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Abstract

Applications for constrained embedded systems are sub-
ject to strict time constraints and restrictive resource uti-
lization. With soft core processors, application develop-
ers can customize the processor for their application, con-
strained by resources but aimed at high application perfor-
mance. With such freedom in the design space of the proces-
sor, however, comes complexity. We present here an auto-
matic optimization technique that helps the developers with
the processor microarchitecture customization.

A naive approach exploring all possible configurations
is exponential with the number of parameters and hence
is clearly infeasible, even with only tens of reconfigurable
parameters. Instead, our approach runs in time that is lin-
ear with the number of parameter values, based on an as-
sumption of parameter independence. This makes the ap-
proach feasible and scalable. For the dimensions that we
customize, namely application runtime and hardware re-
sources, we formulate their costs as a constrained binary
integer nonlinear optimization program. Though the results
are not guaranteed to be optimal, we find they are near-
optimal in practice. Our technique itself is general and can
be applied to other design-space exploration problems.

1. Introduction and Related Work

While application-specific, customized logic could dra-
matically improve the performance of an application, that
approach is typically too expensive to justify its cost for
most of the embedded applications. This has given rise to
increased adoption of soft core processors, which are re-
configurable general purpose processors. Examples of soft
core processors include Tensilica [26] with Stretch [24], Mi-
croBlaze [29], and LEON [19].

There has been significant work centered around the idea
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of customizing a processor for a particular application or
application set. Arnold and Corporaal [3] describe tech-
niques for compilation given the availability of special func-
tion units. Atasu et al. [17] describe the design of in-
struction set extensions for flexible ISA systems. Choi et
al. [8] examine a constrained application space in their in-
struction set extensions for DSP systems. Gschwind [11]
uses both scientific computations as well as Prolog pro-
grams as targets for his instruction set extensions. Gupta
et al. [12] developed a compiler that supports performance-
model guided inclusion or exclusion of four functional units
of multiple-accumulate, floating point, multiported mem-
ory and pipelined vs. non-pipelined memory unit. Sys-
tems that use exhaustive search for the exploration of the
architecture parameter space are described in [13, 18, 22].
Heuristic design-space exploration for application-specific
processors is considered in [9]. Pruning techniques are used
to diminish the size of the necessary search space in order
to find a Pareto-optimal design solution. In [5], the au-
thors use a combination of analytic performance models and
simulation-based performance models to guide the explo-
ration of the design search space. Here, the specific appli-
cation is in the area of sensor networks. Analytic models are
used early, when a large design space is narrowed down to
a “manageable set of good designs”, and simulation-based
models provide greater detail on the performance of specific
candidate designs. The AutoTIE system [10] is a develop-
ment tool from Tensilica that assists in the instruction set
selection for Tensilica processors. This tool exploits pro-
file data collected from executions of an application on the
base instruction set to guide the inclusion or exclusion of
candidate new instructions. [2] performs analytical (hier-
archical) searching of parameters in their own dimensions,
with some full parameter exploration to avoid local mini-
mal, for tuning multi-level cache for low-energy embedded
systems. [23] explores design options of instruction and
data caches, branch predictor, and multiplier, by dividing
the search space into piece-wise linear models and solving
their results using integer linear programming.
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There are two main problems with most of these ap-
proaches. First, many of the approaches consider only a
few parameters for customization or consider only a spe-
cific subsystem (such as cache) for a specific purpose (such
as energy conservation). Such approaches do not scale well
for the large number of reconfigurable parameters in a soft
core processor. The second problem is the way application
runtime is estimated using analytical models or measured
using simulators, which are discussed subsequently.

Performance Measurement Analytic models can pro-
vide the quickest estimations of application performance,
and such models are often derived directly from the source
code. Examples of the use of analytic models include: [6],
which describes an approach for the analytical modeling of
runtime, idealized to the extent that cache behavior is not
included; and [25], a classic paper on estimating software
performance in a codesign environment, which reports ac-
curacy of about ±20%. However, for purposes of applica-
tion performance improvement, ±20% is a wide deviation.
These inaccurate predictions are due to the simplifying as-
sumptions that are necessary to make analysis tractable and
are notoriously common when analytic models are used.
Moreover, application models often require sophisticated
knowledge of the application itself. By contrast, simula-
tion and the direct execution we use are both “black box”
approaches that do not require knowledge of application im-
plementation.

The method normally used to improve accuracy beyond
modeling is simulation. Simulation toolsets commonly
used in academia include: SimpleScalar [4], IMPACT [7],
and SimOS [21]. Given the long runtimes associated with
simulation modeling, it is a common practice to limit the
simulation execution to only a single application run, not
including the OS and its associated performance impact.
SimOS does support modeling of the OS, but requires the
simulation user manage the time/accuracy tradeoffs inher-
ent in simulating such a large complex system.

We improve on this through the statistics module of Liq-
uid architecture platform [15] which uses a hardware-based,
non-intrusive profiler to count the number of clock cycles
taken by an application executing directly on a soft core
processor. Because it gives accurate runtime measures, we
use this in our work.

2. Background

2.1. Liquid Architecture Platform

For our experiments, we use our Liquid Architec-
ture platform [20]. Briefly, this platform instantiates a
LEON2 [19] processor on a Xilinx VirtexE FPGA. It also

Parameter Values Default

Instruction cache
Sets 1-4 1
Set size 1,2,4,8,16,32,64KB 4

64KB requires 213 BRAM
(i.e.) 33% more than available

Line size 4,8 words 8
Replacement Random, LRR, LRU Random

Data cache
Sets 1-4 1
Set size 1,2,4,8,16,32,64KB 4

64KB requires 213 BRAM
(i.e.) 33% more than available

Line size 4,8 KB 8
Replacement Random, LRR, LRU Random
Fast read Enable/disable Disable
Fast write Enable/disable Disable

Integer Unit
Fast jump Enable/disable Enable
ICC hold Enable/disable Enable
Fast decode Enable/disable Enable
Load delay 1,2 clock cycles 1
Reg. windows 8, 16-32 8
Divider radix2,none radix2
Multiplier none,iterative,m16x16, m16x16

m16x16+pipelineRegs,
m32x8,m32x16,m32x32,

Synthesis options
Infer Mult/Div True/false True

Figure 1. LEON reconfigurable parameters

provides a web interface to control the processor, run appli-
cations on it as well as profile runtime and microarchitecture
parameters. This profiling is on application’s direct execu-
tion on the processor and is hardware-based, non-intrusive
and cycle-accurate.

2.2. LEON

LEON is an open source implementation of the SPARC
V8 architecture, used by the European Space Agency.
LEON’s microarchitecture is parameterized along the sys-
tems of processor, bus, memory controller, peripherals, syn-
thesis, clock, boot and debug. Processor comprises the sub-
systems of cache (separate instruction and data caches), In-
teger Unit (IU), Floating-point Unit, co-processor, Memory
Management Unit (MMU) and Debug Support Unit (DSU).
Boot and clock options are set once. We do not debug appli-
cations at runtime nor do our applications use peripherals or
MMU. 64KB exceeds the available BRAM by 33%. FPU
is excluded because two of the three supported interfaces
(Sun’s Meiko and Gaisler’s GRFPU) are not free and the
third one (LTH) is incomplete. Features such as SDRAM
access, that are not part of out-of-the-box LEON distribu-
tion and require custom coding are also excluded. Figure 1
shows the parameters that impact the performance of our
applications and their default values. Some are simple “en-
able or disable” while others take a range of values.



2.3. Constrained Binary Integer Nonlinear
Programming

Linear Programming (LP) in standard form is the prob-
lem of minimizing a linear function, subject to a finite num-
ber of inequality constraints [16]. The following LP prob-
lem (or simply, linear program) has n variables, and k in-
equality constraints.

Minimize Z = cT x
subject to

Ax ≥ b
x ≥ 0

where x ∈ R
n is the vector of decision variables to be

solved for, Z|Rn− > R is the objective function, c ∈ R
n

is the constants vector of cost coefficients, A ∈ R
k×n is

the matrix of coefficients of k functional constraints, b ∈
R

k is the constants vector of right-hand sides of functional
constraints. Other forms of LP include maximization and
inequalities that are ≤.

If the decision variables are restricted to be integers, it
becomes Integer Linear Program (ILP). If they are further
restricted to be binary-valued, the problem is Binary ILP. In
addition, if the objective function or a constraint is nonlin-
ear, then the problem is Binary Integer Nonlinear Program
(BINLP).

ILP is exponential with the number of variables. There-
fore, depending on how large the number of variables is
and depending on whether or not there are special struc-
tures in the problem that some algorithms can exploit, some
ILP problems may not be solved for optimal solution. With
nonlinear optimization in the standard form, if the nonlin-
ear objective function is not convex or if all the nonlinear
constraints are not concave functions, the algorithm is no
longer guaranteed to find the (global) minimum [14].

2.4. Cost Function

Chip Resource Cost Instantiating a soft core processor
on FPGA utilizes resources and two fundamental ones are
Lookup-tables (LUTs) and Block RAM (BRAM). Their uti-
lizations are measured by actually building the processor,
from it’s source VHDL. The total LUTs and BRAM avail-
able on the Xilinx Virtex XCV2000E FPGA are 38,400 and
160 respectively and of them, the default (out-of-the-box)
LEON configuration utilizes 14,992 (39%) and 82 (51%).
Given the difference in their magnitudes, they are normal-
ized as percentages and added together for a unified chip
resource cost metric.

Application Runtime Cost Application runtime is mea-
sured by executing the application directly on the soft core
processor (LEON) and counting the number of clock cycles

the execution takes. We use the non-intrusive and cycle-
accurate hardware-based profiler available through Liquid
architecture platform.

Total Cost To be compatible with chip resource cost, ap-
plication runtime cost is also normalized as a percentage
and they are added together.

2.5. Benchmarks

The following applications are executed directly on
LEON, without an operating system. Hence, they have been
modified to avoid making system calls and using stdio. Liq-
uid architecture platform now supports Linux and therefore,
future work can make use of it.

Benchmark I - BLASTN Basic Local Alignment Search
Tool (BLAST) [1] programs are the most widely em-
ployed set of software tools for comparing genetic mate-
rial. BLASTN (“N” for nucleotide) is a variant of BLAST
used to compare DNA sequences (lower-level than pro-
teins) [20]. BLASTN is computation and memory-access
intensive. It has approximately 163 lines of code and its
runtime on the default LEON configuration is 10.6 seconds.

Benchmark II - CommBench DRR DRR is a Deficit
Round Robin fair scheduling algorithm used for band-
width scheduling on network links, as implemented in
switches [28]. DRR is computation intensive. It has 117
lines of code and its runtime on the default LEON configu-
ration is 5 minutes.

Benchmark III - CommBench FRAG Frag is an IP
packet fragmentation application. IP packets are split into
multiple fragments for which some header fields have to
be adjusted and a header checksum computed, before being
forwarded [28]. Frag is computation intensive. It has 150
lines of code and its runtime on the default LEON configu-
ration is 2.5 minutes.

Benchmark IV - BYTE Arith Arith does simple arith-
metics of addition, multiplication and division in a loop. It
has been used to test processor speed for arithmetic. Arith
is not memory intensive. It has 77 lines of code and its
runtime on the default LEON configuration is 32 seconds.

3. Approach

Our goal is to improve performance of a given appli-
cation through automatic reconfiguration of processor mi-
croarchitecture to meet the application’s requirements and
constraints closely. The approach we take is to consider all



parameters that have a bearing on application runtime or
hardware resources and to use actual measurements (costs)
rather than estimates, to obtain more accurate customiza-
tion. Despite these, we want our optimization technique to
be feasible and scalable.

The challenge from considering all parameters is that,
it makes the search space huge. The 79 parameter values
in Figure 1, which is really a subset of the reconfigurable
parameters in LEON, results in 3, 641, 573, 376 exhaustive
configurations. The second challenge comes from measur-
ing actual costs. Costs are measured for all the dimensions
that are being optimized and/ constrained. Currently, we
optimize application runtime and FPGA resources. The ex-
ecution times for our benchmarks range from 16 seconds
to 9 minutes. We leave it for future work to address very
long execution times, possibly through a smart sampling
technique. Hardware resource utilizations are measured by
actually building processor configurations from the source
VHDL. Each build is very time-consuming, on the order of
30 minutes, even on modern computers. These two chal-
lenging makes the customization harder than a traditional
optimization problem because they make it infeasible to do
exhaustive enumeration to build an exact model and search
for the best solution.

The next best approach is to build an approximate model
and solve for an exact solution. We build the model by
assuming parameter independence and restricting each pa-
rameter to it’s own dimension. Though our results are
no longer guaranteed to be optimal in all cases, Section 5
demonstrates that they are near-optimal in practice. With
the assumption of parameter independence, the number of
configurations is linear in the number of parameter values,
52 for the parameters in Figure 1. Even if the remaining
parameters benefit other applications, it would still be only
100 configurations, which is still feasible and scalable.

We solve for optimal solution by formulating the model
as a constrained Binary Integer Nonlinear Problem. Al-
though the search space is built by considering parameters
in their own dimensions, the optimization algorithm eval-
uates points in between. These points represent configura-
tions that have more than one parameter changed simultane-
ously. The solver assigns costs for these points through an
approximation of actual costs provided by us in the model.

The approach to building the model is summarized as
follows. We begin with the default LEON configuration
that comes out-of-the-box. We call this the base configu-
ration. We then perturb one parameter at a time, build the
processor configuration and measure it’s chip cost. Thirdly,
we execute the application on each configuration and mea-
sure the runtime. Finally, we formulate these costs into a
BINLP problem and solve for optimal solution, using the
commercial solver of Tomlab Mixed Integer Nonlinear Pro-
gramming solver [27]. Tomlab is a plug-in to Matlab and

solves our formulation in seconds. The solution obtained
is the recommended microarchitecture configuration for the
given application.

4. Problem Formulation

We formulate the problem of automatic application-
specific customization of soft core processor microarchitec-
ture as a Binary Integer Nonlinear problem (BINLP). The
objective is to meet the applications runtime requirements
and FPGA resource restrictions. The constraint is to select
a valid microarchitecture configuration that fits in the avail-
able chip resources.

We begin the reconfiguration with the default (out-of-
the-box) LEON configuration that we call as the base con-
figuration. The %LUTs and %BRAM remaining unutilized
after the base configuration are denoted by L and B respec-
tively. From the base configuration, we change the param-
eter values one at a time, build a new processor configura-
tion xi and execute the application on it. For each xi, the
difference (in percentage) in LUTs, BRAM and application
runtime over the base configuration are denoted by λi, βi

and ρi respectively.

4.1. Objective Function

The objective function is to minimize the costs of the
dimensions being optimized. The dimensions that we op-
timize are application runtime and chip resources and the
following equation minimizes their costs. We use weights
to optimize certain dimensions over others.

Minimize
n=52∑

i=1

[w1(ρixi) + w2((λi + βi)xi)]

w1 and w2 are independent. w1 is made to dominate w2

for application runtime optimization and w2 is made to
dominate for FPGA resource optimization.

4.2. Constraints

Parameter Validity Constraints xi represents a new
processor configuration resulting from a change in one pa-
rameter value from the base configuration. xi is binary
(i.e.) it represents two values—on/ off or two integer val-
ues. That implies that for parameters with more than two
values, more than one xi will be used. Therefore, for such
parameters, we need to ascertain that only one variable is
selected. All such constraints are presented below.

Σ3
i=1xi ≤ 1 (icache nsets)

Σ8
i=4xi ≤ 1 (icache setsize)

Σ11
i=10xi ≤ 1 (icache replacement policy)

Σ14
i=12xi ≤ 1 (dcache number of sets)

Σ19
i=15xi ≤ 1 (dcache setsize)



Σ22
i=21xi ≤ 1 (dcache replacement policy)

Σ46
i=30xi ≤ 1 (IU nwindows)

Σ51
i=47xi ≤ 1 (different hardware multipliers)

The binary variables not constrained here are as follows. x9

represents icache linesize, x20 dcache linesize, x23 Integer
Unit (IU) fast jump, x24 Integer Condition-Code, x25 fast
instruction-decode, x26 load-delay, x27 dcahe fast read, x28

hardware divider, x29 infer-multiplier and x52 dcahe fast
write.

There are additional constraints imposed by LEON. The
icache and dcache replacement policy of LRR (Least Re-
cently Replaced) can be used only with 2-way associativity
(2 sets) and LRU (LR Used) with all multi-way associativ-
ity.

x10 − x1 ≤ 0
Σ3

i=1xi − x11 ≥ 0
x21 − x12 ≤ 0
Σ14

i=12xi − x22 ≥ 0

FPGA Resource Constraints For the FPGA resources
considered, their utilization for each xi should fit in what
is available after the base configuration.

Σ52
i=1λixi ≤ L and

Σ52
i=1βixi ≤ B

Cache size (of both icache and dcache) is expressed in
terms of two parameters in LEON viz. number of cache
sets and size of each set. Accounting for this, the constraint
equations for hardware resources become:

(1 + x1 + 2x2 + 3x3) × (Σ8
i=4λixi) +

(1 + x12 + 2x13 + 3x14) × (Σ19
i=15λixi) +

Σ3
i=1λixi +Σ11

i=9λixi +Σ14
i=12λixi +Σ52

i=20λixi ≤ L
(1 + x1 + 2x2 + 3x3) × (Σ8

i=4βixi) +
(1 + x12 + 2x13 + 3x14) × (Σ19

i=15βixi) +
Σ3

i=1βixi +Σ11
i=9βixi +Σ14

i=12βixi +Σ52
i=20βixi ≤ B

The convexity of these nonlinear functions is conditional
on the values of xi. That means, the optimization algorithm
is no longer guaranteed to find global optimum in all cases.
Therefore, to optimize the problem formulation, we leave
the constraint on LUTs as a linear function, since variation
in LUTs utilization is very minimal. We analyze the effect
of this in Section 6.

5. Analysis

In this section, we analyze the impact of our assumption
of parameter independence. The naive approach of com-
paring our solution to the one obtained by generating all
configurations exhaustively is infeasible for us. The next
logical approach is to scale down the problem space such
that it becomes feasible to generate all configurations ex-
haustively. When these two solutions compare favorably,

BLASTN: exhaustive: dcache sets,setsize

nsets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)
1 1 10.71 38 47
1 2 10.64 38 48
1 4 10.60 39 51
1 8 10.54 39 56
1 16 10.50 38 68
1 32 10.22 38 90
2 1 10.58 39 49
2 2 10.55 39 51
2 4 10.53 39 56
2 8 10.50 39 68
2 16 10.22 39 90
3 1 10.56 39 51
3 2 10.54 39 55
3 4 10.51 39 62
3 8 10.45 39 79
4 1 10.55 39 53
4 2 10.53 39 58
4 4 10.50 39 68
4 8 10.22 39 90

Optimal runtime
2 16 10.22 39 90

Figure 2. Dcache exhaustive for BLASTN

we show that our optimization algorithm works as well as
can be expected.

We chose the subsystem of dcache for this purpose be-
cause we had manually optimized the cache subsystem for
BLASTN application in [20]. More fundamentally, cache
subsystem has tangible variations in application perfor-
mance and chip resource utilization, for changes in parame-
ter values. As enumerated in Section 4, dcache has 7 recon-
figurable parameters of number of sets, size of each set, as-
sociativity, line size, replacement policy, fast read and write
options. The number of integer values of these parameters
are 4, 7, 4, 2, 3, 2 and 2 respectively. Their exhaustive
combinations are 2,688 and it would take at least 56 days
to generate them all. That is not scalable and therefore, we
consider only two parameters–number of sets and set size,
which result in 28 combinations. We chose these two pa-
rameters because perturbing these affects both LUTs and
BRAM utilization, at varying degrees. The base configura-
tion has 1 set of 4KB size.

BLASTN Figure 2 shows BLASTN runtimes and chip re-
source costs for the exhaustive combinations of dcache sets
and set size. Optimizing for runtime, a simple sort yields
the optimal configuration of 2 sets of 16KB each (i.e.) a to-
tal of 32KB. The performance gain is 3.63% over the base
configuration, utilizing no additional LUTs but 39% more
BRAM than the base configuration.

We then compare this to the configurations that we eval-
uate as per our approach, the optimizer. Figure 3 shows this.
Optimizing only for application runtime, the configuration
we select is set size 32KB, which is the same cache size
as selected by the exhaustive search but organized slightly



Base configuration
1 4 10.60 39 51

BLASTN: optimizer: dcache sets,setsize (w1 = 100, w2 = 0)

Sets Setsz(KB) Runtime(sec) LUTs(%) BRAM(%)
2 4 10.53 39 56
3 4 10.51 39 62
4 4 10.50 39 68
1 1 10.71 38 47
1 2 10.64 38 48
1 4 10.60 39 51
1 8 10.54 39 56
1 16 10.50 38 68
1 32 10.22 38 90

Dcache optimization for BLASTN runtime
1 32 10.22 38 90

Figure 3. Dcache optimization for BLASTN runtime

Optimizer: dcache sets,setsize (w1 = 100, w2 = 0)

Sets Setsz(KB) Time(sec) LUT% BRAM%
CommBench DRR

Exhaust 1 32 261.609 38 90
2 16 261.609 39 90

Optimiz 2 16 261.609 39 90
CommBench FRAG

Exhaust 1 32 147.869 38 90
Optimiz 2 16 147.869 39 90

BYTE Arith
Exhaust No effect, as application is not data intensive
Optimiz No effect, as application is not data intensive

Figure 4. Dcache optimization for DRR, FRAG, Arith

differently. The performance gain with this configuration is
3.61%, which is 0.02% less than the optimal configuration
from the exhaustive approach; LUTs utilization is 1% less
here and BRAM is the same.

The fact that our optimization was able to achieve per-
formance gain within 0.02% difference from the exhaus-
tive solution and with 1% reduction in LUTs (chip resource
cost), in spite of the assumption of parameter independence,
is very encouraging.

Other Benchmarks Results for the other benchmarks
discussed in Section 2.5 are even better, as they match the
solution from exhaustive approach. They are shown in Fig-
ure 4. This gives us further confidence that our customiza-
tion finds valid and near-optimal configurations, despite the
assumption of parameter independence.

Further Observations The results for DRR and FRAG
are 2x16 configurations. These are not configurations that
we provide directly in the model. This demonstrates that,
while we construct the search space reconfiguring param-
eters in their own dimensions, the optimization algorithm
considers points in between, which are points reconfigured
simultaneously in many dimensions. Next, the fact that we
are able to build the solutions proves that we generate valid

configurations. Finally, the configurations selected are in-
deed application-specific.

6. Results

The research objectives of our experiments are to find
out how much improvement we gain from the application-
specific microarchitecture customization and to demon-
strate that the customization is indeed application-specific.
The results in Section 5 addresses both, for a subset of dc-
ahe parameters. This section presents results for all LEON
parameters shown in Figure 1. Section 6.1 shows the perfor-
mance gains to be 6.15%–19.39% and Figure 5 and Figure 7
show that the customization is indeed application-specific.
Due to space constraints, we are restricted here to show-
ing chip resource and application runtime costs only for our
solutions, rather than for all the configurations that we con-
sider.

We first present results of optimizing runtime over chip
resources, by setting w1 to be much higher than w2, and
then, vice versa. Figures show only the parameters that are
reconfigured from the base configuration.

6.1. Application Performance Optimization

We optimize application performance over chip re-
sources by setting w1 = 100 and w2 = 1. Figure 5
shows the parameters reconfigured from the base configu-
ration, along with results from the actual build of the solu-
tion. Based on the latter, runtime decrease for the four ap-
plications of BLASTN, DRR, FRAG and Arith are 11.59%,
19.39%, 6.15% and 6.49%, over the runtimes on their re-
spective base configurations. The linear approximations
performed by the optimizer estimate the performance im-
provements to be 11.77%, 39.14%, 7.67% and 6.49%, re-
spectively. The range of overestimation is 0–19.75%. Due
to space constraints, we present costs only for BLASTN re-
configurations, in Figure 6.

The performance gains come at the expense of addi-
tional chip resources. The increase in chip resource uti-
lization, expressed as a tuple of LUTs and BRAM, are
(0%, 39%), (0%, 39%), (8%, 42%) and (1%,−3%) re-
spectively. The approximations performed by the opti-
mizer are (−4%, 36%), (−4%, 41%), (−4%, 44%) and
(−2%,−4%), respectively. We consistently underestimate
LUTs utilization; our estimates for BRAM are mixed, from
−2% to 3%.

Cost Approximations As we saw in Section 4, we sim-
plified the cost function for LUTs to be linear while leav-
ing it nonlinear for BRAM. To evaluate the simplification,
we present what the nonlinear approximations would be for
LUTs in Figure 5. As seen there, our underestimations



Application runtime optimization (w1 = 100, w2 = 1)

Param Base BLAST DRR FRAG Arith

icachsetsz 4 2 2 4 4
icachlinesz 8 4 4 4 4
dcachsets 1 1 2 2 1
dcachsetsz 4 32 16 16 1
dcachlinesz 8 4 4 4 8
dcachreplace rnd LRU LRR LRU rnd
fastjump on off off off off
icchold on off off off off
divider radix2 none none none radix2
multiplier 16x16 32x32 32x32 32x32 32x32

Base configuration
runtime(sec) N/A 10.60 297.98 150.75 32.33

Cost approximations by the optimizer

runtime(sec) N/A 9.35 181.35 139.20 30.23
LUTs% 39 35 35 35 37
LUTs%-nonlin 39 35 34 34 37
BRAM% 51 87 92 95 47

BRAM%-lin 51 87 75 78 47

Actual synthesis

runtime(sec) N/A 9.37 240.20 141.48 30.23
LUTs% 39 39 39 47 40
BRAM% 51 90 90 93 48

Figure 5. Application runtime optimization

Param Runtime(sec) LUTs(%) BRAM(%)

icachesetsz2 10.60 39 48
icachelinesz4 10.60 38 51
dcachesetsz32 10.22 38 90
dcachelinesz4 10.58 39 51
nofastjump 10.60 38 51
noicchold 10.24 39 51
nodivider 10.60 37 51
multiplierm32x32 10.12 40 51

Figure 6. BLASTN runtime optimization costs

would be slightly higher and hence, worse. In addition, to
demonstrate how better the nonlinear cost function is over
the linear for BRAM, we present the linear approximations
also. Space constrains restrict similar analysis in Section 5.

Comparison with Dcache Optimization Given our as-
sumption of parameter independence, an interesting obser-
vation is to compare the customization in dcache here to the
one from optimizing only dcache in Section 5. However,
the weights in the objective function are slightly different–
for the former, w1 = 100 and w2 = 1 and for the latter
w1 = 100 and w2 = 0. The resulting dcache configurations
are identical for all applications except Arith. For Arith, it
was 1x4 in Section 5 but here it is 1x1. This is because of
the chip resource consideration resulting from w2 = 1.

6.2. FPGA Resource Optimization

We optimize chip resources over application perfor-
mance by setting w1 = 1 and w2 = 100. Figure 7 shows
the parameters reconfigured from the base configuration,

Chip resource optimization (w1 = 1, w2 = 100; *=sub-optimal)

Param Base BLAST* DRR* FRAG Arith*

icachsetsz 4 2 2 4 2
icachlinesz 8 4 4 4 4
dcachsets 1 1 1 1 1
dcachsetsz 4 2 2 1 2
dcachlinesz 8 4 4 4 8
dcachreplace rnd rnd rnd rnd rnd
fastjump on off off off off
icchold on off off off off
divider radix2 none none none radix2
registers 8 28* 31* 8 30*
multiplier 16x16 iter iter iter iter

Cost approximations by the optimizer

runtime(sec) N/A 13.86 355.82 153.19 44.08
LUTs% 39 34 32 32 34
LUTs%-nonlin 39 34 32 32 34
BRAM% 51 47 47 47 47
BRAM%-lin 51 47 47 47 47

Actual synthesis

runtime(sec) N/A 13.85 347.91 151.40 44.08
LUTs% 39 37 37 36 38
BRAM% 51 48 48 48 48

Figure 7. Chip resource optimization

along with results from the actual build of the solution.
Based on the latter, decrease in chip resource utilization
are (2%, 3%), (2%, 3%), (3%, 3%) and (1%, 3%). The ap-
proximations performed by our optimization algorithm es-
timate the chip resource savings to be (5%, 4%), (7%, 4%),
(7%, 4%) and (5%, 4%). We consistently overestimate the
chip savings; for LUTs, the range is 3—5% and for BRAM,
it is always 1%.

Similar to application runtime optimization, here also,
we present the nonlinear approximations for LUTs and lin-
ear approximations for BRAM in Figure 7.

The savings in chip resources come at a loss of applica-
tion performance, often significant – 30.66% for BLASTN,
16.76% for DRR, 0.43% for FRAG and 36.34% for Arith.

7. Conclusion and Future Work

We have presented a heuristic for automatic application-
specific reconfiguration of a soft core processor microar-
chitecture. This approach is linear in the number of re-
configurable parameters, with an assumption of parameter
independence, to make the approach feasible and scalable.
The performance gains over the base configuration are near-
optimal in practice, despite our simplifying assumption.
More importantly, our technique empowers application de-
velopers to do performance-resource tradeoffs in hours and
without detailed knowledge of the architecture.

Future work can recast our nonlinear constraints so that
they are convex functions for all values of xi. This will
guarantee that the optimization algorithm finds the global
optimum. We can also analyze the cost approximations per-
formed by the optimization algorithm and explore more so-



phisticated approximations. As extensions to our model,
we can include power and energy optimizations, runtime
sampling to facilitate analysis of long-running applications,
running applications on an operating system and supporting
ISA level customization. By integrating our solution with
open source soft core processors, we can contribute back
to the community. Finally, and more interestingly, we can
evaluate our technique on other configuration and feature
management problems.
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