
Automatic architectural synthesis of VLIW and EPIC processors

Shail Aditya B. Ramakrishna Rau Vinod Kathail
faditya,rau,kathail g@hpl.hp.com

Hewlett-Packard Laboratories
1501 Page Mill Road, MS 3L-5, Palo Alto, CA 94304

Abstract

This paper describes a mechanism for automatic design
and synthesis of very long instruction word (VLIW), and
its generalization, explicitly parallel instruction computing
(EPIC) processor architectures starting from an abstract
specification of their desired functionality. The process of
architecture design makes concrete decisions regarding the
number and types of functional units, number of read/write
ports on register files, the datapath interconnect, the in-
struction format, its decoding hardware, and the instruction
unit datapath. The processor design is then automatically
synthesized into a detailed RTL-level structural model in
VHDL along with an estimate of its area. The system also
generates the corresponding detailed machine description
and instruction format description that can be used to re-
target a compiler and an assembler respectively. All this is
part of an overall design system, called Program-In-Chip-
Out (PICO), which has the ability to perform automatic ex-
ploration of the architectural design space while customiz-
ing the architecture to a given application and making in-
telligent, quantitative, cost-performance tradeoffs.

1. Introduction

VLIW (Very Long Instruction Word) processors have
started establishing themselves as the processor of choice in
high performance embedded computer systems, especially
in situations where an efficient compiler for a high level lan-
guage is available. Although a fair amount of work has been
done on providing the capability to automatically design the
architecture of a sequential, application-specific instruction-
set processor (ASIP) – primarily a matter of designing the
opcode repertoire – there has been relatively little work in
the area of automatic architecture synthesis of VLIW pro-
cessors or, for that matter, processors of any kind that pro-
vide significant levels of instruction-level parallelism (ILP).
The work which has been done tends to focus largely upon

the synthesis of a VLIW processor's datapath [5, 6, 8]. The
automatic design of a non-trivial instruction format, and the
synthesis of the corresponding instruction fetch and decode
micro-architecture have not been addressed for VLIW pro-
cessors. And yet, it is these issues that consume the major
portion of a human designer's efforts during the architecture
and micro-architecture phases of a VLIW design project.

In this paper, we present a fully automated system for
designing the architecture and micro-architecture of VLIW
processors and their generalization, EPIC (Explicitly Par-
allel Instruction Computing) processors1. We refer to this
process asarchitecture synthesisto distinguish it from be-
havioral or logic synthesis which are at a lower level. In ad-
dition to the well understood features of the VLIW style of
architecture, the space of processors that we are interested
in exploring includes features such as predication, control
and data speculation, rotating registers, and explicit source
and destination specifiers for load and store operations at
various levels of the memory hierarchy [9]. Processors
with these features have the ability to exploit high degrees
of compiler-specified ILP both in numerically-intensive ap-
plications as well as in applications that are intensive in
branches and pointer-based memory references.

The architecture synthesis system that we describe in this
paper is part of PICO (Program-In-Chip-Out), a broader
system synthesis and design exploration tool which per-
forms hardware-software co-synthesis. In addition to the
custom VLIW processor, PICO may design one or more
non-programmable, systolic-array co-processors (ASICs)
and a two-level cache hierarchy to support these proces-
sors. It partitions the given application between hardware
(the systolic arrays) and software, compiles the software to
the custom VLIW, and synthesizes the interface between the
processors. We refer to PICO's VLIW design capability as
PICO-VLIW which is the subject of this paper.

The major contribution of the work reported here is not
necessarily in the specific heuristics used but in establishing

1For the sake of brevity, we use the term VLIW to include EPIC as well
in the rest of this paper.

1

Spacewalker

VLIW Synthesis

Elcor Compiler

Assembler

Spacewalker

VLIW Synthesis

 Synth.

stats.

cost

Processor
VHDL

archspec

Elcor Compiler

Assembler

mdes

Inst.
format

object code

Perf.

Application
program

Pareto-optimal
designs

area

opcode
stats.

• Architecture synthesis
• Microarchitecture synthesis
• mdes extraction

cy
cl

es

Figure 1. The PICO-VLIW design system.

a framework which formalizes and makes algorithmic what
has thus far been an ad hoc, manual process.

2. Overview of the PICO-VLIW System

In PICO-VLIW, we decompose the process of automat-
ically designing an application-specific VLIW processor
into three closely inter-related sub-systems as shown in Fig-
ure 1. The first sub-system is our design space explorer,
theSpacewalker, whose responsibility is to search for the
Pareto-optimal architectures,i.e., those architectures whose
implementations are either cheaper or faster (or both) than
any other architecture. In order to do this efficiently, the
Spacewalker uses sophisticated search strategies and heuris-
tics that are, however, beyond the scope of this paper.

The second sub-system is theVLIW architecture syn-
thesis sub-system whose responsibility is to take the ab-
stract architecture specification generated by the Space-
walker and to create the best possible concrete architecture
and micro-architecture, as well as a machine-description
database used to retarget the compiler. The system outputs
a RTL-level, structural VHDL description of the processor
and estimates the chip area consumed by it.

The third sub-system consists ofElcor, our retargetable
compiler for VLIW processors whose operation repertoire
is a subset of the HPL-PD repertoire [9], and a retargetable
assembler. Both are automatically retargeted by supplying
the machine-description database. Elcor's responsibility is
to generate the best possible code for the application on the
processor designed by the VLIW architecture synthesis sub-
system, and to evaluate its performance by counting the
number of cycles taken to execute the program. The area
and execution time estimates are then used by the Space-
walker to guide the next step of its search.
PICO-VLIW design flow. The design flow within PICO-
VLIW may be divided into three major activities: architec-
ture design, micro-architecture design and code generation
as shown in Figure 2. The figure also shows the various

Abstract
ISA Spec

Scheduled
Program

Instruction
Format

Mdes
extraction

Application
Program

Datapath
design

MDES

Custom template
selection

Physical instruction
format design

Affinity
parameters

Object Code

Retargetable
Assembler

Retargetable
Compiler

Logical instruction
format design

Microarchitecture Design

Architecture Design Code Generation

Issue Stats

Ctrl Ports

Controlpath
designProcessor

1

2

3

4

5 6

7

8

9

ISA Spec
creation

IF Tree

Figure 2. Design flow in PICO-VLIW.

design steps numbered in design flow sequence, and the de-
pendence relationships among them.

In manual VLIW design as well as related work on
VLIW synthesis [6, 7], the starting point is the concrete ISA
which consists of a specification of the register file structure
and an instruction format. We take a different approach,
since we view the concrete ISA as an overly-constrained in-
put specification. Instead, we start with an abstract architec-
ture specification (step 1), which specifies the desired lev-
els of concurrency and the opportunities for resource shar-
ing, but which leaves the detailed decisions as to how best
to share register ports and instruction bits to the datapath
and the concrete ISA design steps, respectively. This allows
PICO-VLIW to go about the design in an unconventional
order: first, to design a datapath that is consistent with the
requirements of the abstract architecture specification (step
2); next, to design a concrete ISA in the light of the control
ports of the datapath (steps 5-7), and to then design the con-
trolpath (step 8),i.e., the instruction prefetch, alignment and
decode hardware. By designing the concrete ISA after the
datapath, we are able to achieve better trade-offs between
code size and the complexity of the controlpath.

In the following sections, we focus our attention on the
VLIW synthesis sub-system of PICO-VLIW (steps 1-3, 5-
8). Further details of each step are provided in [1, 2].

3. Abstract architecture specification

Architecting a VLIW processor is considerably more
complex than a sequential one. In addition to picking an op-
eration repertoire, one must specify the extent and nature of
the processor's ILP. A VLIW processor, when designed by
an expert architect, exhibits certain features which we want
PICO-VLIW to emulate. For example, the processor may
use heterogeneous functional units – although one might
include the ability to issue two adds every cycle, which re-
quires two integer units, only one unit may be capable of
shifting and the other unit able to do multiplication. The
register file ports may be shared – a multiply-add opera-

tion, which requires three register read ports, may be ac-
commodated by ”borrowing” one of the ports of another
functional unit which cannot, now, be used in parallel with
the multiply-accumulate. Likewise, instruction bits may be
shared – a load or store operation, which requires a long
displacement field, might use the instruction bits that would
otherwise have been used to specify an operation on some
other functional unit. In order for PICO-VLIW to yield
well-architected processors, the Spacewalker needs to be
able to specify such architectures to the VLIW synthesis
sub-system.

Our choice of the interface between the Spacewalker and
the VLIW synthesis sub-system is called theabstract archi-
tecture specification(archspecfor short) which provides a
delicate balance between giving the Spacewalker adequate
control over the architecture, without burdening it with the
need to specify a detailed instruction format. Through the
archspec, the Spacewalker specifies (Figure 2, step 1) the
register files of the target machine, its operation repertoire
and the requisite level of ILP in terms of concurrent opera-
tion groups, and the opportunities for sharing register ports
and instruction bits in terms of exclusion groups. We will
describe these components shortly. Thereafter, the Space-
walker relies upon the concrete ISA design, the datapath
design and the controlpath design steps to use these oppor-
tunities while honoring the requisite level of concurrency.

As an example, a simple 2-issue machine is given below:
Register Files

Name Width Registers/Literals Virtual File

gpr 32 r0,. . . ,r31 I
pr 1 p0,. . . ,p15 P
lit 10 [-512,511] L

Operation Groups
Name Operations Operation Format

addsub ADD,SUB pr ? gpr, gpr : gpr
mult MPY pr ? gpr, gpr : gpr
multadd MPYADD pr ? gpr, gpr, gpr : gpr
loadinc LI pr ? gpr : gpr, gpr
loaddisp LM pr ? gpr, lit : gpr
storedisp SM pr ? gpr, gpr, lit :

Exclusion Groups
Name Op Groups

EG0 addsub mult multadd
EG1 loadinc loaddisp storedisp
EG2 addsub mult loadinc
EG3 multadd loaddisp storedisp

EachRegister Filespecified in the archspec identifies its
width in bits, the registers it contains, and a virtual file spec-
ifier that specifies the types of data it can hold. An immedi-
ate literal field within the instruction format of an operation
is also considered to be a (pseudo) register file consisting of

0 1 2 3 0 1 0 1 2 3 0 0 1 2 0

0 1 2 0 1 2 3 0 1

ldstw_0 mpyaddw_1 addsubw_2

gpr pr

Figure 3. A datapath example.

a number of “literal registers” that have fixed values. The
example shows that the above machine has a 32-bit general
purpose register file “gpr”, a 1-bit predicate register file “pr”
and a 10-bit literal (pseudo) register file “lit”.

The various instances of HPL-PD opcodes for a given
machine are grouped intoOperation Groups(opgroupsfor
short). This example specifies six operation groups, im-
plementing the operations add/subtract, multiply, multiply-
add, load with post-increment, and load/store with displace-
ment respectively. Each operation group also specifies one
or moreOperation Formatsshared by all the opcodes within
the group. These specify the desired input/output operand
connectivity to the register files of the machine. For predi-
cated operations, a separate predicate input is specified.

In addition to the desired opcode repertoire, the arch-
spec also abstractly specifies the amount of parallelism to be
supported in the target machine. By definition, all opcode
instances within an operation group are mutually exclusive
while, by default, those across operation groups are allowed
to execute in parallel. The parallelism of the machine may
be further constrained by placing two or more operation
groups intoExclusion Groupsas shown above. All opera-
tion groups within an exclusion group are deemed to be mu-
tually exclusive, a fact that can be exploited by the datapath
design step to share hardware resources such as functional
units, register file ports and buses. In the above example, the
exclusion groups “EG0” and “EG1” serve to represent the
notion of one arithmetic and one memory functional units
each, while “EG2” and “EG3” allow further sharing of reg-
ister file ports and instruction format bits as shown later.

4. Datapath design

The datapath designed for the machine specified in Sec-
tion 3 is shown pictorially in Figure 3 which also illustrates
our general design scheme. The datapath consists of one
or more functional units selected on the basis of the desired

operation functionality connected to the specified register
files via multiple buses. Each bus corresponds to a register
file read or write port. There are several important design
decisions to be made at this step (Figure 2, step 2) that are
outlined below. The details are provided in [1].
Functional unit allocation. The first step in datapath syn-
thesis is to select a set of functional unit macrocells from
the database that can together implement all the operations
specified in the archspec such that the specified ILP con-
straints are met and the total cost (area or gates) is mini-
mized. Our strategy is to formulate it as a clique finding
problem on the graph of exclusion relationships among the
operation groups and then determining a set of minimum
cost functional units that cover all cliques.
Register file port allocation. VLIW processors typically
need multi-ported register files in order to cater to the needs
of multiple, concurrently-executing functional units. Multi-
ported register files are very expensive (in terms of area),
and therefore a novel aspect of our system is that we auto-
matically determine the minimum number of such read and
write ports by taking into account the exclusion constraints
among the operation groups in the archspec.

For each type of port (read/write) to a register file, we
formulate a separate resource allocation problem. In each
formulation, the desired port connectivity is determined by
consulting the operation formats of the various operation
groups assigned to each functional unit. A conflict graph
among the requesting functional unit ports is constructed
based on their concurrent use (e.g., two operands of a bi-
nary operation), and mutual exclusions specified in the arch-
spec. Each problem is then solved using a variation [1] of
the graph coloring approach by Chaitin [3]. In our example
(refer Figure 3), the two arithmetic macrocells share all of
their register file ports. More interestingly, input 3 of the
“mpyaddw1” and input 2 of the “ldstw0” macrocells also
share a register file port because an exclusion was specified
between their operations groups.
Register file and interconnect generation.In the final step
of datapath synthesis, we instantiate each register file with
the appropriate number of read and write ports and generate
the interconnect between the register file ports and the vari-
ous functional unit ports as specified by the port allocation.

5. Mdes extraction

Once the datapath has been designed, our system auto-
matically extracts a compiler-oriented view of it (Figure 2,
step 3) in the form of amachine description(mdesfor
short) [10]. This is then used to re-target our VLIW com-
piler, Elcor, to the target machine (Figure 2, step 4). Our
system extracts a non-structural and operation-centric mdes
from the archspec and the datapath by combining the in-
dividual mdes contributions of the various functional units

and augmenting them with the resource and latency con-
straints of the surrounding hardware. The details are pro-
vided in [1].

6. Concrete ISA design

The concrete ISA consists of a specification of the reg-
ister file structure and the instruction format. The former is
taken directly from the archspec, whereas the latter is gen-
erated automatically by the PICO-VLIW system. A novel
feature of our approach is the distinction we make between
the logical and the physical instruction formats, which is
discussed below. Further details appear in [2].
Logical instruction format design. Thelogical instruction
formatis equivalent to what one traditionally thinks of as an
instruction format: a set of instruction templates each con-
sisting of one or more operation groups that can be issued
simultaneously. Each operation group has one or more op-
eration formats, each of which is a set ofinstruction fields
encoding the opcode and the various operands. Also, each
operation group may appear in multiple templates, yielding
multiple instancesof each field.

The objective of the logical instruction format design
step (Figure 2, step 5) is to avoid code wastage due to no-
ops specified in the program that may result from the use
of a simplistic instruction format. This code wastage comes
in two forms. First, a single instruction template, which
contains an operation slot dedicated to each functional unit
macrocell (akin to horizontal microcode) is quite wasteful
since the archspec and the datapath may not allow all of
those operations to be issued simultaneously. We address
this by designing multiple instruction templates, each of
which is only capable of specifying a set of operations that
can, in fact, be issued simultaneously. Our design strategy is
to treat each clique of concurrent operation groups specified
in the archspec as a separate instruction template.

Second, a given instruction, as scheduled by the com-
piler, may not have enough ILP to use all the available slots
of its template. The unused operation slots must specify a
no-op, again leading to code wastage. We address this by
providing additional, narrower templates which correspond
to statistically frequent combinations of operations in the
scheduled code. Identifying these custom templates (Fig-
ure 2 step 6) entails invoking the scheduler, which in turn
requires that the datapath has already been designed.

As an example, the exclusions specified in the archspec
of Section 3 stipulates two instruction templates as shown
in Figure 4(a). Each template consists of a consume-to-end-
of-packet (EOP) bit which is used for aligning branch tar-
gets [1, 2], a template selector field, and one or more con-
current slots encoding the various operation groups.
Physical instruction format design.Thephysical instruc-
tion formatallows the fields within each template to be po-

sitioned in any convenient order, but an order that is fixed
for that template. Furthermore, an individual field is also
permitted to consist of a discontiguous set of bit positions.
One of the objectives of the physical instruction format de-
sign step (Figure 2, step 7) is to exploit these additional de-
grees of freedom with a view towards minimizing the width
of each instruction template. This is done by assigning the
same or overlapping bit positions to fields that cannot ap-
pear simultaneously in the same instruction while ensur-
ing that fields which can be present simultaneously, are as-
signed disjoint bit positions.

A second, somewhat conflicting, objective at this step is
to minimize the complexity of the decode and distribution
network that lies between the instruction register and the
datapath control ports. This is done by minimizing, for each
control port, the number of distinct bit positions, across all
of the templates, at which the instruction fields controlling
the given port are to be found. Once again, this requires that
the datapath has already been designed.

The physical instruction format is designed using the in-
struction format tree (IF-treefor short) data-structure which
is a hierarchical representation of the grammar of an instruc-
tion for the target architecture. The leaves of the tree are
the logical instruction fields for which physical bit positions
need to be allocated. The IF-tree is used to compute a con-
flict matrix among the instruction fields where two fields
are said toconflict if they can be present simultaneously in
the same logical template, and therefore must be assigned
disjoint bit positions. The allocation algorithm we use is a
variant [2] of Chaitin's graph coloring algorithm [3] where
instruction bits are resources and each requesting instruc-
tion field may request multiple bits. Heuristics are used to
reduce the overall template width and the decode complex-
ity by packing the instruction fields to the left (leftmost allo-
cation), assigning contiguous bit positions to multi-bit fields
(contiguous allocation), and aligning instruction fields cor-
responding to the same control port to the same bit posi-
tion (affinity allocation). Finally, the bits of each template
are rounded up to the next multiple of a fixed quantum size
(QI) in order to simplify its alignment in the memory and
the instruction register as discussed in Section 7.

The physical format for the template T1 of our example
machine is shown in Figure 4(b). This template consists of
two concurrent operation groups “multadd” and “loadinc”
whose various instruction fields have been assigned bit po-
sitions as shown in the figure. Note that the SRC3 field of
the “multadd” operation group is positioned in the midst of
the bits corresponding to the “loadinc” operation group be-
cause it has affinity with the SRC2 field of the “storedisp”
operation group in template T0. This was due to the fact
that these two fields drive the same register file address port,
which in turn was a result of specifying a exclusion “EG3”
between the two operation groups in the archspec.

Template EOP TSel OpGroups OpGroups

T0 0 1 addsub loaddisp
mult storedisp

T1 0 1 multadd loadinc
(a)

multadd: pr ? gpr, gpr, gpr : gpr
Template PRED1 SRC1 SRC2 SRC3 DEST1
T1 5� � �8 9� � �13 14� � �18 35� � �39 19� � �23

loadinc: pr ? gpr : gpr , gpr
Template PRED1 SRC1 DEST1 DEST2
T1 26� � �29 30� � �34 45� � �49 40� � �44

storedisp: pr ? gpr, gpr, lit :
Template PRED1 SRC1 SRC2 SRC3
T0 26� � �29 30� � �34 35� � �39 40� � �49

(b)

Figure 4. Example instruction templates.

I-cache WA

Shift
and
align

I
R

WImax WImin

QI

FIFO

NFIFO

Decode
and

Operand
 Fetch

Result
Write-
back

FU
M
A
R

TA 1

O
D
R

Figure 5. The instruction fetch pipeline.

7. Controlpath design

We partition the problem of controlpath design into two
major components: the instruction sequencer and the in-
struction fetch pipeline. The sequencer design is dependent
upon the presence/absence of features such as exception and
interrupt handling, error recovery, branch prediction etc. but
is largely independent of the instruction-set architecture of
the machine. Therefore, we assume that the appropriate
set of sequencer macrocells is available in our macrocell
database. Below, we address the design of the instruction
fetch pipeline (Figure 2, step 8) consisting of the following
components (refer Figure 5).

Instruction Cache. For purpose of the instruction pipeline
design, the cache is characterized by its access time (TA)
and the size of an instruction packet (WA) which is the unit
of instruction fetching from the processor side.
Instruction prefetch buffer. An instruction packet is
fetched from the instruction cache and brought into a FIFO
queue. The prefetch policy is to keep the inventory of use-
ful packets at a constant sizedTA �WImax=WAe, where
the inventory of useful packets is defined as the sum of the
number of packets in the prefetch buffer and the number of
outstanding cache requests. Intuitively, this is the number of
packets required to completely mask the cache latencyTA
even when the maximum sized (WImax) instructions are be-
ing issued. This policy requires one to initiate a cache fetch
whenever the actual inventory falls below this size limit.

The inventory size is also an upper bound on the size of

the prefetch buffer,i.e.,

NFIFO � dTA �WImax=WAe

A tighter upper bound is possible if more history is kept
around dynamically regarding the exact number and the
timing of the outstanding cache fetches as discussed in [1].
Instruction alignment network. In order to accommodate
variable length instructions, an instruction alignment net-
work aligns the left boundary of the next instruction to the
first bit position of the instruction register (IR) at each cycle.
This network consists of a series of multiplexors controlled
by the states of the IR, the On-Deck register (ODR), and
the head of the FIFO queue. Not all shift increments are
necessary since the instructions sizes are guaranteed to be
multiples of a quantum size (QI).
Instruction unit control tables. The alignment network,
the prefetch buffer, and the instruction fetch from the cache
are controlled by logic whose specification as a control table
is generated automatically according to the prefetch policy
described above. This logic is responsible for the following
tasks at each cycle:

� keeping track of the width of the instruction as well as
the unused bits in the instruction register and at the head
of the prefetch buffer,

� issuing instruction cache fetches, prefetch buffer writes
and instruction register fills at the appropriate times, and

� generating the appropriate shift signal for the alignment
network to align the next instruction.

Instruction decode tables.At each cycle, the left aligned
instruction in the instruction register is decoded to yield the
appropriate control signals for the various datapath control
ports. A control table specification for this decode logic is
generated automatically by walking the IF-tree. This may
then be implemented either as random logic or as a PLA
using standard logic synthesis tools.

8. Experimental Results

PICO-VLIW has been operational as a research proto-
type since late 1997. It allows us to explore hundreds or
thousands of architectural alternatives in designing ASIPs,
something that is very hard or impossible to do without an
automated system. At this point, we have exercised it with
several applications ranging from loop-intensive algorithms
for signal and image processing to less structured ones such
as compress and ghostscript. As an example, we present
some of the results from the design space exploration for
an application whose time-consuming part consists of a fi-
nite impulse response (FIR) filter. The following table lists
the parameter ranges that define the design space to be ex-
plored; the number in parentheses are the step sizes. This
design space contains 17640 different machines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Estimated area (mm 2)
(based on parametric cost models for 0.18u process)

Heterogeneous
Machines

Homogeneous
Machines

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Figure 6. Sample PICO-VLIW machines.

Parameter Range Parameter Range
predication yes, no speculation yes, no
integer FUs 1-3 float FUs 1-5

memory FUs 1-2 branch FUs 1
integer regs. 16-64(8) float regs. 16-64(4)

predicate regs. 256 branch regs. 8-16(4)

It is very hard to characterize the “quality” of an ar-
chitecture objectively other than its cost and performance
for a given application. In that spirit, Figure 6 shows the
cost/performance characteristics of a number of machines
in the design space that the Spacewalker actually considered
to find 68 pareto-optimal designs. The machines displayed
in Figure 6 fall in two categories. Machines represented
by black circles arehomogeneousmachines which have
general-purpose functional units and in which all functional
units of a specific type (e.g., integer) are identical. Ma-
chines represented by grey circles areheterogeneousma-
chines in which functional units have been specialized to
the needs of the application and in which all units of a spe-
cific type are not necessarily identical. The results confirm
the intuition that for a given performance, good heteroge-
neous designs are cheaper than good homogeneous designs,
in this case by up to 50%.

9. Related work

The related work focuses on either the datapath design
using a Spacewalker or the processor design from a con-
crete instruction set architecture (ISA). The MOVE project
at Delft University falls in the first category. The emphasis
is on the design of processor datapaths forTransport Trig-
gered Architectures[5]. The datapath template used by the
Spacewalker consists of a set of functional units, a set of
register files and a set of buses connecting the functional
units and the register files. The Spacewalker works with a
structural representation of the datapath, adding and delet-
ing register files, functional units, buses and interconnection

points to come up with a set of pareto-optimal datapaths.
The philosophy for designing the control is simple, similar
to horizontal microprogramming,i.e., each control point is
controlled by a separate field in the instruction word. Thus,
the work doesn' t address the design of sophisticated instruc-
tion formats optimized for code size and the corresponding
instruction fetch and decode logic within the processor.

The work by Fisheret al. at HP Labs [6] is similar in
nature and focuses on the design of processor datapath for a
clustered VLIW architecture, similar to the Multiflow Trace
architecture [4]. The datapath template used in the design
process is highly stylized; for example, it doesn' t permit
register port sharing and assumes that each functional unit
has dedicated ports to register files. A major component
of their work is directed towards understanding how a pro-
cessor designed for an application or a group of applications
performs on other applications in the same domain,e.g., im-
age processing.

The approach presented by Hadjiyianniset al. [8] uses
Instruction Set Description Language (ISDL) [7] to specify
a concrete ISA, which includes not only the desired oper-
ations but also the detailed instruction format and the con-
straints on instruction issue. The specification is then used
to design the processor hardware in the form of synthesiz-
able Verilog and to retarget various tools, such as a code-
generator, assembler and simulator, needed to evaluate the
performance. ISDL is a very general language capable of
specifying many different types of architectures. Since an
ISDL specification is at the level of a concrete ISA, the de-
signer (either a person or a Spacewalker) has to do most of
the work (e.g., instruction format design) that our system
does automatically. In our opinion, this makes it less suit-
able as a tool for comprehensive design space exploration
and more suitable for a design process that requires only
small incremental changes to an existing specification.

10. Conclusions

PICO-VLIW is a synthesis system for automatically de-
signing the architecture and micro-architecture of VLIW
and EPIC processors. It designs sophisticated processors
with non-trivial requirements and constraints upon their
ILP, shared register ports, variable-length multi-template in-
struction formats that minimize code size, an instruction
prefetch unit that covers the instruction cache latency, and
instruction alignment and distribution networks to deal with
the variable length instructions. A novel aspect of our ap-
proach is the distiction we make between the logical and the
physical instruction formats.

PICO-VLIW was designed with automatic design space
exploration in mind; the VLIW synthesis in PICO-VLIW
is driven by an abstract rather than a concrete ISA speci-
fication, since it is easier for the Spacewalker (or, for that

matter, a human being) to specify the former. Starting from
this specification, PICO-VLIW automatically generates,

1. the concrete ISA for the processor,
2. the detailed micro-architecture including the datapath

and the controlpath output in the form of RTL-level
structural VHDL,

3. a machine description for use by our retargetable com-
piler, assembler and simulator, and,

4. an architecture manual and detailed statistics for the
Spacewalker.

Acknowledgements
The authors would like to thank Mike Schlansker for his

contributions to the archspec definition, and Richard John-
son for his help in custom instruction template design.

References

[1] S. Aditya and B. R. Rau. Automatic architectural synthesis
and compiler retargeting for VLIW and EPIC processors.
Technical Report HPL-1999-93, Hewlett-Packard Laborato-
ries, 1999.

[2] S. Aditya, B. R. Rau, and R. C. Johnson. Automatic design
of VLIW and EPIC instruction formats. Technical Report
HPL-1999-94, Hewlett-Packard Laboratories, 1999.

[3] G. J. Chaitin. Register allocation and spilling via graph col-
oring. In Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, pages 98–105, Boston, Mas-
sachusetts, June 23–25, 1982.

[4] R. P. Colwell, R. P. Nix, J. J. O' Donnell, D. P. Papworth, and
P. K. Rodman. A VLIW architecture for a trace scheduling
compiler. InSecond Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
II) , pages 180–192, Palo Alto, CA, October 1987.

[5] H. Corporaal and R. Lamberts. TTA Processor Synthesis. In
First Annual Conf. of ASCI, Heijen, The Netherlands, May
1995.

[6] J. A. Fisher, P. Faraboschi, and G. Desoli. Custom-Fit
Processors: Letting Applications Define Architectures. In
29th Annual IEEE/ACM Symposium on Microarchitecture
(MICRO-29), pages 324–335, Paris, December 1996.

[7] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An
instruction set description language for retargetability. In
ACM/IEEE Design Automation Conference, 1997.

[8] G. Hadjiyiannis, P. Russo, and S. Devadas. A Methodology
for Accurate Performance Evaluation in Architecture Explo-
ration. InDesign Automation Conference, New Orleans, LA,
June 1999.

[9] V. Kathail, M. Schlansker, and B. R. Rau. HPL PlayDoh ar-
chitecture specification: Version 1.0. Technical Report HPL-
93-80, Hewlett-Packard Laboratories, Feb. 1994.

[10] B. R. Rau, V. Kathail, and S. Aditya. Machine-description
driven compilers for EPIC and VLIW processors.Design
Automation for Embedded Systems, 4:71–118, 1999.

