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Abstract

Data aggregation is a very important method to conserve energy by eliminating the inherent redundancy of raw

data in wireless sensor networks (WSNs). In this article, we developed an automatic auto regressive-integrated

moving averagemodeling-based data aggregation scheme in WSNs. The main idea behind this scheme is to

decrease the number of transmitted data values between sensor nodes and aggregators by utilizing time series

prediction model. The proposed scheme can effectively save the precious battery energy of wireless sensor nodes

while keeping the predicted data values of aggregators within application-defined error threshold. We show

through experiments with real data that the predicted data values of our proposed scheme fit the real sensed data

values very well and fewer messages are transmitted between sensor nodes and aggregators than the native data

aggregation scheme. Furthermore, the characteristics of the proposed data aggregation scheme are also discussed

in this article.
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1. Introduction

Wireless sensor networks(WSNs) are made up of a mass

of spatially distributed autonomous sensor nodes, to

jointly monitor physical or environmental conditions,

such as temperature, humidity, vibration, pressure,

sound, motion, or pollutants [1]. These sensors could be

scattered randomly in harsh environments such as bat-

tlefields or deterministically placed at specified locations

to collect information from the environment. The typical

application fields of WSNs include industrial process

control, security and surveillance, traffic control, home

automation, environmental sensing, structural health

monitoring, etc. [2].

In WSNs, the communication cost of sensor node is

often several orders of magnitude higher than that of

computation. For instance, the transmission and reception

energy costs for one bit of MICAz node [3] and TelosB

node [4] are 600, 670, and 720, 810 nJ, respectively.

However, the computation energy costs for 1 bit of them

are only 3.5 and 1.2 nJ, respectively [5]. Therefore, data

aggregation scheme is often adopted as an effective way to

save the precious battery energy of wireless sensor nodes by

eliminating the inherent redundancy in the raw data and

avoiding unnecessary data transmission. Moreover, data

aggregation scheme is also useful to extract application-

specified general information from the raw data which are

collected from the sensor nodes [6]. Hence, it is critical for

WSNs to support data aggregation schemes.

There have been plenty of researches in the recent

past on data aggregation schemes in WSNs. Typically,

the whole sensor network is partitioned into hierarchical

structure which consists of sink node, aggregators, and

ordinary sensors. The aggregator utilizes specific functions,

such as mean, min, or max, to aggregate incoming readings,

and only the aggregated results are forwarded to the sink.

Therefore, communication overhead can be reduced and

packet collision can be avoided by decreasing the amount

of transmitted messages. A comprehensive survey on data

aggregation schemes of WSN was presented in [7]. And we

will briefly review some representative data aggregation

schemes in Section 2.

In this article, we proposed an automatic auto regressive-

integrated moving average (ARIMA)modeling-based data

aggregation scheme which utilizes time series model to pre-

dict the data of next several periods at both ordinary sensor

nodes and aggregators based on the same amount of recent
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data values. The sensor node will build an appropriate time

series model to predict the future data based on recently

sensed data values and transmit the parameters of the

model to the aggregator automatically. When the predic-

tion error between the sensed value and predicted value is

within the application-specified error threshold, sensor

node will not transmit the sensed value to the aggregator.

In this case, the aggregator will regard the predicted value

as the sensed value in current data collection period. When

the prediction error is beyond the application-specified

error range, the sensor node will rebuild the time series

model and transmit the sensed value with the new model

to the aggregator in order to replace the incorrect predicted

value and unsuited prediction model. We show

through experiments that the predicted values of our

proposed scheme fit the real sensed values very well

and fewer messages are required to transmit between

sensor nodes and aggregators.

The remainder of this article is organized as follows.

In Section 2, we review some related works. In Section

3, we present our automatic ARIMA modeling-based

data aggregation scheme. In Section 4, we describe our

experiment settings and evaluation results. Finally, we

conclude this article and present future directions in the

Section 5.

2. Related works

There have been extensive researches in the field of data

aggregation scheme in WSNs. According to the underlying

route structure, the proposed data aggregation schemes can

be categorized into four classes: tree-based data aggregation

scheme, cluster-based data aggregation scheme, multi-path

data aggregation scheme, and hybrid data aggregation

scheme [8].

In tree-based data aggregation scheme, a spanning tree

rooted at the sink is constructed and data aggregation

operations proceed level-by-level from its leaves to its

root. However, the cost of maintaining such a dynamic

hierarchical tree structure is very high. In cluster-based

data aggregation scheme, sensor nodes are divided into

clusters and some special nodes, referred to as cluster

heads, are selected to aggregate data locally and forward

the result to the sink. In order to balance the energy cost

of data aggregation, cluster head is rotated within the

cluster. In multi-path data aggregation scheme, data

are sent over multiple paths and aggregation is

performed over these paths as packets move towards

the sink level-by-level. In this kind of scheme, higher

robustness is achieved by inducing extra overhead.

Hybrid data aggregation scheme tries to overcome the

problems of both the tree- and multi-path-based

structures by combining the best features of both

schemes. Hence, the whole network is organized into

regions implementing one of the above two schemes.

And the main difficulty is how to connect regions running

different aggregation schemes.

More specifically, Heinzelman et al. [9] proposed low-

energy adaptive clustering hierarchy (LEACH) to cluster

sensor nodes and let the cluster head to aggregate data.

The cluster head then transmits the aggregated results

directly to the sink. Lindsey and Raghavendra [10] pro-

posed power-efficient data gathering protocol for sensor

information systems (PEGASIS) which organizes all

sensors into a chain structure and rotates each node to

communicate with the sink. Both LEACH and PEGASIS

assume that each node in the network can reach the sink

directly in one hop, which limits the size of the network

for which they are applicable. Intanagonwiwat et al. [11]

proposed greedy incremental tree which establishes

an energy-efficient tree by attaching all sensors greed-

ily onto an energy-efficient path and prunes less

energy-efficient paths. However, it might lead to high

communication cost in moving event scenarios for

the reason of frequently pruning branches. Zhang and

Cao [12] proposed dynamic convoy tree-based collab-

oration which assumes that the distance to the event

is known to each sensor and uses the node near the

center of the event as the root to construct and

maintain the aggregation tree dynamically. However,

it involves heavy message exchanges which might

eliminate the benefit of aggregation in large-scale net-

works. Ding et al. [13] proposed energy-aware distrib-

uted aggregation tree scheme, which is based on

energy-aware distributed heuristic. It only relies on

local knowledge of the network topology and gives

higher chances to sensor node with higher residual

power to become a non-leaf tree node. Xu et al. [14]

proposed cooperative data aggregation (CDA) scheme

which is based on a cooperative communication mechan-

ism. The heuristic algorithm MCT for CDA and its dis-

tributed implementation DMCT were also proposed in

[14]. Recently, Villas et al. [15] proposed dYnamic and

scalablE tree Aware of Spatial correlatTion (YEAST)

scheme by exploiting the spatial correlation between sen-

sor nodes. The sensor nodes that detect the same event

are grouped in a correlated region and the group head is

selected and rotated in each round. On the other hand, a

structure-free real-time aggregation schemewas also pro-

posed by Yousefi et al. [16]. It combines temporal and

spatial convergence of packets using judiciously waiting

policy and real-time data-aware anycasting policy, respect-

ively, without explicit maintenance of a structure. Xiang

et al. [17] investigated the application of compressed sens-

ing theory to data collection in WSNs with the goal of

minimizing the network energy consumption through

joint routing and compressed aggregation. They proposed

mixed-integer programming scheme in [17] and dual-level

compressed aggregation scheme in [18].
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However, none of the above data aggregation

schemes have considered the problem of decreasing

the number of transmitted data values between

ordinary sensors and aggregator. They take for

granted that sensor nodes periodically report sensed

data values to the aggregator. However, the energy

cost of data transmission and reception between

them is not trivial. That is the focus and motivation

of this article.

3. Automatic ARIMA modeling-based data

aggregation scheme

Since the data generated by sensor nodes during

continuously monitoring periods usually are of high

temporal correlation, it indicates that there are

redundant data in the successive data sequence,

which causes unnecessary data transmission and

energy consumption. In this article, we only focus

on data transmission reduction and corresponding

energy saving between sensor nodes and aggregators.

Furthermore, we assume that a reliable message

retransmission mechanism is adopted in the under-

lying MAC layer to guarantee the ARIMA model

parameters and sensed data values could be delivered

to the aggregator successfully even after collusion

happens.

The automatic ARIMA modeling-based data aggrega-

tion scheme utilizes ARIMA model to predict the data

of next several periods at both ordinary sensors and

aggregators based on the same amount of recently

sensed values. The ordinary sensors and aggregators

work coordinately to reduce the amount of messages

transmitted within the network.

3.1. The ARIMA model

Time series analysis uses historical data to develop a

model for the prediction of future data values. The

ARIMA model, also called Box–Jenkins model, is a

widely used prediction model for univariate time

series [19]. An ARIMA process can be divided into

three components: auto-regressive (AR), moving-

average (MA), and one-step differencing. The AR

component estimates the current sample as a linear-

weighted sum of previous samples; the MA compo-

nent captures relationship between prediction errors;

and the one-step differencing component captures

relationship between adjacent samples. In ARIMA,

the AR component captures the temporal correlation

in the time series by modeling a future value as a

function of a number of past values. The MA com-

ponent is modeled as a zero-mean, uncorrelated

Gaussian random variable (also referred to as white

noise) [20].

The ARIMA(p, d, q) model of time series {x1, x2, …} is

defined as

Φp Bð ÞΔdxt ¼ Θq Bð Þεt ð1Þ

where B is the backward shift operator, Δ is the back-

ward difference, d is the order of differencing, and Φp

and Θq are polynomials of order p and q, respectively.

Bxy ¼ xy−1 ð2Þ

Δ ¼ 1−B ð3Þ

ARIMA(p, d, q) model is the product of an AR part

AR(p):

Φp ¼ 1−φ1B−φ2B
2
−⋯−φpB

p ð4Þ

an integrating part:

I dð Þ ¼ Δ−d ð5Þ

and a MA part MA(q):

Θq ¼ 1−θ1B−θ2B
2
−⋯−θqB

q ð6Þ

The parameters Φ and Θ are chosen so that the zeros

of both polynomials lie outside the unit circle in order

to avoid generating unbounded processes.

The construction steps of ARIMA model are shown in

Figure 1. It includes the following five steps [21].

Figure 1 The ARIMA model construction steps.
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Step 1: Make time series stationary by differencing

The noise series being analyzed must be stationary.

When the variance of the noise series is non-stationary,

the data must be transformed by differencing the

original data to make the series stationary. If the

series exhibits a trend over time or seasonality, or if

some other non-stationary pattern exists, the series

should be differenced repeatedly until the time series

becomes stationary.

Step 2: Identify the model using ACF and PACF.

Candidate ARIMA models are identified once the time

series becomes stationary. After obtaining the autocor-

relation function (ACF) and partial autocorrelation func-

tion (PACF), multiple ARIMA models that closely fit the

data can be identified. The k-order autocorrelation coef-

ficient of time series {x1, x2, …} is defined as

rk ¼
∑
T
t¼kþ1 xt−�xð Þ xt−k−�xð Þ

∑
T
t¼1 xt−�xð Þ2

ð7Þ

The k-order partial autocorrelation coefficient of time

series {x1, x2, …} is defined as follows:

ϕk ¼

r1 k ¼ 1
rk−∑

k−1
j¼1ϕjrk−j

1−∑k−1
j¼1ϕjrk−j

k > 1

8

>

<

>

:

ð8Þ

Step 3: Estimate ARIMA model parameters.

After identifying a possible ARIMA model, we analyze

the time series and estimate the model parameters. If the

PACF of the differenced series displays a sharp cutoff and

the lag-1 autocorrelation is positive, then consider adding

one or more AR terms to the model. The lag beyond

which the PACF cuts off is the indicated number of AR

terms. If the ACF of the differenced series displays a sharp

cutoff and the lag-1 autocorrelation is negative, then

consider adding an MA term to the model. The lag be-

yond which the ACF cuts off is the indicated number of

MA terms.

Step 4: Diagnose ARIMA residual series.

This step employs a white noise test to check whether

the residual series from the model contains additional

information that might be of use to a more complex

model. In this case, the analysis must be continued by

repeating Steps 3 and 4 until an appropriate ARIMA

model is found which passes the white noise test.

Step 5: Choose the most suitable ARIMA model.

An ARIMA model with the smallest Akaike Informa-

tion Criterion (AIC) indicator or Bayesian Information

Criterion (BIC) indicator is selected as the most suitable

ARIMA model for analysis.

The AIC indicator and BIC indicators are calculated as

follows:

AIC ¼ −2l=T þ 2k=T ð9Þ

BIC ¼ −2l=T þ k logTð Þ=T ð10Þ

In Equations (9) and (10), l is the log likelihood, T is

the number of observations, k is the number of right-

hand side regressors, and ε̂′ε̂ in Equation (11) is the sum

of squared residuals.

l ¼ −
T

2
1þ log 2πð Þ þ log ε̂′ε̂=T

� �� �

ð11Þ

The power of an ARIMA model resides in that it can

incorporate all the AR term, the integrated term, and

the moving average term together to model time series

with a wide variety of features such as trend by simply

adjusting the parameters of each term.

Table 1 Notations

Notation Meaning

{x1, x2, …, xn} Data series

{x1′, x2′, …, xn′} Stationary data series

I Differencing order

diff({x1, x2, …, xn},I) Execute I order of differencing operation to
{x1, x2, …, xn}

variance( ) Calculate variance

ε Application defined stationary threshold

δ Application defined BIC indicator threshold
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3.2. Data aggregation scheme

The ordinary sensor node runs automatic ARIMA

modeling algorithm to build ARIMA prediction model

automatically. The notations used in the algorithm

are described in Table 1.

The automatic ARIMA modeling algorithm works as

follows:

In order to build ARIMA prediction model, sensor

node needs to collect recently sensed data series {x1,

x2, …, xn}. If {x1, x2, …, xn} is not stationary, we

should make the differencing adjustment to data

series until the difference between successive vari-

ances is smaller than the application-defined station-

ary threshold ε. Then, we fit ARIMA prediction

model according to the differenced data series {x1′,

x2′, …, xn′} using least square method. The iteration

of ARIMA model fitting process follows the Box

search path, which is shown in Figure 2. It can find

an appropriate fitting model using a relatively small

number of search times [22]. When the BIC indicator

of an ARIMA model is smaller than the application-

defined BIC threshold δ and the corresponding Ljung

Box white noise test of fit residual passes, the iter-

ation of ARIMA model fitting process will stop. In

other words, an appropriate ARIMA prediction model

has been built. Here, we choose BIC indicator over

AIC indicator for the reason that BIC indicator is

more consistent and penalizes free parameters more

strongly than AIC indicator.
Figure 2 Box search path.
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The automatic ARIMA modeling-based data aggregation

scheme works as follows:

First of all, the ordinary sensor node runs automatic

ARIMA modeling algorithm to build an appropriate

ARIMA prediction model. It then sends the ARIMA

model parameters to aggregator. After that, it calculates

the predicted value according to ARIMA model and

compares the sensed value with the predicted value. If the

difference between them is less than the predefined

error threshold, the sensor node will store the predicted

value into historical data queue. Otherwise, it will store

the sensed value into historical data queue and send the

sensed value to aggregator at the same time. When the

predicted value is beyond the fault tolerant range of the

sensed value, the AIRMA model will be rebuilt and corre-

sponding ARIMA model parameters of aggregator will be

refreshed again.

The aggregator listens on the wireless channel to

retrieve ARIMA model parameters and sensed values

from ordinary sensor node. If the aggregator does not

receive any data from sensor node after a predefined

periodical data collection time, it means the difference

between the sensed value and predicted value is within

the acceptable error range. Then the aggregator will

calculate the predicted value according to ARIMA

model using historical data. Otherwise, it will store the

received sensed value into historical data queue and

prepare to update the ARIMA model parameters. The

periodical data collection time should be selected

carefully to ensure it is enough to deliver the message

from sensor node to the aggregator. Meanwhile, reliable

message retransmission mechanism should be adopted
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in the underlying MAC layer to guarantee the sensed

value could be delivered to aggregator even after collusion

happens.

The detailed interactive process of automatic ARIMA

modeling-based data aggregation scheme is shown in

Figure 3. The ordinary sensor node and aggregator work

coordinately to decrease the number of transmitted

messages between them. The shaded circles in the

figure indicate that the difference between sensed

value and predicted value is beyond the fault tolerant

range. In other words, the prediction model should

be rebuilt and updated.

4. Evaluations

In this section, we evaluate and compare the

performance of automatic ARIMA modeling-based

data aggregation scheme with native data aggregation

scheme without data prediction. We use the real-sensed

data collected from TAO (Tropical Atmosphere Ocean)

project to demonstrate the performance of our proposed

scheme. The TAO project provides real-time collection of

high-quality oceanographic and surface meteorological

data for monitoring, forecasting, and understanding of

climate swings associated with El Niño and La Nina

since 1982 [23]. The collected data include sea surface

temperature, sea level pressure, salinity, relative humidity

and density, etc., along with timestamp information

collected once every 10 min. We will only use the sea

surface temperature data to evaluate our scheme. The

other collected measurement will produce the similar

results. Figure 4 shows a detailed deployment of nearly

70 buoys of TAO project.

4.1. Performance comparison

In automatic ARIMA modeling-based data aggregation

scheme, ordinary sensor node will transmit the sensed

data value to the aggregator only when the prediction

error between sensed value and predicted value is

Figure 3 The interactive process of the proposed scheme.

Figure 4 Deployment of TAO project.
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Figure 5 Data comparison of two schemes when the error threshold is set to 0.1°C.

Figure 6 Data comparison of two schemes when the error threshold is set to 0.2°C.
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beyond the application-specified error threshold. In na-

tive data aggregation scheme without data prediction,

ordinary sensor node will transmit all the sensed data

values to the aggregator. We will refer to it as native

data aggregation scheme in the rest of this article. It

is noteworthy that we only consider the problem of

data transmission between ordinary sensor node and

data aggregator. Both schemes can be combined with

other data aggregation schemes which deal with data ag-

gregation between aggregator and sink.

Figures 5 and 6 show the comparison of sensed data

values of native data aggregation scheme and predicted

data values of automatic ARIMA modeling-based data

aggregation scheme with different predefined error

threshold, 0.1 and 0.2°C, respectively. The source data

values which are used to build ARIMA prediction model

were collected from the buoy deployed at 8° north

latitude 155° west longitude. We can conclude that the

predicted values of our scheme fit the sensed values very

well. And the less the predefined error threshold, the

better the predicted values fit the sensed values. On the

contrary, more ARIMA prediction models should be

rebuilt to satisfy the error threshold condition. We will

discuss this property further in the next section.

Figure 7 shows the comparison of transmitted data

numbers of both data aggregation schemes when the

number of predicted values is set to 150. In native data

aggregation scheme, all the sensed data values should be

sent to the aggregator. In automatic ARIMA modeling-

based data aggregation scheme, only the sensed data

values which are beyond the error tolerance range and

the ARIMA model parameters should be sent to the

aggregator. We can see that automatic ARIMA modeling-

based data aggregation scheme transmits much less

number of messages than native data aggregation scheme

for most of the times. Consequently, precious battery

energy of wireless sensor nodes is saved and much longer

network lifetime is maintained. Only when the error

threshold is set too small, many ARIMA prediction

models are unfitted and should be rebuilt. Therefore, the

transmission of corresponding ARIMA model parameters

outnumbers the transmission of sensed data values.

4.2. Performance evaluation

In this section, we evaluate the performance of automatic

ARIMA modeling-based data aggregation scheme.

Figure 8 shows the ARIMA model rebuild times of

our proposed scheme at different error threshold when

the number of predicted values is set to 150 and histor-

ical data size is set to 35. And corresponding average

prediction number of ARIMA model is shown in

Figure 7 Comparison of transmitted data numbers.

Figure 8 ARIMA model rebuild times. Figure 9 Average prediction number of ARIMA model.
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Figure 9. We can see that the ARIMA model rebuild

times decreases with the increase of error threshold.

And average prediction number of ARIMA model

increases with the increase of error threshold. The

reason behind this pattern lies in the fact that larger error

threshold implies wider prediction range an ARIMA

model can achieve.

Figure 10 demonstrates the influence of error thresh-

old and historical data length on ARIMA model rebuild

times in an overall view. We can draw the conclusion

that error threshold is inversely proportional to ARIMA

model rebuild times. And historical data length has no

prominent influence on ARIMA model rebuild times.

However, larger historical data length implies more com-

putation cycles and memory usage. Hence, we should

adopt large error threshold and small historical data

length in order to increase the network lifetime of wireless

sensor node.

When the predicted value is beyond the fault tolerant

range of the sensed value, the ARIMA model should be

rebuilt and corresponding ARIMA model parameters

should be transmitted to the aggregator. Therefore, the

Figure 10 Multiple ARIMA model rebuild times.

Figure 11 MSE.
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cost of ARIMA model rebuild is composed of two parts,

the computation cost of ARIMA model and the transmis-

sion cost of ARIMA model parameters. The computation

of ARIMA model is executed in the ordinary sensor node

with the cost of a small number of search times [20]. It is

well known that the communication cost is often several

orders of magnitude higher than that of computation.

Hence, the computation cost of ARIMA model is

relatively low. After that, several bytes of ARIMA model

parameters are transmitted from ordinary sensor to the

aggregator. Compare with the general data and control

message transmission within the network, the cost of

model parameters transmission can be negligible.

To evaluate the prediction accuracy of automatic

ARIMA modeling-based data aggregation scheme, we

measure the prediction error and investigate the following

three prediction accuracy indicators:mean squared error

(MSE), mean absolute error (MAE), and mean absolute

percentage error (MAPE), respectively.

MSE ¼
1

T
∑
T
t¼1e

2
t ð12Þ

MAE ¼
1

T
∑
T
t¼1 etj j ð13Þ

Figure 12 MAE.

Figure 13 MAPE.
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MAPE ¼
1

T

X

T

t¼1

100�
etj j

yt

� �

ð14Þ

In Equations (12), (13), and (14), prediction error et =

yt – pt, where yt is sensed value and pt is predicted value.

The influence of error threshold and historical data length

on MSE, MAE, and MAPE are shown in Figures 11, 12,

and 13, respectively. We can see from the figures that pre-

diction accuracy decreases with the increase of the

predefined error threshold and increases with the increase

of historical data length. The reason behind this property

lies in the fact that larger error threshold implies wider

error tolerance range, which will result in lower prediction

accuracy. Larger historical data length implies more precise

prediction model, which will result in higher prediction

accuracy. Hence, we should adopt small error threshold

and large historical data length in order to improve the

prediction accuracy of our proposed scheme.

5. Conclusion

We have introduced automatic ARIMA modeling-based

data aggregation scheme in this article. Our motivation is

to suppress the unnecessary transmitted data values be-

tween ordinary sensors and aggregator by data prediction.

We first presented the ARIMA prediction model and then

described how the ARIMA prediction model could be

built and applied in data aggregation scheme to decrease

the number of transmitted messages within the network.

Our simulation and analysis indicate that the predicted

values of our proposed scheme fit the real sensed values

very well and fewer messages are required to transmit

between sensor node and aggregator. The relationships

between scheme performance and scheme parameters are

also discussed in this article.

As a future work, we would like to improve our

proposed data aggregation scheme by utilizing spatial

and temporal data correlation characteristics to-

gether. Furthermore, we would like to implement

automatic ARIMA modeling-based data aggregation

scheme into a WSN testbed and evaluate its per-

formance too.
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