corrupted by decorrelations. The overall envelop of the
lateral slip reported from SPOT measurements is in good agreement with the
field survey, although field measurements are underestimated: In many portions
of the rupture, cultural features of sufficient linearity were lacking to properly
estimate the distributed shear, that may account for up to 40% of the total right
lateral deformation [49]. The origin of the measurements is located at the UTM
point 566880 E, 3828400 N.

32 × 32 pixels correlation windows, are accurately measured

from real noisy images. The test cases show that our pro-

cedure does not introduce any bias on the measurements of

ground displacements. Owing to our precise georeferencing and

correlation techniques, we have found evidence for artifacts and

biases of the imaging systems at the subpixel scale. Sensor

discontinuities and distortions on the SPOT 2 and 4 satellites

have been identified and measured. Similarly, biased displace-

ments induced by shadowing differences have been quantified.

It is up to a few meters in the example considered, exceeding

topographic artifacts due to parallax effects. Image acquisition

dates and times should therefore be carefully considered in

change detection applications. Correlation noise results from

three additive components: Decorrelation, due to severe ground

changes or lack of information between the scenes, is modeled

as an impulse noise; topographic artifacts, shadowing differ-

ences, uncorrected satellite attitudes, and sensor distortions are

modeled as a localized low-frequency noise; slight changes

in the scenes, radiometric quantization, aliasing, sensor noise,

and correlation uncertainties are modeled as an additive white

Gaussian noise. The last two components constitute the natural

noise and determine the smallest ground motion that can ac-

curately be measured. The standard deviation of this noise is

typically around 1 m, but the low-frequency component, mostly

localized in the images, accounts for the largest errors. This

is why the ground displacement discontinuities are accurately

measured, with an uncertainty ranging from 20 to 80 cm in

each of the north/south and east/west directions. This technique

is a powerful complement to differential radar interferometry

[12], which can provide much more accurate measurements of

ground displacements in the range direction, but generally fails

in the near fault zone due to a loss of coherence or a fringe rate

in excess of one fringe per pixel [52].

Some limiting factors have also been identified, suggesting

directions for further improvements. The resampling method

proposed ensures the production of aliasing-free ortho-images,

but is suppressing some of the image high frequencies. An

adaptive resampling kernel would increase the resampling ef-

ficiency. The frequency correlation technique is very versatile,

but its sensitivity to aliasing or quantization has not been

analyzed yet. The information provided on each CCD, on the

form of a look direction, is essential in correcting optical biases.

This information is fully available on SPOT 5 images, which

has made it possible to accurately model sensor artifacts. For

high precision instruments, accurate on-board calibration of all

the sensor CCD elements should be generalized. The accuracy

or the sampling of the on-board gyroscopes may not allow the

recording of too small or too fast attitude variations. We have

encountered some cases, not shown in this paper, where long

wavelength variations due to pitch oscillations were visible in

the correlation images. These small unrecorded variations had

an amplitude of 1.5 m on the ground with a periodicity of

4.2 km. This sets the accuracy limit of the SPOT gyro-

scopes. A linear correction is therefore not always suffi-

cient, and higher order or trigonometric corrections may be

investigated.

The processing techniques described allow to coregister op-

tical satellite images, possibly acquired from different satellite

systems, with unprecedented accuracy. It should be helpful in

reducing or eliminating measurements uncertainties and biases

for any change detection applications.

The algorithms described in this paper have been imple-

mented in a software package, Co-registration of Optically

Sensed Images and Correlation (COSI-Corr), developed with

Interactive Data Language (IDL) and integrated under ENVI.

It allows for precise orthorectification, coregistration, and cor-

relation of SPOT and ASTER satellite images as well as aerial

photographs. It is available from the Caltech Tectonics Obser-

vatory website (http://www.tectonics.caltech.edu/).



1556 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 6, JUNE 2007

APPENDIX I

DIRECT MODEL ORTHORECTIFICATION USING A DEM

Let M0 be the ground point at elevation h0 obtained from

direct model orthorectification of a given look angle �u3. Using a

DEM, the point M , seen from �u3 that belongs to the topography

surface, is approximated from the following algorithm:

i = 0

h0 = hstart

M0 = M computed at elevation h0

repeat

i = i + 1

hi = h(Mi−1) from DEM

Mi = M computed at elevation hi

until ‖Mi − Mi−1‖ ≤ dmin

dmin is set for a precision of 1 cm. Convergence is usually

reached after two iterations. hstart is set to zero when the

process is first started; then, the exit value of the previous

computed point is used. The DEM is interpolated at the location

Mi using bicubic interpolation.

APPENDIX II

TPSS ALGORITHM APPLIED TO THE INVERSE

ORTHORECTIFICATION PROBLEM

By calling Rx and Ry as the nominal image ground reso-

lution in the Easting and Northing directions, the best image

subpixel coordinates m = (x∗, y∗) that minimize Φ (7) are

given by the following TPSS [21] algorithm:

m−1 = (x0 − 1, y0 + ε)t

m0 = (x0, y0)
t

g−1 = (Rx, Ry)t

h = 10−2/Ry

Φ0 = Φ(x0, y0)

k = 0

repeat

gk =

(
Φ(xk+h,yk)−Φ(mt

k
)

h
Φ(xk,yk+h)−Φ(mt

k
)

h

)

∆m = mk −mk−1

∆g = gk − gk−1

αk = ∆m
t ·∆m/∆m

t ·∆g

mk+1 = mk − αk · gk

Φk+1 = Φ(mt
k+1)

k = k + 1

until |Φk − Φk−1| ≤ p2

At the first grid point, m0 = (x0, y0)t is set to an arbitrary

position in the raw image. For all others, the result of the

previous optimization is used for initialization. Starting con-

ditions for the gradient g−1 are difficult to set up since one

cannot guess the correct sign but the proposed initialization

works well in practice. We used ε = 10−9. The value of h
may be critical. It has to be as small as possible to give

derivation a good accuracy, but should not be too small so that

interpolation of satellite attitude remains meaningful. We have

found that h should depend on the raw image resolution. p
sets the minimum orthorectification accuracy. For a centimeter

accuracy (p = 10−2), convergence is reached with an average

of three iterations.

APPENDIX III

TPSS ALGORITHM APPLIED TO THE PHASE

CORRELATION MINIMIZATION PROBLEM

If m = (∆x,∆y) represents the displacement to be esti-

mated, the algorithm is described as follows:

m−1 = (∆x0
− 0.1,∆y0

− 0.1)t

g−1 =

(∑
ωx

∑
ωy

W (ωx, ωy)∑
ωx

∑
ωy

W (ωx, ωy)

)

k = 0

repeat

gk =

(∑
ωx

∑
ωy

(∂ϕ∆k
(ωx,ωy))

∂∆x∑
ωx

∑
ωy

(∂ϕ∆k
(ωx,ωy))

∂∆y

)

∆m = mk −mk−1

∆g = gk − gk−1

αk = ∆m
t ·∆m/s∆m

t ·∆g

mk+1 = mk − αk · gk

k = k + 1

until |mk −mk−1| ≤ (p, p)

with

∂ϕ∆(ωx, ωy)

∂∆x

= 2W (ωx, ωy)ωx

× [QR(ωx, ωy) sin(ωx∆x + ωy∆y)

−QI(ωx, ωy) cos(ωx∆x + ωy∆y)]

and

∂ϕ∆(ωx, ωy)

∂∆y

= 2W (ωx, ωy)ωy

× [QR(ωx, ωy) sin(ωx∆x + ωy∆y)

−QI(ωx, ωy) cos(ωx∆x + ωy∆y)]

where QR and QI are defined as in Section IV-E2. p sets the

stop-condition for the convergence. We have chosen p = 10−3

so that displacements in each direction are estimated with

an accuracy of at least 10−3 pixel. The initialization of the

algorithm, given by (∆x0
,∆y0), is described in Section IV-E5.

APPENDIX IV

APPLICATION TO ASTER IMAGES

Position, velocity, sight vectors, and attitude angles of the

imaging system during image acquisition are provided with raw

(level 1A) ASTER images in ancillary data [53]. These parame-

ters constitute the ASTER viewing geometry. The ASTER sight

vectors are equivalent to the SPOT look directions �u2.

Geometrical axes conventions between SPOT and ASTER

systems are different: X and Y axes are swapped, and the

Z axis is inverted. Taking into account these conventions and

from the attitude angles provided, it is therefore possible to
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retrieve the look directions �u1 for ASTER images by inversion

of (4). ASTER ancillary data are then translated onto SPOT

variables. We have done so in a preprocessing step, and 15-m

raw ASTER images have been successfully processed from

the complete chain proposed. Systematic oscillations in the

correlation images with an amplitude of 5–6 m and a periodicity

of 4.8 km have revealed the lack of accuracy and sampling

density of the ASTER attitude data. Subtracting stacks across

correlation images have allowed the removal of most of these

attitude artifacts to produce high-quality displacement field

between pairs of images [14]. The natural noise of such cor-

relation images has been estimated to be around 2 m in each

north/south and east/west component.

ACKNOWLEDGMENT

The authors would like to thank R. Binet and R. Michel

(Laboratoire de Detection Geophysique, CEA, France) for

their insightful comments and the valuable discussions on

their early work in the field of subpixel image registra-

tion and correlation; C. Schiek and J. Hurtado [Univer-

sity of Texas, El Paso (UTEP)] for their useful comments;

J. Treiman [United States Geological Survey (USGS)] for

providing the Hector Mine field survey slip measurements;

the three anonymous reviewers whose comments have helped

clarified a number of points; and P. Willis (Institut de Physique

du Globe de Paris (IPGP), France), for helping in clarifying

some geodesy notions.

REFERENCES

[1] J. Townshend, C. Justice, C. Gurney, and J. McManus, “The impact of
misregistration on change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 30, no. 5, pp. 1054–1060, Sep. 1992.

[2] N. Bryant, A. Zobrist, and T. Logan, “Automatic co-registration of space-
based sensors for precision change detection and analysis,” in Proc.
IGARSS, Jul. 2003, vol. 2, pp. 1371–1373.

[3] X. Dai and S. Khorram, “Effects of image misregistration on the accuracy
of remotely sensed change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 36, no. 5, pp. 1566–1577, Sep. 1998.

[4] N. Van Puymbroeck, R. Michel, R. Binet, J.-P. Avouac, and J. Taboury,
“Measuring earthquakes from optical satellite images,” Appl. Opt.,
vol. 39, no. 20, pp. 3486–3494, Jul. 2000.

[5] H. Vadon and D. Massonnet, “Earthquake displacement fields mapped by
very precise correlation. Complementarity with radar interferometry,” in
Proc. IGARSS, Honolulu, HI, Jul. 2000, vol. 6, pp. 2700–2702.

[6] S. Dominguez, J.-P. Avouac, and R. Michel, “Horizontal coseismic
deformation of the 1999 Chi-Chi earthquake measured from SPOT
satellite images; implications for the seismic cycle along the western
foothills of central Taiwan,” J. Geophys. Res., vol. 108, no. B2, p. 2083,
2003.

[7] R. Binet and L. Bollinger, “Horizontal coseismic deformation of the 2003
Bam (Iran) earthquake measured from SPOT-5 THR satellite imagery,”
Geophys. Res. Lett., vol. 32, no. 2, pp. L02307.1–L02307.4, 2005.

[8] E. Berthier, H. Vadon, D. Baratoux, Y. Arnaud, C. Vincent, K. Feigl,
F. Remy, and B. Legresy, “Surface motion of mountain glaciers derived
from satellite optical imagery,” Remote Sens. Environ., vol. 95, no. 1,
pp. 14–28, 2005.

[9] R. Crippen and R. Blom, “Measurement of subresolution terrain displace-
ments using SPOT panchromatic imagery,” in Proc. IGARSS, Jun. 1991,
vol. 3, pp. 1667–1670.

[10] R. Michel and J.-P. Avouac, “Deformation due to the 17 August 1999
Izmit, Turkey, earthquake measured from SPOT images,” J. Geophys.
Res., vol. 107, no. B4, p. 2062, 2002.

[11] C. Schiek, “Terrain change detection using ASTER optical satellite im-
agery along the Kunlun fault, Tibet,” M.S. thesis, Univ. Texas, El Paso,
TX, 2004. [Online]. Available: http://www.geo.utep.edu/pub/schiek/
Cara_Schiek_Master_Thesis.pdf

[12] D. Massonnet, M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl,
and T. Rabaute, “The displacement field of the Landers earthquake
mapped by radar interferometry,” Nature, vol. 364, no. 6433, pp. 138–
142, Jul. 1993.

[13] SPOT User’s Handbook, SPOT Image Corporation, Reston, VA, 1990.
[14] J. P. Avouac, F. Ayoub, S. Leprince, O. Konca, and D. Helmberger, “The

2005, Mw 7.6 Kashmir earthquake, rupture kinematics from sub-pixel
correlation of ASTER images and seismic waveforms analysis,” Earth
Planet. Sci. Lett., vol. 249, no. 3/4, pp. 514–528, 2006.

[15] S. Riazanoff, SPOT Satellite Geometry Handbook. Toulouse, France:
SPOT Image, Jan. 2002.

[16] Z. Altamini, P. Sillard, and C. Boucher, “ITRF 2000: A new release of the
international terrestrial reference frame for Earth sciences applications,”
J. Geophys. Res., vol. 107, no. B10, p. 2214, 2002.

[17] J. Snyder, Map Projections—A Working Manual, ser. U.S. Geological
Survey Professional Paper 1395. Washington, DC: Government Printing
Office, 1987.

[18] T. Westin, “Precision rectification of SPOT imagery,” Photogramm. Eng.
Remote Sens., vol. 56, no. 2, pp. 247–253, 1990.

[19] L. Chen and L. Lee, “Rigorous generation of digital orthophotos from
SPOT images,” Photogramm. Eng. Remote Sens., vol. 59, no. 5, pp. 655–
661, 1993.

[20] Y. El-Manadili and K. Novak, “Precision rectification of SPOT imagery
using the direct linear transformation model,” Photogramm. Eng. Remote
Sens., vol. 62, no. 1, pp. 67–72, 1996.

[21] J. Barzilai and J. Borwein, “Two-point step size gradient methods,”
IMA J. Numer. Anal., vol. 8, no. 1, pp. 141–148, 1988.

[22] R. Keys, “Cubic convolution interpolation for digital image processing,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-29, no. 6,
pp. 1153–1160, Dec. 1981.

[23] A. Oppenheim, R. Schafer, and J. Buck,Discrete-Time Signal Processing,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

[24] P. P. Vaidayanathan, Multirate Systems and Filter Banks. Upper Saddle
River, NJ: Prentice-Hall, 1993.

[25] B. Zitová and J. Flusser, “Image registration methods: A survey,” Image
Vis. Comput., vol. 21, no. 11, pp. 977–1000, 2003.

[26] H. Foroosh, J. Zerubia, and M. Berthod, “Extension of phase correlation
to subpixel registration,” IEEE Trans. Image Process., vol. 11, no. 3,
pp. 188–200, Mar. 2002.

[27] W. Hoge, “A subspace identification extension to the phase correlation
method [mri application],” IEEE Trans. Med. Imag., vol. 22, no. 2,
pp. 277–280, Feb. 2003.

[28] H. Stone, M. Orchard, C. Ee-Chien, and S. Martucci, “A fast direct
Fourier-based algorithm for subpixel registration of images,” IEEE Trans.
Geosci. Remote Sens., vol. 39, no. 10, pp. 2235–2243, Oct. 2001.

[29] H. Carfantan and B. Rouge, “Estimation non biaisée de décalages sub-
pixelaire sur les images SPOT,” in Proc. Colloque GRETSI, Toulouse,
France, Sep. 2001.

[30] J. Goodman, Introduction to Fourier Optics, 2nd ed. New York:
McGraw-Hill, 1996.

[31] A. Leon-Garcia, Probability and Random Processes for Electrical Engi-

neering, 2nd ed. Reading, MA: Addison-Wesley, 1994.
[32] C. Knapp and G. C. Carter, “The generalized correlation method for

estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-24, no. 4, pp. 320–327, Aug. 1976.

[33] G. H. Golub and C. F. V. Loan,Matrix Computations, 2nd ed. Baltimore,
MD: The Johns Hopkins Univ. Press, 1989.

[34] J. Manton, R. Mahony, and Y. Hua, “The geometry of weighted low-rank
approximations,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 500–
514, Feb. 2003.

[35] D. Field, “Relations between the statistics of natural images and the
response properties of cortical-cells,” J. Opt. Soc. Amer. A, Opt. Image
Sci., vol. 4, no. 12, pp. 2379–2394, 1987.

[36] D. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural im-
ages,” Ophthalmic Physiol. Opt., vol. 12, no. 2, pp. 229–232, 1992.

[37] A. van der Schaaf and J. van Hateren, “Modeling the power spectra of
natural images: Statistics and information,” Vis. Res., vol. 36, no. 17,
pp. 2759–2770, 1996.

[38] C. Latry and B. Rouge, “Optimized sampling for CCD instruments: The
Supermode scheme,” in Proc. IGARSS, Jul. 2000, vol. 5, pp. 2322–2324.

[39] SPOT Satellite Technical Data, 2003, Toulouse, France: SPOT Image.
[Online]. Available: http://www.spotimage.fr

[40] C. Jayles and M. Costes, “Ten centimeters orbits in real-time on-board of
a satellite, DORIS/DIODE current status,” Acta Astronaut., vol. 54, no. 5,
pp. 315–323, 2004.

[41] T. Westin, “Interior orientation of SPOT imagery,” in Proc. 27th ISPRS
Congr., Commission I, Washington, DC, 1992, vol. 29, pp. 193–198.



1558 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 6, JUNE 2007

[42] M. Sveldow, C. McGillem, and P. Anuta, “Image registration: Similarity
measure and preprocessing method comparisons,” IEEE Trans. Aerosp.
Electron. Syst., vol. AES-14, no. 1, pp. 141–149, Jan. 1978.

[43] W. Pratt, “Correlation techniques of image registration,” IEEE Trans.

Aerosp. Electron. Syst., vol. AES-10, no. 3, pp. 353–358, May 1974.
[44] N. Dodgson, “Quadratic interpolation for image resampling,” IEEE Trans.

Image Process., vol. 6, no. 9, pp. 1322–1326, Sep. 1997.
[45] Shuttle Radar Topography Mission, 2000, JPL-NASA. [Online].

Available: http://www2.jpl.nasa.gov/srtm/statistics.html
[46] X. Li and H. Gotze, “Tutorial: Ellipsoid, geoid, gravity, geodesy, and

geophysics,” Geophysics, vol. 66, no. 6, pp. 1660–1668, 2001.
[47] Caltech Online Catalog. [Online]. Available: http://www.data.

scec.org/catalog_search/date_mag_loc.php
[48] M. Simons, Y. Fialko, and L. Rivera, “Coseismic deformation from

the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from
InSAR and GPS observations,” Bull. Seismol. Soc. Amer., vol. 92, no. 4,
pp. 1390–1402, 2002.

[49] J. A. Treiman, K. J. Kendrick, W. A. Bryant, T. K. Rockwell, and S. F.
McGill, “Primary surface rupture associated with the Mw 7.1 16 October
1999 Hector Mine earthquake, San Bernardino County, California,” Bull.
Seismol. Soc. Amer., vol. 92, no. 4, pp. 1171–1191, 2002.

[50] G. Peltzer, F. Crampé, and P. Rosen, “The Mw 7.1, Hector Mine,
California earthquake: Surface rupture, surface displacement field, and
fault slip solution from ERS SAR data,” C. R. Acad. Sci. Paris, Earth
Planet. Sci., vol. 333, no. 9, pp. 545–555, 2001.

[51] Y. Fialko, M. Simons, and D. Agnew, “The complete (3-D) surface dis-
placement field in the epicentral area of the 1999 Mw 7.1 Hector Mine
earthquake, California, form space geodetic observations,” Geophys. Res.
Lett., vol. 28, no. 16, pp. 3063–3066, 2001.

[52] R. Michel, J. P. Avouac, and J. Taboury, “Measuring near field coseismic
displacements from SAR images: Application to the Landers earthquake,”
Geophys. Res. Lett., vol. 26, no. 19, pp. 3017–3020, 1999.

[53] ASTER User’s Guide, Part I-II, Earth Remote Sensing Data Analysis
Center, Tokyo, Japan, 2001.

Sébastien Leprince (S’06) received the Diplôme d’Ingénieur degree from
the Ecole Supérieure d’Ingénieurs en Electronique et Electrotechnique, Paris,
France, and the M.S. degree in electrical engineering from the California
Institute of Technology, Pasadena, in 2003, where he is currently working
toward the Ph.D. degree in electrical engineering.

His research focus was initially on high-frequency electronics and digital
communication systems. His current research interests include image process-
ing and analysis, optical acquisition systems, and remote sensing.

Sylvain Barbot (S’05) was a computer science undergraduate major and
received the M.S. degree in geophysics from the Institut de Physique du Globe
de Paris, Paris, France, in 2005. He is now a graduate student at the Institute
of Geophysics and Planetary Physics, Scripps Institution of Oceanography,
La Jolla, California.

He has worked on synthetic aperture radar and light detection and ranging
remote sensing, with applications in seismo-tectonics. His research interests
include earthquake physics and signal processing.

François Ayoub received the Diplôme d’Ingénieur from the Institut Français
de Mécanique Avancée, Clermont-Ferrand, France, in 2000.

Since 2003, he has been a Research Scientist with the California Institute
of Technology, Pasadena, where his interests have been focused on remote
sensing, image analysis, and image processing algorithms.

Jean-Philippe Avouac received the Diplôme d’Ingénieur from Ecole Poly-
technique, Palaiseau, France, in 1987, and the Ph.D. degree in geology from
Université Paris VII, Paris, France, in 1987 and 1991, respectively.

He is Professor of geology with the California Institute of Technology
and Director of the Caltech Tectonics Observatory. His research activity is
focused on understanding deformation of the Earth’s crust, with a special focus
on mountain building processes. His group is using a variety of techniques
to measure crustal deformation based on GPS, remote sensing (SAR and
optical images), or field geology and geomorphology, and has contributed to
methodological advances.


