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ABSTRACT  

Building information models (BIMs) are increasingly applied throughout a 
building’s life cycle for various applications, such as building renovation, energy 
simulation, and performance analysis in the Architecture, Engineering Construction, 
and facility management (AEC/FM) domain. In a traditional approach, as-is BIM is 
primarily manually created from point clouds, which is labor-intensive, costly and 
time consuming. This paper introduces a method to automatically create as-is 3D 
building model from unorganized point cloud collected by a 3D laser scanner. The 
collected raw data are downsized and segmented to individual plane segments. Then, 
boundary estimation method and building component recognition method are applied 
to recognize all building components as individual objects and visualize them as 
polygons. The proposed method was tested on outdoor point cloud data to validate its 
feasibility and evaluate its performance. The analyzed results showed that the 
proposed method would simplify and accelerate the as-is building model creation 
process. 
 
INTRODUCTION 

Architecture, Engineering, Construction, and Facility Management (AEC/FM) 
have relied on paper-based drawings for a very long period of time. This situation has 
changed significantly with the introduction of Building Information Models (BIM). 
BIM includes not only 3D geometric models, but also more specific information or 
attributes on a wide range of building elements. It can provide a data-rich, object-
based, intelligent and parametric digital representation of the building. In the design 
phase of a building, BIM can assist the decision makers on cost analysis, construction 
sequencing, constructability test, and building performance test (Anil et al. 2012). 
BIM has been widely applied to a design phase by the construction companies, and 
people increasingly expect building designs to be energy efficient and conform to 
known or predictable performance levels. However, BIM is not available for most of 
the current old buildings. Even though some existing buildings may have BIM, it 
could be incorrect since the buildings keep being renovated. The preparation for new 
BIM is usually labor-intensive, costly and slow. In addition, it is inevitable that 
different modelers could create different models even though modeling the same 
building using the same software (Bazjanac 2009). Nowadays, the difficulty of as-
built measurements of building geometries has been solved using the laser scanning 
technology due to its ability to acquire building spatial data in three dimensions with 
high fidelity and low processing time. The output of the laser scanning is an as-is 
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point cloud which is composed of millions of individual points in which each point 
has its 3D relative coordinate information.  

In recent years, many studies have been done on object recognition from the 
point cloud. Objection recognition algorithms have been used in construction sites to 
detect construction equipment, steel structures for the purpose of safety, 3D 
visualization and quality control (Tang et al. 2011; Lytle 2011). The newly developed 
3D laser scanning system has started providing color information for each point 
which can be also used for object recognition based on color segmentation (Sapkota 
2008; Son and Kim 2010). Besides its usage in the construction sites, it can be also 
applied to the buildings. Pu and Vosselman (2009) presented a knowledge based 
method to reconstruct the building models from terrestrial laser  scanning data, and 
the features and the outline of the building were extracted, while the geometric model 
of the building was made based on several assumptions because only facades on the 
street side were scanned. A context-based modeling algorithm (Adan et al. 2011; 
Xiong, et al. 2013) was also introduced to create a complete as-is building model of 
the interior of the building. However, not much research efforts have been done on 
how to generate exterior building model due to the irregular building shape or 
complicated roof. In this paper, a methodology is developed for recognizing the 
building envelope components as individual objects by only using the coordinate 
information of the point cloud. In the following sections, the developed methodology 
and the preliminary field test results are explained. 

 
UNORGANIZED POINT CLOUD COLLECTION 

Point cloud collected from different devices can be categorized into organized 
and unorganized one. Organized point cloud has an organized data structure like an 
image or matrix, and each point of the point cloud has its index in rows and columns. 
Such point clouds include data collected from stereo cameras or Time of Flight 
cameras. The advantage of the organized point cloud is that data processing is more 
efficient by knowing the relationship between adjacent points or nearest neighbor. 
For unorganized point cloud, no data structure or point reference exists between 
points due to varied size, resolution, density and point sequence. Hence, usually more 
time is consumed in processing unorganized point cloud data.  

In this paper, all the point cloud data were collected from our self-developed 
hybrid LiDAR system (Gai, et al. 2012). This system is composed of two 2D laser 
scanners which can be rotated 360 degrees to obtain 3D point cloud data. The point 
cloud processed in this study was collected in a residential area, as shown in Figure 1, 
four scans were made to cover one residential house. The collected point clouds were 
registered into one point cloud before data processing started. The residential house 
collected data from is a two-story building with full basement. In the following 
section, the proposed as-is 3D building model creation method is introduced and 
validated through processing the collected point cloud data of this residential house. 
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Figure 1. Collected point cloud of a residential house (stars indicate four 

locations of data collection) 
 
OVERVIEW OF THE PROPOSED METHOD 

The proposed solution is comprised of three steps: 
(1) In the first step, collected raw data is downsized to reduce the processing 

time. As a result, a picture of the downsized point cloud would be 
generated. 

(2) Upon completing data pre-processing, two methods of boundary point 
detection algorithms are applied to detect boundary points from the 
downsized point cloud data. The boundary points detected from both 
methods will be merged to increase the completeness and robustness of 
the final results.  

(3) The final step is to categorize all detected boundary points into its own 
building element category and create as-is 3D building model. 

 
Figure 2 presents the work flow of the proposed method. In the sections that 

follow, three major sections of data pre-processing, boundary point detection, and as-
is 3D building model creation process are briefly introduced and the results of each 
section are presented. 

 
Data pre-processing 

The basic goal of data pre-processing is to increase the data processing speed 
by downsizing the quantity of the raw point cloud data. The space is divided into a 
3D voxel grid, which can be considered as a set of tiny cubes. The bigger the voxel is, 
the more points are eliminated. After locating all the points into their corresponding 
voxels, all the points present in the same voxel are approximated by its centroid point. 
Then the new downsized data are the input of the following processes. To maintain 
the accuracy of the results and reduce the processing time at the same time, the size 
of the voxel has to be adjusted properly. 10 cm was set as the edge length of the voxel 
in the preliminary tests, and the number of the points in the raw point cloud data was 
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reduced from 1,965,312 to 55,867, more than 97% of the raw data was eliminated 
(see Figure 3.). 

  

 
Figure 2. System process and the work flow 

 

 
Figure 3. Bird view of the raw data and the downsized data 

 
Boundary point detection 

In the second step, the boundary point detection algorithm is applied on the 
downsized point cloud data to find all the possible boundary points. The boundary 
points mentioned here could be the edge points between different surfaces and the 
points next to the empty space. Two different approaches are introduced to detect the 
boundary point clouds, one is detecting boundary points directly from the downsized 
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point cloud data (Rusu, et al., 2007), and the other is segmenting the downsized data 
into several surface clusters and then detecting boundary points from each surface 
cluster. Eventually, the two estimated boundary point clouds are joined together as 
one to compensate each other’s incompleteness. 

Region growing segmentation algorithm (Farid and Sammut, 2012; Farid and 
Sammut, 2013) was implemented in the proposed method, and this algorithm can 
merge the points close enough to each other in terms of the smoothness constraint 
into one cluster. The output of this segmentation algorithm is several segmented point 
cloud clusters where points in the same cluster are considered to be a part of the same 
surface. As shown in Figure 4, segmented clusters are presented in different colors, 
and the circled areas show the comparison among each boundary point cloud and the 
joined one. The boundary points of the front windows are completely detected from 
the downsized data (Figure 4 (a)) rather than the segmented clusters (Figure 4 (c)), 
thus joint boundary point cloud was better integrated. After conducting boundary 
point detection algorithm, the size of the point cloud data decreased to 11,781 (Table 
1.). These 11,781 points will be analyzed in the next step to create building elements. 

 

 
Figure 4. Boundary point detection 

 
 
 

921Construction Research Congress 2014 ©ASCE 2014



 
 

 
Table 1. Number of Points in the Boundary Point Cloud 

Data Quantity 
Downsized data 55,867 

Detected boundary points without segmentation 7,527 
Detected boundary points after segmentation 8,440 

Joint boundary point cloud 11,781 

 
As-is 3D building model creation 

Building elements are automatically created from the boundary points 
detected in the previous step. First, the boundary points are divided into two 
categories – window frame boundary and exterior wall boundary. It is unable to 
collect point cloud data from the low reflection material such as black object and 
glass due to the character of the laser beam. Thus, there is no point showing in the 
window glass area. The boundary points of the window frames can be separated from 
the joined boundary points based on the fact that the boundary points of the window 
frame surround an empty window glass area. Having the window frame points 
recognized, the windows and the exterior walls can be created by connecting the 
corresponding boundary points. Due to the incompleteness of the data on roof area, 
the roof is approximately created by connecting all the top edges of the exterior walls. 
Finally, the created as-is building model is rendered in different color according to 
the element types. Figure 5 demonstrates the process and preliminary results of the 
proposed as-is 3D building model creation algorithm. 

 

 
Figure 5. As-is 3D building creation 
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Precision and recall (Olsen and Delon 2008) were estimated to evaluate the 
performance of the proposed algorithm. As shown in Table 2, True Positive (TP) 
indicates the number of correctly recognized components, False Positive (FP) means 
the number of wrongly recognized components, and False Negative (FN) is the 
number of components that were not recognized.  Due to the incompleteness of the 
collected data, the precision and recall were only analyzed on recognized windows. In 
the preliminary test, 40 windows were recognized from the collected point cloud data, 
and the average error difference is 16.90% for width and 12.45% for length. 

 
Table 2. Precision and Recall of the Created Building Element 

Component TP FP FN Precision Recall 
Window 40 2 4 95.24% 90.91% 

 
CONCLUSION 

In this study, unorganized point cloud data were collected by a LiDAR 
system. First, more than 97% of the raw data are eliminated to reduce the data size so 
as to increase the processing speed. The downsized data were then processed through 
two different approaches of boundary point detection algorithms. Two sets of 
detected boundary points are joined together as one to compensate each other’s 
incompleteness. As-is 3D building model was finally created by processing the 
boundary points to recognize the building components. The proposed method has 
been validated though the preliminary test with a residential house point cloud data.  

Future work will focus on the improvement of the accuracy on processing 
incomplete data. In the current study, the accuracy mostly relies on the data integrity. 
Future work will discuss how to model the building components that are blocked by 
trees or bushes. 
 
ACKNOWLEDGEMENT 

Portions of this work are based upon work supported by the National Science 
Foundation (Award #: CMMI-1055788). Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the NSF. 
 
REFERENCES 
Adan, A., Xiong, X., Akinci, B., and Huber, D. (2011). “Automatic Creation of 

Semantically Rich 3d Building Models From Laser Scanner Data,” 
Proceedings of the International Symposium on Automation and Robotics in 
Construction (ISARC), Seoul, Korea. 

Anil, E., Sunnam, R., and Akinci, B. (2012). “Challenges of Identifying Steel 
Sections for the Generation of As-Is BIMs from Laser Scan Data,” 
International Symposium on Automation and Robotics in Construction, 
IAARC, Netherlands, June 2012. 

Bazjanac, V.  (2009). “Implementation of semi-automated energy performance 
simulation: building geometry,” CIB W78, Proc. 26th conf., Managing IT in 
Construction. Istanbul, TK 595-602. CRC Press. ISBN 978-0-415-56744-2. 

923Construction Research Congress 2014 ©ASCE 2014



 
 

Farid, R. and Sammut, C. (2012). “A Relational Approach to Plane-based Object 
Categorization,” RSS 2012 Workshop on RGB-D Cameras, Jul. 2012. [Online]. 
Available: http://www.cs.washington.edu/ai/Mobile Robotics/rgbd-workshop-
2012/ papers/farid-rgbd12-object-categorization.pdf 

Farid, R. and Sammut, C. (2013). “Plane-based object categorization using relational 
learning,” Machine Learning, pages 1-21. 

Gai, M., Cho, Y., and Wang, C. (2012). “Projection-Recognition-Projection (PRP) 
method for object recognition from a 3D point cloud.” Proceedings of the 
2012 ASCE International Workshop on Computing in Civil Engineering, 
Clearwater, FL, June 2012. 

Lytle, A.M.  (2011). “A Framework for Object Recognition in Construction Using 
Building Information Modeling and High Frame Rate 3D Imaging,” Doctoral 
Dissertation, Virginia Polytechnic Institute and State University 

Pu, S. and Vosselman, G. (2009). “Knowledge based reconstruction of building 
models from terrestrial laser scanning data,” ISPRS Journal of 
Photogrammetry and Remote Sensing, 64, 575-584. 

Rusu, R., Blodow, N., Marton, Z., Soos, A., and Beetz, M. (2007). "Towards 3D 
Object Maps for Autonomous Household Robots," International Conference 
on Intelligent Robots and Systems, IEEE, San Diego, CA, Oct. 29 - Nov. 2. 

Sapkota, P.P. (2008). “Segmentation of Colored Point Cloud Data,” Master Thesis, 
International Institute for Geo-information Science and Earth Observation, 
Enschede, Netherland 

Son, H. and Kim, C. (2010). “3D structural component recognition and modeling 
method using color and 3D data for construction progress monitoring,” 
Automation in Construction, 19, 844-854. 

Tang, P., Huber, D., Akinci, B., Lipman, R., and Lytle, A. (2010). “Automatic 
reconstruction of as-built building information models from laser-scanned 
point clouds: A review of related techniques,” Automation in Construction, 
19(7), 829-843. 

Xiong, X., Adan, A., Akinci, B., and Huber D. (2013). “Automatic creation of 
semantically rich 3D building models from laser scanner data,” Automation in 
Construction, 31, 325-337. 

 

924Construction Research Congress 2014 ©ASCE 2014


