
Automatic Animation Skeleton Construction Using Repulsive Force Field

Pin-Chou Liu, Fu-Che Wu, Wan-Chun Ma, Rung-Huei Liang, Ming Ouhyoung
Communication and Multimedia Laboratory

Dept. of Computer Science and Information Engineering
National Taiwan University

{toby, joyce, firebird, liang}@cmlab.csie.ntu.edu.tw, ming@csie.ntu.edu.tw

Abstract

A method is proposed in this paper to automatically gen-
erate the animation skeleton of a model such that the model
can be manipulated according to the skeleton. With our
method, users can construct the skeleton in a short time,
and bring a static model both dynamic and alive.

The primary steps of our method are finding skeleton
joints, connecting the joints to form the animation skeleton,
and binding skin vertices to the joints. Initially, a repulsive
force field is constructed inside a given model, and a set of
points with local minimal force magnitude are found based
on the force field. Then, a modified thinning algorithm for
volume data is applied, so that the thinning process will stop
at those already found local minimum points. Referring to
the topological information, we define the skeleton joints
and connect them to form the skeleton. After construct-
ing the skeleton, we anchoring skin vertices to the skele-
ton joints according to the distances between vertices and
joints. In order to compute the repulsive force, hundreds
of rays are sampled from a position inside the model, and
the computation of the intersection points takes most of the
time. Therefore, an octree structure is used to accelerate
the joints finding process. Currently, the skeleton generated
from a typical 3D model with 1000 to 10000 polygons takes
less than 2 minutes on a Pentium IV 2.4 GHz PC.

1 Introduction

Because of the improvement of the computer graphics
technologies, more and more artificial characters take their
places in commercial industries nowadays. For example,
we can see the dinosaurs chasing people in ”Jurassic Park”,
and monsters scaring children in ”Monsters, Inc.”, etc. If we
want to pose a 3D model, adjusting its polygon positions di-
rectly will consume a lot of time. Therefore, using the artic-
ulated model that has animation skeleton (sometimes called
IK or control skeleton) will facilitate the posing process,

and all the motions can be accomplished by just adjusting
corresponding animation skeleton. There are many model-
ing and animation packages providing such functions, users
can use these packages to construct an animation skeleton
for a model. However, an inexperienced user usually takes
hours only to construct an unacceptable result. Even an
well-trained animator still requires several hours to do the
job. In this paper, an automatic method is proposed to gen-
erate an animation skeleton. Initially, we build the repulsive
force field inside the model, and choose the local minimum
points as joint candidates. After a modified thinning algo-
rithm is applied, we determine the final joints and generate
the skeleton. Finally, we bind skin vertices to the skeleton
joints.

2 Previous Work

Many previous works focused on skeleton construction,
all of which produce slightly different results. Generally
speaking, there are several typical approaches to extract the
skeleton from an object. Intuitively, Medial Axis Trans-
form (MAT) [5] is a typical approach to construct skele-
ton directly from the surface points of a 2D or 3D object
[2, 11, 13]. However, the skeleton extracted from Voronoi
diagram is often too noisy, and several algorithms such as
the pruning or bifurcation are proposed to solve these prob-
lems [3, 6, 12, 16]. In general, the MAT skeleton is not ap-
propriate for animation use. Many studies also try to build
skeleton by constructing a discrete distance field with vox-
elization of the object [4, 7, 18]. After obtaining a distance
field, there are many ways to obtain the skeleton from the
distance field, such as thinning [10, 15] or extraction [17].
A comparatively diverse one-dimensional skeletonization
method is to use the Reeb graph [8, 9]. The definition of
the Reeb graph was introduced by Reeb [14]. The idea of
Reeb graph skeleton is to use a continuous function, usu-
ally a geodesic distance function, to describe the topolog-
ical structure and reveal the topological changes (such as
merging or splitting).

teacher
Text Box
Pacific Graphics 2003, Oct 2003, Canmore, Alberta, Canada.



(a) (b) (c)

Figure 1. Illustration of the skeletonization process. (a) Original 3D model. (b) Locate local minimum
points in the repulsive force field and apply the thinning method to get the initial skeleton. (c) Final
result after the initial skeleton being refined.

3 Proposed Algorithm

The primary goal of our system is to automatically con-
struct the animation skeleton for a given model. As a good
automation algorithm, it only requires two primary param-
eters, which areOctree-Leveland Voxel-Size. In general,
we can generate reasonable results by default parameter set-
tings. The input of our system is restricted to triangulated
polygonal model, which may contain single or multiple in-
dividual parts. For uniformity, we scale the model initially
so that its bounding box lies just inside an unit cube.

3.1 Construction of the Octree Structure

To construct the repulsive force field, we have to calcu-
late the repulsive force for each sample location inside the
model. We shoot about one hundred rays from an interior
sample location and compute the intersection points of the
rays with the model surface. The computation complexity
for each ray isO(n), wheren is the polygon number of the
input model, and we will reduce the complexity to the con-
stant time. The basic idea is that we construct the octree
structure for the input model, so that each leaf node owns
only one or two triangles. Thus, the complexity is reduced
to O(c×m), wherem is the level of octree structure andc
is a constant number of the triangles owned by leaf nodes.
We use the projection method to assign the triangles instead
of splitting them into different nodes. At first, we project
each triangle to x-y, y-z, and x-z planes, and then we de-
termine which child nodes are occupied by the projected
triangle. After merging the three results, we assign the tri-
angle to proper child nodes, and recursively repeat the pro-
cess for each child node until the level of octree equals to
the Octree-Levelparameter. The construction process of a

10-level octree completes only within 2 seconds for a model
which is composed of 5000 triangles. After constructing the
octree structure, the performance improves about 10 times
than the brute force sampling process.

3.2 Building Repulsive Force Field

A modified voxelization is used to construct the repul-
sive force field, with the resolution being defined byVoxel-
Sizeparameter. Traditionally, we intersect the grid with the
triangles, and determine the voxels as either interior or exte-
rior voxels. We skip the grid intersecting process, and only
sample the voxel center points directly. We intersect one ray
from each point with the model, and determine the interior
points by the intersection result. The more interior points,
the better skeleton can be constructed. Experiments have
shown that more than 5000 interior points can produce well
results, but how to get the appropriate number of interior
points still depends on the shape of the model.

Next, we shoot about one hundred rays from each inte-
rior point to compute the repulsive force, as shown in Fig-
ure 2. We use a mathematical approximation method [1] to
generate the direction of these rays so that they are evenly
distributed. We usesi to represent a unit vector along the
direction of rayi. Then, the repulsive forceFp at an interior
pointp is calculated as:

−→
Fp(x) =

N∑

i=1

f(‖ri − p‖2) · −→si

whereN is the number of rays,ri is the intersection
point of a rayi on the surface. In here we takef(x) = x−2

as the Newtonian potential function. While calculating the
repulsive force, the smallest length betweenri and p is



Figure 2. Rays are shot to computer the re-
pulsive force. The gray lines represent the
ray directions and the black arrow indicates
the direction and magnitude of the force.

recorded for later usage. After obtaining the force field,
local minimum points are located by comparing their force
value with their neighbors, and we mark them as the skele-
ton joint candidates.

3.3 Skeletonization Process

Based on those skeleton joint candidates, we want to
determine the final joints and a hierarchical relationship
among the joints. First, a modified thinning algorithm
for volume data is used to find the hierarchical relation-
ship. Traditionally, the thinning algorithm removes unde-
sired points from the surface toward inside until meets a
threshold, but the results often form a surface instead of a
skeleton. We modify the algorithm such that we remove
points from the ones with higher force value toward the
ones with lower force value until there is no more points
can be removed. In addition, we define two types in which
the points can’t be removed:

1. The point is one of the joint candidates.

2. After the point is removed, its 26-neighbor points will
be divided into two or more parts.

The first type means the thinning process will preserve the
important feature parts and also prevent the result from
the noise interferences. The second type means we check
the local connectivity to keep the rest points being a 26-
connected group during the thinning process. The reason
why we don’t check the global connectivity is that checking
the global connectivity will create a C-shaped skeleton for
a donut model, while our method will create an O-shaped
skeleton. From a perceptual viewpoint, the O-shaped skele-
ton is more representative of the donut’s topology. After the
thinning process, the rest points form a rough skeleton. We
add the points that have more than two neighbor points to
joints candidates. Based on the connectivity among the rest
points, a breadth-first search algorithm is applied to connect

Figure 3. Binding skin vertices.

those candidates. However, the number of the candidates is
too many to be an appropriate skeleton. We use the previous
recorded shortest distance to the surface of each candidate
joint to group those candidate joints, and merge their con-
nections. Then, in each joint group, we choose the one with
minimal force value to be the final joint. Figure 1 reveals
the skeleton generation process.

3.4 Binding Skin Vertices

Once we get a skeleton for a given model, we bind the
skin vertices to the skeleton joints in order to deform the
model. The corresponding relationship between a skin ver-
tex and all joints is calculated as:

Ti =
N∑

j=1

ωj × tj

where,Ti is the transformation matrix of a skin vertex,
N is the number of the joints, andtj is the transformation
matrix of a joint with a weightwj . When the skeleton is
moved, the transformation matrices of the joints will be ap-
plied to the skin vertices with this weighting function. There
are two types of skin vertices binding. If we attach a rigid
model, such as a table or a robot, to its skeleton, the move-
ment of its skin is expected to be inflexible. Therefore, we
anchor a skin vertex to one nearest joint, and the weight of
the nearest joint is set to one. On the contrary, if we attach
an animal or a human to his skeleton, we expect the vertices
to transform smoothly and vitally. Conventionally, as Fig-
ure 3 shows, a skin vertex is anchored to the nearby joints
and we compute the weights for these joints as:

ωj =
D − dj

(S − 1)×D

whereS is the number of nearest joints (equals to four
in this case),dj is the distance between a nearest joint and a
skin vertex, andD is the sum of alldj . Our method doesn’t
transform the coordinates of skin vertices into the local co-
ordinates of skeleton joints, and it is compatible with many
3D software or libraries, such as Maya, 3D Studio Max, Di-
rect3D, and so on.



(a) (b) (c) (d) (e) (f)

Figure 4. Deformation sequence of a hand model.

4 Results

Several generated skeletons are shown in Figure 6. Gen-
erally speaking, our method can generate the skeleton of a
given model in few minutes. In most cases, we can produce
reasonably good results within 2 minutes. The generated
skeleton conforms to the topology of the model, as shown
in Figure 5. It also represents primary features of the model
so that they are suitable for animation. Figure 4 shows the
animation sequence of a hand model which is driven by the
generated skeleton.

5 Conclusions and Future Work

An effective algorithm is proposed to facilitate the
skeleton-constructing process which helps animators to
speed up their jobs. Furthermore, this method achieves a
higher degree of automation than previous methods, and it
produce the animation skeleton of relatively good quality
with little user inputs. We use the repulsive force instead
of the distance value, so that we can prevent our algorithm
from ambiguous joints. Therefore, we can produce more
consistent results in various models. For example, we pro-
duce only one joint in disk-like model, while using distance
value will produce many candidates with same values.

At present, the resolution of the voxel representation is
fixed now and some tiny details of the model may be ig-
nored. For that reason, it is important to involve adaptive
voxelization. Then, using different resolutions for different
parts will provide enough information to determine more
precise joints.

References

[1] http://www.math.niu.edu/ rusin/known-math/95/sphere.faq.
[2] N. Amenta, S. Choi, and R. Kolluri. The power crust.ACM

Symposium on Solid Modeling and Applications, pages 249–
260, 2001.

[3] D. Attali and A. Montanvert. Modeling noise for a better
simplification of skeletons.IEEE International Conference
on Image Processing, pages 13–16, 1996.

[4] I. Bitter, A. E. Kaufman, and M. Sato. Penalized-distance
volumetric skeleton algorithm.IEEE Transactions on Visu-
alization and Computer Graphics, 7(3):195–206, 2001.

[5] H. Blum. A Transformation for Extracting New Descriptors
of Shape, pages 362–380. MIT Press, 1967.

[6] S. W. Choi and H. P. Seidel. One-sided stability of medial
axis transform. Lecture Notes in Computer Science 2191,
pages 132–139, 2001.

[7] N. Gagvani, D. Kenchammana-Hosekote, and D. Silver.
Volume animation using the skeleton tree.IEEE Symposium
on Volume Visualization, pages 47–54, 1998.

[8] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii.
Topology matching for fully automatic similarity estimation
of 3d shapes.SIGGRAPH 2001 Conference Proceedings,
pages 203–212.

[9] F. Lazarus and A. Verroust. Level set diagrams of polyhedral
objects. Proceedings of the fifth ACM symposium on Solid
modeling and applications, pages 130–140, 1999.

[10] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building
skeleton models via 3-d medial surface/axis thinning algo-
rithms. Computer Vision, Graphics, and Image Processing,
56(6):462–478, 1994.

[11] N. Mayya and V. T. Rajan. Voronoi diagrams of polygons:
A framework for shape representation.IEEE Conference on
Computer Vision and Pattern Recognition, pages 638–643,
1994.

[12] R. Ogniewicz. Automatic medial axis pruning by mapping
characteristics of boundaries evolving under the euclidean
geometric heat flow onto voronoi skeletons.Technical Re-
port 95-4, Harvard Robotics Laboratory, 1995.

[13] R. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and
applications.IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 63–69, 1992.

[14] G. Reeb. Sur les points singuliers d’une forme de pfaff com-
pletement integrable ou d’une fonction numerique.Comptes
Rendus Acad. Science Paris, 222:847–849, 1946.

[15] R. C. Staunton. An analysis of hexagonal thinning algo-
rithms and skeletal shape representation.Pattern Recogni-
tion, 29(7):1131–1146, 1996.

[16] R. Tam and W. Heidrich. Feature-preserving medial axis
noise removal.European Conference on Computer Vision,
pages 672–686, 2002.

[17] L. Wade and R. E. Parent. Automated generation of con-
trol skeletons for use in animation.The Visual Computer,
18(2):97–110, 2002.

[18] Y. Zhou and A. Toga. Efficient skeletonization of volumetric
objects. IEEE Transactions on Visualization and Computer
Graphics, 5(3):195–206, 1999.



(a) (b)

Figure 5. Genus. The generated skeleton conforms to the topology of the model.

(a) (b) (c)

(d) (e) (f)

Figure 6. Result. Generally speaking, our method can generate the skeleton of a given model in few
minutes. In most cases, we can produce reasonably good results within 2 minutes.


