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Automatic Assessment of Macular Edema

From Color Retinal Images
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Abstract—Diabetic macular edema (DME) is an advanced

symptom of diabetic retinopathy and can lead to irreversible vi-

sion loss. In this paper, a two-stage methodology for the detection
and classification of DME severity from color fundus images is

proposed. DME detection is carried out via a supervised learning

approach using the normal fundus images. A feature extraction
technique is introduced to capture the global characteristics of the

fundus images and discriminate the normal from DME images.

Disease severity is assessed using a rotational asymmetry metric
by examining the symmetry of macular region. The performance

of the proposed methodology and features are evaluated against

several publicly available datasets. The detection performance
has a sensitivity of 100% with specificity between 74% and 90%.

Cases needing immediate referral are detected with a sensitivity of

100% and specificity of 97%. The severity classification accuracy
is 81% for the moderate case and 100% for severe cases. These

results establish the effectiveness of the proposed solution.

Index Terms—Abnormality detection, diabetic macular edema,

hard exudates, learning normal.

I. INTRODUCTION

S WELLING in the macular region of retina which is also

known asmacular edema, is a complication of the eye often

leading to reduced capacity of vision. Diabetic macular edema

(DME) caused due to diabetes is a high risk complication which

can cause irreversible loss of vision [1]–[3]. Early detection

of even a minor sign of DME is essential as it may also ap-

pear without any external symptoms [4]. Once detected during

retinal examination, it demands immediate treatment ranging

from glycemic and blood pressure control, to laser surgery.

DME is generally detected directly or indirectly. Direct ways

are using stereoscopy (for manual examination) or optical com-

puted tomography images [3]. Indirect method is by detecting

the presence of hard exudates (HE) in the retina. HE are formed

due to secretion of plasma from capillaries resulting from the

complications of retinal vasculature and could lead to retinal

swelling. In color fundus images they appear as yellow–white

deposits (see Fig. 1). Detecting the presence of hard exudates

(HE) in different areas of retina is now considered a standard

method to assess DME from color fundus images [1], [4], [5].
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Fig. 1. Color fundus image with anatomical structures and lesions annotated.

The severity of the risk of edema is evaluated based on the

proximity of HE to the macula, which is defined to be a circular

region centered at fovea and with one optic disc (OD) diameter

(see Fig. 1). The risk for DME increases when the HE locations

approach the macula, with the risk being the highest when they

are within the macula. This is an important factor in DME as-

sessment for further referral of the patients to an expert.

Diabetes can also cause other retinal complications all of

which are collectively termed as diabetic retinopathy (DR).

Given the potential for vision loss and blindness due to DR,

screening programs have been launched in many countries and

color fundus image forms the basis for manual assessment in

screening. Such manual assessment however is not scalable

in large-scale screening scenario, particularly in developing

countries either due to the scarcity of skilled manpower or

unavailability of high end imaging equipment at the point of

care. Solutions such as telescreening using permanent and

mobile units to enable screening of retinal disorders in remote

areas have been proposed [6], [7].

In such a scenario, an automatic disease detection system can

significantly reduce the load of experts by limiting the referrals

to those cases that require immediate attention. The reduction in

time and effort will be significant where a majority of patients

screened for diseases turn out to be normal. The ratio of normal

patients to the ones showing disease symptoms can be as high as

9 to 1 in DR screening [8]. Several attempts have been reported

towards building an automated solution for DR detection [8],

[9]. Motivated by these attempts, we aim to develop a solution

for automatic assessment of DME from color fundus images.

Such a solution will be a value addition to the existing infra-

structure of DR screening.
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Fig. 2. Processing pipeline for detection and assessment of DME (CFI—color fundus image).

In order to develop a solution for automatic DME assessment,

first a decision module is required to validate the presence or ab-

sence of HE in a given color fundus image. Once their presence

is confirmed, a second module has to assess the macular region

for measuring the risk of exhibiting DME. Therefore, in this

work, we propose a two-stage methodology for detection and

assessment of DME. The next section provides an overview of

the earlier work carried out for detecting the presence of HE fol-

lowed by an outline of the proposed methodology.

II. PAST WORK

Among recent approaches to direct detection of edema from

color fundus images, multiple uncalibrated fundus images have

been used to estimate a height map of macula in [2]. The esti-

mated height map is generally noisy. A difference in the mean

height is demonstrated between the height maps of normal and

edema cases on synthetic images and only four sets of color

fundus images. This difference is used to determine normal and

abnormal cases. While the proposed method is encouraging, it

requires more rigorous validation.

Usingmonocular color fundus image for detectingDME indi-

rectly is still considered a reliable method in DR screening. De-

tecting DME is also done indirectly by detecting the presence of

HE in images [5]. Automated solutions following this approach

can be categorized as: 1) local schemes that perform localiza-

tion of HE or HE clusters [10]–[23] and 2) global schemes for

detecting the presence/absence of HE in images [1], [6], [24],

[25].

A. Local Schemes

Given the relatively high contrast between the HE and retinal

structures (except optic disc), the most common approach has

been to process the green channel of the color fundus image

and thresholding (fixed or adaptive/dynamic) the intensity his-

togram [12], [17], [22], [26]. Background suppression is another

approach that has been used for finding HE candidates. Tech-

niques explored for background estimation include median fil-

tering [27], morphological operations [19], and clustering [11].

These approaches are sensitive to illumination changes that

arise due to imaging conditions as well as changes in tissue pig-

mentation. This is addressed via an intensity normalization as a

preprocessing step and/or removal of false positives with post-

processing in the above methods.

The well-defined edges of HE has also been used as a cue

to identify candidate pixels. However, small or faint HE detec-

tion is difficult and hence additional rules are used to handle

them [21]. [19], [20] also use edge properties in conjunction

with other features to classify the detected candidates. In gen-

eral, edge detection yields noisy results and hence preprocessing

and postprocessing steps are required to reduce the large number

of false candidates.

The distinct bright yellow color of HE has been the motiva-

tion for using color features [13], [15], [22]. Even though the

use of color seems to be sufficient in principle, high variation in

color witnessed in images across and within different ethnicities

require a color and luminosity normalization step before detec-

tion.

The purpose of all the local schemes described here is to suc-

cessfully segment or localize the exudate clusters with high ac-

curacy so as to enable further assessment. As a result, several

normal pixels are also detected as candidates in normal images.

This affects the overall specificity of the system at image level

HE detection.

B. Global Schemes

While the goal of local schemes in applying these approaches

is to detect maximum number of HE, the global schemes relax

this and try to ensure that at least the brightest pixels corre-

sponding to HE in the image are detected. On these lines, [1]

perform an initial candidate detection using a fixed threshold

after a background subtraction step on the green channel image.

This is followed by assignment of confidence values to every

candidate based on the edge strength at that location. The confi-

dence map is thresholded to obtain the final HE. A given image
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is considered to exhibit DME if at least one candidate is de-

tected in the image. As observed with edge based methods ear-

lier, a preprocessing step is required to avoid detection of a large

number of non-HE edges.

Features such as visual word/group using a dictionary have

also been used to represent color fundus images to help clas-

sify them as normal or abnormal [24], [25]. SIFT features of

keypoints representing the HE candidates [24] and multiscale

AM-FM features [25] have been used to construct the visual

words. The visual word-based approach is robust to illumination

changes across images. Creation of visual vocabulary requires

clustering local regions into words/groups, with maximum dis-

crimination between the background and HE regions. This is

achieved by using a large number of clusters [24], [25]. The

sensitivity of SIFT to local intensity variations results in detec-

tion of large number of false candidates which significantly in-

creases the computational complexity of the overall detection.

Thus for DME detection, the strength of local schemes is the

ability to detect small HE while the global schemes remove the

burden of having to detect/segment everyHE.We aim to explore

using the global characteristics of an image while retaining the

sensitivity to small HE. Towards this, we propose to transform

the given image to an intermediate representation called motion

pattern that spatially enhances the HE presence regardless of

their size. This is followed by derivation of global features on

the motion pattern for detection of HE.

Our strategy for detecting macular edema and evaluating its

severity is as follows: the image under evaluation is first as-

certained to be normal (abnormality detection) (see Fig. 2) by

learning the characteristics of normal retinal images. Any de-

viation from normal characteristics is taken to be indicative of

abnormality. For every abnormal image the severity of DME

is assessed by determining the location of HE relative to the

macula. In the next section, details of the proposed method is

presented.

III. PROPOSED METHOD

HE appear as clusters of bright, high contrast lesions and are

usually well localized. The macula is a dark structure roughly at

the center of the retina. In the absence of any HE (i.e., a normal

retina), there is a rough rotational symmetry about the macula

in the circular region of roughly twice the diameter of the optic

disc.

We use this observation to derive relevant features to describe

the normal and abnormal cases. Given a color fundus image, a

circular region of interest (ROI) is first extracted and an inter-

mediate representation also known as themotion pattern of

the ROI is created. Relevant features are then derived for

to classify the given image as normal or abnormal (containing

HE).

A. Region of Interest Extraction

Since the severity of DME is determined based on the loca-

tion of HE clusters relative to the macula, the images acquired

for DME detection usually focus around the macular region. We

find the best fit circle within the fundusmask [23] withmacula at

the center, for a given image. The region within this circle is the

Fig. 3. Sample fundus image and the circular region of interest centered on
macula.

Fig. 4. Sample images (green channel) and result of macula and optic disk
detection. OD is indicated by a bright rectangular mask and the macula location
by a circular mask. (a) Sample image A. (b) Detected macula and OD for sample
image A. (c) Sample image B. (d) Detected macula and OD for sample image
B.

desired ROI denoted as (see Fig. 3 for an example). The green

channel of forms the input for all subsequent processing.

The center of macula is automatically detected using [28]

and restricting the search to a central region of the given image

since the acquired images for DME detection are macula-cen-

tric. Since the OD shares a brightness characteristic similar to

HE, it is also automatically detected and masked using [29]. The

result of macula and optic disc detection can be seen in Fig. 4
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Fig. 5. Graphical depiction of motion pattern generation. First pattern: a disk with one lesion (shown as a red dot). The rest are results of applying motion with
decreasing rotation steps: . In each case, the union of the patterns obtained after a complete cycle of rotation (0 to ) is shown.

where the macula is shown as a circular patch and the OD is

shown as a rectangular patch.

B. Generation of Motion Patterns

The creation of a motion pattern is motivated by the effect

of motion on biological/computer visual system. These systems

represent a scene as a set of spatially sampled (by the sensors/de-

tectors) intensities or an image. This sampling is uniform in

cameras while it is log polar in human eyes. When an object

in a scene moves at a high speed, it usually leaves a smearing

pattern in the captured image. Generally, the spatio-temporal

changes recorded by the sensor are characteristic of the moving

object [30]. In computer vision, the estimation and removal of

the smear pattern, also popularly known as motion blur in im-

ages, has been an active area of research [31]. We argue that

there is much information about the scene in the smear pattern

and propose to use it to represent an image. We do this by sim-

ulating this operation in a single image by inducing motion.

Signal aggregation at sensor locations in human eyes [32] and

camera, gives rise to the smearing effect. In order to simulate

this effect, we induce motion in a given image to generate a

sequence of images. These are combined by applying a function

to coalesce the intensities at each sensor location to give rise to a

motion pattern. Let the given ROI be denoted as . A motion

pattern for is derived as follows:

(1)

where denotes a pixel location, is a transformation repre-

senting the induced motion which is assumed to be rigid. Practi-

cally speaking, generates transformed images which are

combined using to coalesce the sampled intensities at each

pixel location (1). Here, is expressed as follows:

where is a rotation matrix. The rotation angle with

denotes the rotation step. When , we

have no rotation and hence . Thus is a set of

rotated versions of the given and the total number of rotated

images . The sampling rate of the detector

determines the number of images generated in the set . In

the problem at hand, since HE appear as bright localized le-

sions against the retinal background, they should form a bright

smear pattern in whereas the textured background will be

smoothed out. This representation can thus spatially enhance the

characteristics of HE and help improve their detectability. At the

same time, this should also serve to minimize the effect of the

variability observed across images by smoothing them out.

Since, the severity of the disease is directly related to the ra-

dial distance of HE in the circular ROI, rotational motion is in-

duced to generate the desired . The transformation function

is applied to to generate a sequence of images which

are rotated versions of . The spatial extent of smearing of inten-

sities depends on the maximum rotation whereas the sampling

rate at each location is directly related to the size of each ro-

tation step. The generation of motion patterns is shown graph-

ically in Fig. 5. Consider a disk with a single circle near the

periphery modeling a lesion (first pattern). When rotation is ap-

plied to this pattern in steps of , a set of patterns are generated.

When two patterns will be generated and their union

is the second pattern in Fig. 5. The remaining patterns in this

figure are the result of the union of patterns generated with de-

creasing step size. It can be observed that a decrease in the step

size results in several copies of the lesion in the final result. In

this example, the motion pattern is obtained by using the

union operation as the coalescing function. In practice, any co-

alescing function can be employed. The strength of the signal

at will not only depend on the choice of , but also on

the sampling rate .

In the problem at hand, the choice of should ideally 1)

enhance the HE by increasing the extent of the smear caused

by it in the motion pattern and 2) increase the homogeneity of

retinal background. Accordingly, two functions namely Mean

and Maximum were considered in this work. These are defined

as follows:

(2)

(3)

While the coalescing function Mean (2) tries to achieve the

averaging effect observed in motion blur, Maximum (3) tries to

exploit the fact that HE usually appear brighter than any other

structures in the background at the same radial distance. The

original and motion pattern images in Fig. 6 illustrate the effect

of the two coalescing functions on a normal and two abnormal

fundus images. It can be seen that the motion patterns are clearly

distinct for these two classes.

C. Feature Selection

The motion pattern generated by inducing motion on

results in the smearing of lesions when present, along themotion

path (as in Fig. 6). To effectively describe this motion pattern,

we propose to use a descriptor derived from the Radon space.

The Radon transform of is the integral of
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Fig. 6. Sample fundus images (column 1) and their motion patterns for the mean (column 2) and maximum (column 3) as coalescing functions. Samples belong
to normal (top row), moderate (middle row) and severe (last row) DME cases. Rotation (anticlockwise) step and maximum rotation . Annotation (S)
indicates location of subtle (faint) hard exudates in color fundus image.

along a line oriented at and distance from the origin. Given

, its angular projection is computed as

(4)

is the angle between the line and axis.

In our problem, the image is projected to obtain a vector

response for every angle and the desired feature vector then

is derived by concatenating the responses for different ori-

entations. The spatial extent of any HE that may be present, is

enhanced in the motion pattern and is in turn reflected im-

mediately in the projection based feature vector. Thus, the fea-

ture vector for an abnormal retina will have several peaks in
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its profile due to intensities corresponding to HE. On the other

hand, the feature vectors for a normal retina will have relatively

uniform values resulting in a compact normal subspace. These

feature vectors are used for learning the subspace corresponding

to normal images.

D. Abnormality Detection—Learning Normal Class

Learning normal cases is achieved using single class classifi-

cation. In this approach, a classification boundary is formed in

the feature space around the subspace corresponding to normal

cases. If a new image, when transformed to this feature space,

lies within this boundary, then it is classified as normal and ab-

normal otherwise. Two simple single class classifiers are con-

sidered in this work: Gaussian data description (Gaussian DD)

and principal component analysis data description (PCA DD).

Gaussian DD: Here, the normal class is modeled as a

Gaussian distribution. The model parameters, namely, the mean

and the covariance are computed for the training set made

of normal cases. Classification of a new case is based on the

Mahalanobis distance between the new case and the normal

subspace which is computed as

PCA DD: Here, a linear subspace is defined for the normal

cases. The eigenvectors corresponding to the covariance matrix

of the training set is used to describe the subspace. The fea-

ture vector for a new case is projected to this subspace

and again reconstructed . The new case is classified

to be normal based on a reconstruction error defined as

For both the above single class classifiers, the classifica-

tion between normal and abnormal images is then performed

using an empirically determined threshold on

and for Gaussian DD and PCA DD classifiers,

respectively. Thus far, we have described the methodology for

determining if a given image is normal or abnormal. Next, we

will present a solution for further subclassifying an abnormal

image according to the severity of DME.

E. Determining the Severity of Macular Edema

Assessing the severity of macular edema is the next task.

Here, the macular region which is the circular ROI within 1

optic disc diameter from the center, is of key interest as any HE

within this region indicates high risk for DME, requiring im-

mediate attention. The macula in a normal image is relatively

darker than other regions in the fundus image and is character-

ized by (rough) rotational symmetry. We use this symmetry in-

formation to establish the risk of exhibiting edema: good degree

of symmetry is taken to indicate the abnormality is not inside

macula and hence it is declared as a moderate case. Asymmetry

of the macula on the other hand implies abnormality is within

themacula and hence the case is deemed severe. Amethod to de-

tect severity of edema based on rotation symmetry has also been

used earlier where the symmetry of larger ROI centered on the

Fig. 7. Illustration of using rotational symmetry of macula for describing
severity of edema.

macula is considered [33]. We propose a slightly different ap-

proach by considering the symmetry of only the macular region.

Unlike [33], removal of blood vessels is not required here, as

visibly large vasculature is usually not observed within macula

in color fundus image.

A symmetry measure is defined as the second norm of the

distance between the histograms of diametrically opposite pair

of patches ( and ). In our work, eight angular

samples were used to create eight patches from the circular

ROI as illustrated in Fig. 7 and a histogram of 10 bins was com-

puted for every patch. Since the intensities corresponding to HE

contribute mostly to the higher bins in the histogram, only the

last five bins are used for measuring the symmetry. A prepro-

cessing step was performed to eliminate any intensity bias as in

[33].

A threshold on the symmetry measure is used for assessing

the degree of abnormality of an image as moderate or severe risk

of DME. Let and be the maximum and minimum

symmetry values for normal images in the training set used for

abnormality detection. Then the severity of a given abnormal

image is determined by comparing the symmetry measure of

this image against a threshold as follows:

It is desirable to set the threshold to be a percentage of

the maximum symmetry value for normal images. Hence, the

threshold is selected as

This definition for permits the value of to be in [0–1].

It is desirable to select a low value for to achieve highest

classification accuracy for the severe class of DME images as

they require immediate medical attention. Next, we describe the

assessment for the proposed DME detection method.

IV. EXPERIMENTS AND RESULTS

The experiments for assessing the proposed method were per-

formed on four publicly available datasets of color fundus im-

ages. A set of experiments were first conducted to determine

the optimal motion parameters. Next, using these results, the

methodwas assessed on the datasets and compared with existing

algorithms for DME detection.
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A. Dataset

Four publicly available datasets were used for validating the

proposed method. The first two of the four datasets described

next have associated annotations at image level for DME.

The DMED or HEI-MED dataset [1] comprises of com-

pressed (Jpeg) images where 68 fundus images not exhibiting

any signs of a disease whereas 54 fundus images contain HE.

These images are acquired from patients of different ethnicity

and age group. Consequently, a large variability is observed

across images in color and tissue pigmentation. 18 (of the 68)

normal images were randomly selected and used for creating

the normal subspace while the remaining images were used

for testing the performance of the method. The abnormal

images with no signs of hard exudates were excluded from the

experiments.

The MESSIDOR dataset [34] comprises of macula centered

color fundus images, acquired at multiple resolutions, of pa-

tients showingmultiple symptoms of DR. 400 images were used

for validation of the proposed method. Of the 400 images, 274

are normal and 126 are abnormal images and contain HE. 41

of these abnormal images are annotated as showing moderate

severity of macular edema while the rest of 85 images are anno-

tated to be severe cases. All the abnormal images are acquired

at Service d’Ophtalmologie-Hopital Lariboisiere Paris. For our

work, the normal subspace was created using features from 74

normal images randomly selected from the dataset.

Two popular datasets Diaretdb0 [35] and Diaretdb1 [36] were

also used for validating the proposed method. The Diaretdb0

dataset contains 20 normal color fundus images and another 59

images showing at least the signs of hard exudates. The Di-

aretdb1 database consists of five normal color fundus images

and 38 images with the signs of hard exudates. As the number

of normal and abnormal images in either of the datasets are few,

a ten-fold cross-validation is performed for performance anal-

ysis.

B. Motion Parameter Estimation

The discriminability between normal and abnormal retinal

images is contingent on the right choice of parameters when in-

ducing motion in the static image. Two parameters govern the

rotational motion: the rotation step (in degrees) which controls

the sampling rate at each location and the function used for

coalescing the samples. In order to determine the optimal pa-

rameters, we conducted a set of experiments.

A normal retinal image was created by averaging the green

channel of 400 retinal images from MESSIDOR dataset. No

preprocessing was performed in order to retain all variations in

intensity bias that occur in practice. Only a circular region of

interest centered at macula and with radius of two optic disc di-

ameter was used in the experiments for simplicity. An abnormal

retinal image was synthesized from the averaged normal retina

by adding a localized circular structure with high contrast, to

model an HE lesion [see Fig. 8(a) and (b)]. The local contrast of

lesion in Fig. 8(b) can be seen at 75% of the retinal background.

This procedure permits varying lesion properties (contrast and

size) and choosing motion parameters that provide maximum

class discriminability between normal and abnormal images.

Fig. 8. Representative normal and abnormal retina. The abnormal retina is
modeled by adding a bright lesion to emulate HE. (a) Normal retina. (b) Ab-
normal retina.

Rotational motion was induced on the modeled normal and

abnormal images using both mean and maximum as the coa-

lescing function. Presence of lesion in the abnormal image re-

sults in smearing of lesion intensities over the motion path in

the motion pattern. This effect of lesion on retinal background

can be observed as change in local information with respect

to the motion pattern of normal retina. Given a motion pattern

let its gradient (magnitude) be denoted as . The local

(Shannon’s) entropy at every point in this gradient

image is computed over a local neighborhood of to create

an entropy map. The total entropy is computed by summing the

entropy at every point to yield a measure of the disturbance

in local information

(5)

In our simulation, the size of was 150 150 and the

was a neighborhood of size 7 7. A measure for the discrim-

inability of normal and abnormal retinal images is then defined

as the absolute difference between the entropy values for normal

and abnormal images

(6)

1) Effect of Rotation Step and Coalescing Function on Class

Discriminability: A set of plots of as a function of motion pa-

rameter (rotation step) and lesion size and contrast are shown in

Fig. 9 for one complete rotation and for two choices for the

coalescing function. It can be observed that the discriminability

decreases as the rotation step is increased for the maximum

coalescing function [see Fig. 9(a)]. This effect is apparent from

the fact that the lesion is a high contrast structure. In the case of

mean it is interesting to note that the discriminability initially

increases slowly with increasing rotation step followed by a de-

crease. It is essentially due to the fact that for smaller rotation

steps a large number of samples are accumulated at a location

resulting in the reduction of contrast of lesion in the motion path

(or the smear pattern). Whereas for a large rotation step, the

smoothing effect observed in the retinal background for mean

reduces and eventually contributes to the local disturbance mea-

sure. Hence, we conclude from this simulation that a maximum

coalescing function and rotation step of around 1 yield highest

discriminability between normal and abnormal images.

2) Effect of Lesion Size and Contrast on Class Discrim-

inability: Next, we observe the effect of lesion size as the
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Fig. 9. Effect of increasing rotation step, lesion contrast, and lesion size on
abnormal retina for estimating motion parameters. (a) Effect of rotation step on
. (b) Effect of local contrast on . (c) Effect of lesion size on .

percentage of ROI (resolution) and lesion contrast with respect

to the retinal background for the selected rotation step and the

coalescing function. This will help us to analyze the effect of

lesion and image properties on the discriminability between

the normal and abnormal class and also validate the selection

of motion parameters.

As HE clusters also appear at various contrast and sizes, we

observe the effect of changing these two parameters by fixing

the rotation step to 1 . The values for contrast and lesion sizes

are varied based on the observation of HE clusters in MES-

SIDOR. The discriminability is higher initially for themaximum

rather than themean coalescing function for low lesion contrast,

but this effect is reversed as the lesion contrast increases [see

Fig. 9(b)]. Similar behavior is also observed with increasing le-

sion size on discriminability of normal and abnormal retina [see

Fig. 9(c)]. Based on these observations, we conclude that using

maximum as coalescing function enables better detection of le-

sions even when they are small and have low local contrast.

Therefore the suggested motion parameter values can be used

on retinal images irrespective of the size and resolution of the

ROI selected.

C. Detection of Macular Edema

Based on the above experimental findings, the motion param-

eters and coalescing function were chosen for the assessment of

the proposed method. The coalescing function of maximumwas

chosen and three rotation step sizes, 1 , 3 and 5 were con-

sidered. Since the optic disc is also a bright, albeit large struc-

ture, it was masked out before inducing motion. The result of

inducing motion on an abnormal ROI with a quarter cycle of

rotation (90 ) and rotation step of 1 can be seen in Fig. 6. The

effect of using the mean and maximum coalescing functions on

the normal fundus image can be seen in the top row of Fig. 6.

Similarly, motion patterns for images with risk of DME can seen

in the middle row of Fig. 6 for moderate case and in the last

row of Fig. 6 for the severe case. For generating motion pat-

tern with mean as the coalescing function, the masked region

corresponding to optic disc was filled using nearest neighbor

interpolation scheme to maintain a circular ROI. It can be ob-

served that even the smallest and faintest HE lesions in Fig. 6(g)

leave distinct smear patterns [see Fig. 6(i)]. Since the objective

of this work was to evaluate disease detection performance, de-

tection of anatomical locations in retina, like macula and optic

disc center were not automated.

A descriptor based on Radon transform described earlier was

computed with a resolution of 30 with six bins each,

creating a compact feature vector of dimension 36.

The Gaussian DD and PCA DD classifiers were trained on

the normal subspace using the feature vectors on the training

set of normal images. For Gaussian DD, the mean and the co-

variance were computed from the feature vectors corresponding

to normal training images. A threshold on the Mahalanobis dis-

tance was used for separating the normal and ab-

normal classes. In the case of PCA DD, the feature vectors

were projected onto six dimensions to compute the reconstruc-

tion error . Normalized threshold ranging from 0 to

1 was applied on the parameter and to

generate receiver operating characteristic (ROC) curves for both

the classifiers. Here, sensitivity indicates the successful detec-

tion of images containing HE whereas specificity corresponds

to correctly identifying normal images.

1) ROC Plots: The ROC plots are presented in Fig. 10 for

the DMED dataset. From Fig. 10(a) it can be observed that the

Gaussian distribution assumption for the normal DMED im-

ages is incorrect as it results in a low specificity of around 50%

at 100% sensitivity for HE detection. The performance is im-

proved with PCA DD classifier where a specificity of 74% is

achieved at 100% sensitivity and the area under the ROC curve

(AUC) is 0.99. These figures are a significant improvement over

the detection accuracy reported in [1] (see Table I) which also

uses a global approach.

Fig. 11(a) and (b) depicts the ROC curves for the MES-

SIDOR dataset using Gaussian DD and PCA DD classifiers

respectively. The plots indicate that the performance of both

classifiers are on par due to the fact that the number of images is

higher in this dataset (than in DMED) and is better distributed.

The best performance is once again achieved with the PCA DD

classifier. The Table II tabulates performance figures which in-

dicate that the proposed method has an improved performance
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Fig. 10. ROC curves for the detection of DME from DMED dataset. (a) ROC curve for DMED—Gaussian. (b) ROC curve for DMED—PCA.

Fig. 11. ROC curves for the detection of DME from MESSIDOR dataset. (a) ROC curve for MESSIDOR—Gaussian. (b) ROC curve for MESSIDOR—PCA.

TABLE I
CLASSIFICATION PERFORMANCE OF NORMAL AND ABNORMAL

COLOR RETINAL IMAGES ON THE DMED DATASET

for the severe or immediate referral (IR) cases over that in [25]

which uses a global approach based on a visual dictionary. An

aggregate performance of 70% specificity with 98% sensitivity

is observed. Since a large number of normal images are present

in the test set, we select a point on the curve where specificity

is slightly higher at 90%, with sensitivity of 95% so that fewer

false positives occur in disease severity stratification. The

corresponding AUC for the dataset is 0.96. For the IR cases, a

97% specificity at 100% sensitivity is observed with an AUC of

0.99. The best performance is achieved for a rotation step of 1

with the PCA DD classifier. The same combination of rotation

step and classifier is used for cross-validation analysis next.

2) Cross-Validation Analysis: In order to ensure that the re-

sult of DME assessment is not biased due to the training set

used, a 10-fold cross-validation performance analysis was done.

The images in the training and the testing sets were divided into

10 equal partitions. PCA DD was used for the abnormality de-

tection task due to its better performance compared to Gaussian

DD in the earlier experiments. A PCA DD classifier was trained

TABLE II
CLASSIFICATION PERFORMANCE OF NORMAL AND ABNORMAL
COLOR RETINAL IMAGES ON THE MESSIDOR DATASET

TABLE III
TEN-FOLD CROSS-VALIDATION PERFORMANCE ON FIVE DATASETS

with only normal images whereas both normal and abnormal

images were used for validation. The rotational motion pattern

was generated with a step size of 1 and the coalescing function

was chosen to be maximum function.

The average (arithmetic mean) and standard deviation values

of AUC for different datasets are shown in Table III. It can

be observed that the average AUC is above 0.92 across the

datasets. A superset (labeled as combined dataset) was created

by merging the normal and abnormal images from the four
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Fig. 12. Few challenging DME cases detected (a) Faint HE on a bright background (b), (c) Small and faint HE on tiger patterned background. Annotation (S)
indicates location of subtle (faint) hard exudates in color fundus image.

TABLE IV
SEVERITY ASSESSMENT PERFORMANCE—MESSIDOR

public datasets that were considered. This superset consists of

644 images of which 367 were normal and 277 were abnormal

images. It should be noted that the average area under ROC

curve for immediate referral cases in the MESSIDOR dataset

is consistently high at 0.99 compared to the method proposed

in [25].

D. Classification of Macular Edema Cases

Finally, we studied the effect of the threshold (T) (on ro-

tational symmetry metric) in severity assessment. The results

are presented in Table IV for different threshold settings on

the images detected as abnormal for MEDDIDOR dataset. The

threshold is expressed as a percentage of the symmetry mea-

sure of normal ROIs used in the abnormality detection task.

It can be seen that the classification accuracy is high when the

value of is at 25% of the value for normals. The classifi-

cation accuracy for the moderate class falls as the value of is

increased to 75%. This implies that of the normal ROI is sen-

sitive to intensity variations but does not affect the classification

accuracy of severe cases.

V. CONCLUDING REMARKS

We have proposed and evaluated a method for DME detec-

tion and assessment. The significant contributions of this work

are: 1) a hierarchical approach to the problem, 2) a novel repre-

sentation for the first level, to classify an image as normal/ab-

normal (containing HE), and 3) a rotational asymmetry mea-

sure for the second level, to assess the severity of risk of DME.

The novel representation captures the global image characteris-

tics. Such global features have not been used successfully ear-

lier for HE detection. In the first level, a supervised technique

based on learning the image characteristics of only normal pa-

tients is used for detecting the abnormal cases pertaining to HE.

This approach has the inherent advantage of reducing the ef-

fort of building a CAD system by removing the need for anno-

tated (at the lesion level) abnormal images. Such annotations

are required for both supervised and unsupervised classifica-

tion schemes in order to find suitable system parameters for

detection. The approach facilitates separating the normal pa-

tients from those showing disease symptoms, as practiced in

DR screening [9]. There is no need for either preprocessing

the original images or postprocessing the results, to handle the

false alarms due to variability observed across color fundus im-

ages. This is due to the proposed global features. The proposed

method is shown to be effective in detecting DME for chal-

lenging cases (see Fig. 12). For the fundus image in Fig. 12(a),

we can observe that HE manifest as faint lesions whereas in

Fig. 12(b), faint HE can be seen over a complex background.

In the second level, the severity of the abnormality is assessed

by analyzing the rotational asymmetry of the macular region in

retina. This level facilitates the decision to recommend a patient

to amedical expert, based on the proximity of HE to the center of

macula. The proposed methodology enhances the existing DR

screening infrastructure by helping automate the detection and

assessment of DME. In this work we have assumed an image to

be normal if it has no lesions. Expanding the normal class to in-

clude non-DME lesions does not compromise the system’s per-

formance as the non-DME lesions are generally dark or bright

and diffuse. Consequently, they are well separated in the feature

space from HEs. This was confirmed experimentally.
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