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Abstract

Given a video and associated text, we propose an automatic annotation scheme in

which we employ a latent topic model to generate topic distributions from weighted text

and then modify these distributions based on visual similarity. We apply this scheme to

location annotation of a television series for which transcripts are available. The topic

distributions allow us to avoid explicit classification, which is useful in cases where the

exact number of locations is unknown. Moreover, many locations are unique to a sin-

gle episode, making it impossible to obtain representative training data for a supervised

approach. Our method first segments the episode into scenes by fusing cues from both

images and text. We then assign location-oriented weights to the text and generate topic

distributions for each scene using Latent Dirichlet Allocation. Finally, we update the

topic distributions using the distributions of visually similar scenes. We formulate our

visual similarity between scenes as an Earth Mover’s Distance problem. We quantita-

tively validate our multi-modal approach to segmentation and qualitatively evaluate the

resulting location annotations. Our results demonstrate that we are able to generate ac-

curate annotations, even for locations only seen in a single episode.

1 Introduction

In this paper, we tackle the challenging problem of extracting information from unstructured

text and exploiting this information to annotate an associated video. In particular, we develop

a method that operates on a video with associated transcript, segments the video into scenes

that are set in a specific location, and automatically annotates each scene with a textual label

that provides a description of that location (e.g. “Joyce’s living room”). These labels are
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not derived from external training information, and we do not need to know the number of

locations in a given video. The resulting location descriptions may be used in an information

retrieval system, presented to end-users or used to train an automatic location classifier.

As a test set, we focus on action series, which present many challenges for automated lo-

cation annotation. Most substantially, many locations are unique to specific episodes. Thus,

any supervised approach that assumes annotations from other episodes is guaranteed to fail.

Other episodes can only be used to learn global statistics and parameter settings. For the

actual location labeling, only the transcript of the episode being annotated is utilized. Other

problems for visual recognition in this context include rapid camera switching and motion,

nondescript or blurred backgrounds, and individuals appearing in multiple locations.

We tackle this challenging problem in the following way: We begin by roughly aligning

the transcript to the video using subtitles. We then refine this alignment and split the text and

video of the episode into scenes using both modalities (Sec. 3). The core of this article is

the automatic generation of location labels for all scenes (Sec. 4). The transcripts describe

many of the locations within each episode, but this information may be hidden within the

text or not present for many scenes. The solution we propose is based on generating textual

labels using a weighted topic mixture model. We first rely on an automatic detector to find

location descriptions in the text. These detected locations are used to learn topic mixtures

for each scene with Latent Dirichlet Allocation (LDA). Using this topic model allows us to

use contextual information when labeling a location (e.g. “sink” as an implicit cue for the

location “kitchen”) and to handle different wordings for the same location. We then modify

the topic distribution for each scene using a visual similarity measure based on Earth Mover’s

Distance; this step propagates labels to scenes lacking informative text. Finally, we present

quantitative results and a subjective human evaluation in Sec. 5.

2 Previous Work

Generic scene type classification, which seeks to describe the kind of location seen in an

image (e.g. “beach” or “street”) has been studied e.g. in [12, 21]. Such approaches mostly

rely on supervised techniques and large sets of annotated training data.

Several papers have proposed weakly supervised methods focusing on automatic video

annotation. Schaffalitzky and Zisserman [19] retrieve images of a particular location based

on wide baseline matching techniques. Héritier et al. [10] use latent topic models to identify

discriminative and often reoccurring parts of locations using SIFT features, which are then

labeled manually. Neither of these works aims at a full annotation of each scene occurring

in a video, nor do they explore the use of complementary text to obtain a fully automatic

pipeline. Zhu and Liu [24] study the problem of segmentation into scenes and classify the

obtained scenes into either conversation, suspense, or action scenes, based on audio and

video and using heuristic rules for the actual classification. Finally, Zhai and Shah [23]

perform scene segmentation based on a purely visual Markov chain Monte Carlo approach,

without attempting to classify the obtained scenes in any way.

Other authors have looked into the use of readily available textual annotation for TV and

movie footage to learn to annotate in a weakly supervised manner. In particular, Cour et

al. [4] propose a unified generative model that integrates scene segmentation, script align-

ment, and shot threading. Everingham et al. [7] use transcripts aligned to the video data

based on the subtitles to then identify the cast in a soap series. Laptev et al. [11] exploit

scripts for action recognition in Hollywood movies, using a supervised text classifier and
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using a kernel-based discriminative clustering algorithm to overcome problems with inaccu-

rate alignment between video and text [6]. Finally, Marszałek et al. [14] rank video segments

based on actions using mining techniques. They also extract location names from the scripts,

but they rely on specifically-formatted scripts and do not focus on specific locations, but on

scene types (e.g. “exterior location”).

Several works, e.g. [2, 13, 16], have investigated the use of cross-modal topic models in

the context of automatic image annotation to fuse visual and textual information. However,

it turns out it is relatively difficult to balance the contributions of both modalities. Moreover,

in our application, text and visual information are only weakly linked, often with comple-

mentary information present in only one of the two modalities.

Instead, we use Latent Dirichlet Allocation (LDA) [3] to generate labels from the text

alone. LDA generatively models each document as a multinomial mixture of latent topics

from which the actual words are drawn. The parameters of the multinomial topic distribu-

tions of each document are sampled from a Dirichlet prior. The generative process can be

summarized as follows: for each document d a multinomial mixture parameter θ is sampled

first. Second, for each word w a topic z is sampled from the multinomial distribution and,

third, the word w is sampled from the multinomial word distribution conditioned on that

topic. Using variational Bayes inference, the topic distributions within each document are

inferred from the observed words.

We finally incorporate the visual information by updating the textual topic distributions

based on visual similarity. This is, in some sense, similar to the tag propagation proposed by

Guillaumin et al. [9].

3 Scene Segmentation and Alignment

We first segment the video and transcripts into scenes. We assume each scene occurs within

a single location and can therefore be described by a single location label.

We adopt a multi-modal approach to locate the scene cuts by integrating cues from both

video and text. Because the transcript does not contain any timing information, we first need

to temporally align it to the video. We then learn the probability that a sentence describes

a change in the location. Next, we detect visual shot cuts, which precisely localize possible

scene boundaries. Finally, we iteratively merge shots using the text for guidance.

We shall employ the following notation: we define a sentence w = {w1, . . . ,wn}, where

w is a word; ŵ = 〈w, tw〉 denotes a sentence at time tw; and a scene s = 〈I,W 〉, where I is a

time interval and W = {ŵ1, ŵ2, . . . , ŵm} is the set of sentences occurring within I.

3.1 Coarse Alignment

As seen in Fig. 1, the transcripts provide a natural language description of each episode

including the spoken dialog. However, they contain no temporal information for the descrip-

tions or dialog. We use the time-warping approach of Everingham et al. [7] to obtain an

initial alignment between the dialog in the transcripts and the subtitles from the video.

While the dialog alignment is reasonably precise, the alignment of the textual descrip-

tions is significantly harder. The dialog timing bounds the possible timing of descriptive

sentences, but there may be several such sentences between spoken lines. In action scenes

with limited speech, the alignment of the descriptions becomes merely approximate.
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Dawn shrugs in embarrassment.
 

DAWN: Willow's theawesomest  
            person.
 

Cut back to Dawn in pajamas, 
now lying on her bed writing 
in the diary with a smile.
 

DAWN: She's the only one I know 
who likes school as much as me.
 

Cut back to the street. Dawn 
smiles at Willow, then the camera 
pans over to Tara.
 

DAWN: Even her friends are cool!

116
00:09:05,570 --> 00:09:09,799
WiIIow's awesome. She's the 
only one I know who likes 
school as much as me.

117
00:09:09,889 --> 00:09:12,240
Even her friends are cool.

Subtitles Transcript Video

Figure 1: Example of transcript to video alignment.

We estimate the sentence time tw by interpolating between the nearest surrounding subti-

tle times. If there are multiple sentences between subtitles, they are distributed evenly within

the time period. Instead of associating a cut directly with that time, we learn a mean offset

µtext and standard deviation σtext for the times from training episodes.

Detecting visual shot cuts Shot boundary detection in video is fairly well-established; see

e.g. Yuan et al. [22] for a comprehensive review. Our implementation uses a sliding window

over color histograms to compute a dissimilarity energy based on χ2-distance, followed by

local nonmaximum suppression and thresholding. We use the detected shot cuts Tcut = {tcut}
below for scene construction.

3.2 Learning scene cuts in the text

The descriptive part of the transcripts often contains strong cues for the start of new scenes,

e.g. “Fade in on a beach, daytime.”. The dialog usually contains no such clues, so we discard

it for the purpose of learning cuts. We preprocess the text by dividing the textual descrip-

tions into sentences, tokenizing sentences into words, performing part-of-speech tagging

(using the LTPOS tagger [15]), and reducing word forms to their lemmas (e.g. ‘running’ be-

comes ‘run’). Finally, we train a supervised Naive Bayes classifier on a training set of three

manually annotated episodes. For each sentence w, the classifier computes the probability

pcut(w) that the sentence describes a scene cut.

For ŵ = 〈w, t〉, we approximate the probability that w describes a cut at time t as

pcut(ŵ) = pcut(w)N (t|(tw +µtext),σtext), (1)

where N (x|µ,σ) is a Gaussian distribution evaluated at x.

3.3 Agglomerative scene construction

Many scenes feature dialog consisting shots switching between two or more unique perspec-

tives, so we need to be robust to such cases. Additionally, we want to integrate the cues from

the transcripts learned by the classifier. Similarly to agglomerative clustering, we approach

the construction of scenes in a bottom-up manner by iteratively merging shots that belong to

the same scene.
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Figure 2: Toy example of scene merging. Each box corresponds to a shot, and matching

colors imply similar appearance. Larger, darker text corresponds to higher probability of a

scene cut. s1 has already been partially merged, while s2 and s3 are hypothesized scenes.

dscene(s1,s2)< dscene(s1,s2), so s2 would be more likely to merge with s1 than s3.

We first need a measure of visual dissimilarity for comparing two sets of shots. Several

works have noted that Earth Mover’s Distance (EMD) provides an efficient metric for com-

paring images [18] or video clips. Our approach is similar to that of Peng and Ngo [17], who

rank video clip similarity by measuring the EMD between the shots in two clips. They use

color histograms to describe shots, construct a distance matrix from histogram intersection,

and define weights from the number of frames. The resulting measure gives a many-to-many

comparison that is robust to poor segmentation and small outlier observations.

In our case, we first define a distance between shots. We represent each video shot by

its mean color histogram and number of frames. Our color histograms are generated from

k-means clustering in CIELab color space. As suggested by Rubner et al. [18], we define the

distance between colors cm and cn as:

dcolor(cm,cn) = 1− exp(−α‖cm − cn‖2) , (2)

where α = ‖[σL σa σb]
T‖2, and σ∗ denotes the standard deviation of each color channel. We

compute the EMD dshot between two shots using the histograms to define weights and dcolor

as the ground distance. We then assume a scene is composed of some number of shots and

adopt a similar strategy to Peng and Ngo [17] mentioned above. We use dshot as a ground

distance and the number of frames in each shot as weights. However, we modify the distance

of adjacent scenes si,si+1 using the probability of a text cut occurring within those scenes:

dscene(si,si+1) =
EMD(si,si+1)

∏tcut∈(Ii∪Ii+1)∩Tcut
1−maxwi

pcut(〈wi, tcut〉)
. (3)

Note that the term within the denominator is only evaluated at shot cut detections lying

strictly within the interval. This inhibits merging over previously detected cuts.

We initialize the merging process by defining each video shot as its own scene. At

each iteration, we merge neighboring scenes where dscene is minimal. Instead of considering

only immediate pairs of neighbors, we also hypothesize and evaluate larger scenes within a

neighborhood. In other words, we compute not only dscene(si,si+1), but also e.g. dscene(si ∪
si+1∪si+2,si+3∪si+4), up to some maximum neighborhood (in our experiments, we combine

up to three scenes in a hypothesis). These expanded scenes help us both to capture dialogs

or similar patterns of shots and to quickly merge very similar adjacent shots. Fig. 2 shows

a few relevant examples. s1 is a scene merged in a previous iteration, while s2 and s3 are

hypothetical scenes. Individually, the shots in s2 appear dissimilar. Taken in context of
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other shots in s1, they more clearly belong to the same scene, resulting in a lower value for

dscene(s1,s2) than the distance between the two shots in s2.

In order to prevent under-segmentation, we need to stop merging at an appropriate num-

ber of scenes. To do so, we learn a threshold on dscene that enforces a minimum recall on

detected ground truth cuts in training episodes.

4 Location annotation

The textual descriptions of locations contain significant variation, posing several problems

for learning location labels for scenes. Problems often arise from synonymy and polysemy,

where multiple phrases are used to refer to the same location (e.g. “cemetery” and “grave-

yard”), or different locations are referred to by the same phrase (e.g. “the room”), respec-

tively. Alternatively, a location may not be mentioned explicitly within a scene, although in

some cases it could be inferred from other contextual cues (e.g. “fridge” in the kitchen).

A topic model could help address these problems by distributing words related to dif-

ferent locations into separate topics. However, there is no intrinsic reason that location de-

scriptions should appear prominently within the topic distributions, since the standard LDA

framework only uses term counts as weights. In order to increase this prominence, we mod-

ify the term weighting of the input text such that we reduce the influence of terms that are

less indicative of location and bias the topics toward locations.

Furthermore, some scenes lack any descriptive text, so their respective topic distributions

will not be useful in selecting a label. To overcome this issue, we use visually similar scenes

to propagate critical words to the ambiguous scenes.

4.1 Location phrases based on text

Location phrases w̃i = {wi, . . . ,wi+n}, with n ≥ 0, are a word or a sequence of words that

describe a location.

To identify phrases that express a location, each word wi is labeled as "I" (Inside) or "O"

(Outside a location phrase). We then consider each sequence of words that all are labeled

with "I" and are delineated by "O" labels as a location phrase. An alternative is to consider

also a third label "B" (Begin) in addition to the "I" and "O" labels. "B" then indicates the

word with which the location phrase starts. This popular "BIO" encoding resulted in a lower

performance than the simple "IO" labeling and was abandoned in our experiments. This

method for selecting location phrases does not place a limit on the length of the location

phrase, and does not rely on an syntactic sentence parser to segment a sentence into sev-

eral phrases beforehand. To automatically detect the location phrases, we use the standard

hidden Markov model [1]. This model is trained on manually annotated texts and assigns

a probability ploc(w̃i) to every phrase w̃i = {wi, . . . ,wi+n} in an unseen text. Every word is

represented by the following features: the word token, a list of synonyms for the word that is

automatically learned [5] from the Reuters corpus, and pcut(w). The last feature is motivated

by the fact that the location is often described in the sentence that contains the scene cut, e.g.

“Cut to the kitchen”.

To estimate the LDA topic mixtures, all phrases w̃i in a scene are weighted by their prob-

ability ploc(w̃i). We found that assigning at least a small positive value to every word helps to

disambiguate locations by providing more context. For each scene, we collect the weighted

counts of all phrases, which is then considered a single document for which LDA learns a
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topic mixture. We empirically found that the quality of topic distributions is relatively stable

over a reasonable range of number of topics selected between the actual numbers of locations

and scenes. In our experiments, we choose k = 35 topics.

4.2 Visual similarity

Given two scenes, we need to compute a measure for the visual similarity of the scene

locations. In the foreground of a typical scene, there are often one or more persons present.

The background may be cluttered, out of focus, sparsely detailed, and occluded by people.

Additionally, the camera perspective may be stationary, move smoothly, or frequently cut

away. Persons themselves are not indicative of a certain location, as they may appear in

different locations. Therefore, we use the upper-body pose detector of Ferrari et al. [8] to

excise them from the scenes as much as possible, prior to computing a visual scene descriptor

for the scene similarity measure.

We compute scene distances similarly to those of the segmentation step. However, we

modify the color histograms to not include pixels from detected poses. For efficiency, we

group the shots using spectral clustering and use the mean histogram and total number of

frames in the cluster to compute the distance.

We convert the distance between scenes s and s′ into a similarity matrix:

A(s,s′) = exp
(

−λ EMD(s,s′)2
)

, (4)

where λ is a scaling parameter which we determine from training data.

4.3 Combination of vision and text

Regularly, scenes do not contain a location phrase in the transcript, resulting in topic dis-

tributions for these scenes that contain little information on the location. To address this

problem we combine the topic distribution of a scene with the topic distributions of visually

similar scenes:

p̃(zi|s) =
1

2
(p(zi|s)+ ∑

s′∈S\s

π(s,s′)p(zi|s
′)) . (5)

The mixing coefficients π(s,s′) are given by the normalized visual similarity between scenes

s and s′:

π(s,s′) =
A(s,s′)

∑s′∈S\s A(s,s′)
. (6)

This method effectively allows to propagate location labels between visually similar scenes,

especially when scenes do not contain a location phrase in the transcript.

The final location label w̃∗
s for a scene s is selected as the location phrase w̃i with maxi-

mum probability, given the number of topics k and reweighted topic distribution p̃(zi|s):

w̃∗
s = argmax

w̃i

k

∏
j=1

p(w̃i|z j) p̃(z j|s) (7)



8 ENGELS et al.: AUTOMATIC ANNOTATION OF UNIQUE LOCATIONS

5 Evaluation

Unlike supervised methods that output a unique class for a given input, our system generates

a list of phrases and corresponding probabilities, with the most likely phrase being assigned

as the label. Because these phrases are generated within the context of the transcript, multiple

phrases could be considered valid. For example, “kitchen”, “Joyce’s kitchen” and “interior

of the kitchen” may all be used to refer to the same location. This polysemy means that

creating a useful ground truth for automatic evaluation of the final result is nontrivial, so

we instead rely on a qualitative evaluation to validate our approach. Where training data is

required, we test our system using leave-one-out cross validation at the episode level.

Because of the large amount of effort required for manual evaluation, we limit our test

set to four episodes of Buffy the Vampire Slayer (Season 5, Episodes 1− 4), for which fan-

generated transcripts are available online [20]. These episodes provide a challenging val-

idation for our system due to unstructured transcripts, highly variable lighting conditions,

frequent motion blurring and shot cuts, and the diversity of locations in each episode. Each

episode has on average 53 scenes, and from a total of 64 individual locations only 18 are

shared across episodes. Given these statistics, it is clear that a supervised approach trained

on other episodes alone is bound to fail.

5.1 Scene cuts

We first note the performance of our approach to scene cut generation, for which ground

truth evaluation is possible. The text-based scene cut classifier achieves a leave-one-out

cross validation precision of 91.57%, recall of 77.95% and F1-score of 84.21%. The lower

recall is largely caused by an incorrect classification of sentences that describe the actors

moving from one location to another, e.g. “Buffy goes into another room.”. We consider such

cases to be scene cuts because the location changes, even though there may be a continuous

transition.

After agglomerative clustering, the scene cuts achieve an average precision of 47.94%

for a recall of 80.50% when allowing an offset of up to 50 frames (2 seconds). Effectively,

the approach limits incorrectly merged scenes at the cost of segmenting scenes twice as often

as necessary. Many of the missed scene cuts are in areas with either few text descriptions or

dialog, respectively leading to low cut probabilities or imprecise cuts.

5.2 Location phrase detection in text

As described in Sec. 4.1, we train a hidden Markov model on three annotated episodes and

apply it on a fourth episode, achieving on average a precision of 77.45%, a recall of 76.47%

and an F1-score of 76.96%. The most common source of error by the model is incorrect seg-

mentation, where only part of a location is correctly labeled (e.g. labeling “Giles’ ” instead

of “Giles’ apartment”).

5.3 Location labels

To evaluate the final labels, we provided thirteen human evaluators with image frames and

transcript text for each estimated scene in order to provide them with context of the location.

They were presented with labels generated from three different methods and asked to decide

whether the labels accurately describe the location of the scene. The methods select the most
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0.011 ball
0.003 the ball
0.001 grinning

0.714 dawn's_room
0.014 diary
0.001 writing

0.002 looking
0.001 in the
0.001 confused

0.048 beach
0.047 hall
0.040 the kitchen

0.348 dawn's room
0.068 a bedroom
0.057 bedroom

0.195 the bedroom
0.124 joyce's room
0.073 the kitchen

0.001 frowns
0.001 eyes
0.001 asleep

0.928 sesame street
0.272 dracula's accent
0.017 street

0.158 exterior shot
0.142 outside
0.076 giles' building

0.431 sesame street
0.061 dracula's accent
0.035 exterior shot

Figure 3: Examples of correct annotations (columns 1-3) and incorrect annotations (4-5).

Top: representative frames. Middle: most likely labels given only text. Bottom: labels after

vision-based update, with final annotation in bold. Each label is shown with its probability.

likely location phrase either from the text within a single scene (text), the topic distribution

generated in Sec. 4.1 (text+lda), or the visually-updated distributions described in Sec. 4.3

(text+lda+vision).

We score each episode by the percentage of time (as opposed to scenes) that the label

is correct. We report the average accuracy of each system, along with the standard devia-

tion, in Table 1. Both text+lda and text+lda+vision improve upon the text method, while

the strongest performance increase comes from adding the vision component. Fig. 3 shows

several examples of the most likely location labels before and after the vision-based update,

as well as their respective probabilities. The first three columns show how the update rein-

forces the correct labels, especially when no clear label is extracted from the text. The last

two columns show possible failure cases of our approach. In the fourth column, no location

label was detected in the text, and the imagery was noninformative. In these cases, the up-

dated distribution tends to the most likely phrases over the entire episode. In the last column,

an incorrect label was detected in the text.

6 Conclusion

We proposed a novel multi-modal system for automatic annotation of locations from video

and text and demonstrated its performance on an action series. Despite the challenges posed

by the limited amount of unstructured text description in the transcripts, we successfully

detect scene cuts and are able to annotate even locations that are unique to single episodes.

The use of a topic model at an intermediate stage increases the accuracy of the location

annotations. Our visual similarity measure allows us to evolve from shot cuts to scene cuts

and improve the location annotations by propagating labels between visually similar scenes.

episode text text+lda text+lda+vision

1 58.38%±4.88% 61.49%±4.88% 67.62%±7.85%

2 64.37%±8.23% 67.87%±7.91% 75.72%±6.76%

3 69.86%±3.60% 69.55%±5.96% 71.43%±6.97%

4 53.36%±4.11% 55.46%±4.81% 63.02%±10.26%

all 61.50%±8.24% 63.59%±8.11% 69.45%±9.16%

Table 1: Accuracy and standard deviation of the proposed systems.
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