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ABSTRACT: Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular 
assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due 
to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we pre-
sent Methyl Assignment by Graph MAtching (MAGMA), for the automatic assignment of methyl resonances. A graph 
matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a 
complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both 
synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remark-
able accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on 
HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing 
an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of 
supramolecular machines using methyl-based NMR spectroscopy. 

INTRODUCTION 

NMR spectroscopy can simultaneously probe both the 
structure and dynamics of biomolecules at atomic 
resolution2-4, revealing how they function, describing interac-
tions with binding partners and determining the locations of 
binding sites for therapeutic agents. Solution-state NMR has 
long been restricted to relatively small proteins up to ~30 
kDa in molecular weight. Yet ca. 70% of single polypeptide 
chains in the human proteome are larger than this threshold, 
as are the majority of complexes and oligomers in the in-
teractome2. Methyl-TROSY based solution-state NMR exper-
iments greatly extend what is possible, enabling detailed 
structural and dynamical studies of protein complexes up to 1 
MDa in molecular weight7-10,55. Similar gains are also being 
realised in solid-state NMR applications11-12. 

The significant bottleneck for application of methyl-
based experiments, particularly for studies on larger proteins, 
is the need to relate the resonances observed in NMR spectra 
(Figure 1a) to specific atoms within the molecule (Figure 1d). 
This challenge, known as resonance assignment, is a pre-
requisite for interpretation of NMR data in functional stud-
ies. For smaller proteins, resonances are assigned using ex-
periments that correlate nuclei between the backbone and 
side-chains16. For larger proteins, this is rarely possible and 
so assignment of methyl resonances is typically achieved by 
either transferring the assignments obtained from smaller 
protein fragments to spectra of the intact protein8, 10, or by 
monitoring spectral changes after mutation of individually 
targeted residues18. Both approaches are laborious, time con-

suming and expensive, and require that the introduced mu-
tations perturb neither the structure, aggregation propensity 
or expression levels of a protein. Nevertheless, methyl-based 
NMR methods are seeing wide uptake in both academia and 
industry. 

In functional and dynamical NMR studies, structural 
models of the molecule of interest are generally available. In 
this case, comparing the structure to inter-methyl distance 
restraints derived from, for example, solution-state nuclear 
Overhauser enhancement (NOE) experiments can provide a 
means for resonance assignment21. This approach can be 
further enhanced through the inclusion of paramagnetic 
relaxation enhancement (PRE) experiments19. Two dedicated 
automatic structure-based methods are available using this 
approach for methyl group assignment (FLAMEnGO2.0 and 
MAP-XSII)23-24. Both rely on Metropolis Monte Carlo sam-
pling to optimize approximate scoring functions to provide 
an assignment. These pioneering software approaches can 
unfortunately provide a user with confident but erroneous 
assignments, which is undesirable (Figures 3, 5) 23-24.  

Here, we introduce Methyl Assignment by Graph 
MAtching (MAGMA), a novel structure-based automatic 
assignment approach. MAGMA builds upon the emerging 
applications of graph theory29 in chemistry30, structural biol-
ogy31 and biology32, and uses discrete mathematics to per-
form an exact search of all possible assignments. The user is 
provided with an exact set of solutions, containing both con-
fident (single option) and ambiguous (multiple options) as-
signments when there are multiple ways to explain the ex-
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perimental data. We apply MAGMA to both synthetic (Fig-
ure 4) and a benchmark of 8 experimental NMR datasets 
with cross-validated assignments (Figure 4,5), the largest 
assembled of this type. Inter-methyl distance restraints were 
derived from either NOE based solution, or dipolar re-
coupling enhancement through amplitude modulation 
(DREAM) solid-state NMR experiments. Remarkably, 
MAGMA confidently assigned up to 93% of resonances, with 
100% accuracy overall, on data obtained from complexes of 
molecular weight as high as 360 kDa.  

This accuracy enables two new applications. We show 
that the algorithm can distinguish between alternative struc-
tural forms of 3 proteins (Figure 6). In an independent phar-
maceutical application involving the human chaperone 
HSP90, we show both that MAGMA efficiently provides as-
signments, and that when combined with ligand/protein 

NOE data, it can rapidly and efficiently distinguish between 
possible ligand binding modes (Figure 7).  Overall, MAGMA 
effectively removes the bottleneck that has limited wide-
spread application of methyl-based NMR experiments. These 
results can facilitate structural studies of high molecular 
weight molecular machines, and their interactions with lig-
ands and other biomolecules, and we anticipate that our core 
algorithm will be applicable to a wide set of problems involv-
ing structure determination.  

RESULTS 

Resonance assignment as a graph-matching problem. 
When performing a methyl-based NMR study, a deuterated 
protein sample is prepared with 13CH3 labelled methyl resi-
dues, typically isoleucine δ, valine γ1/2, and leucine δ1/2, alt-
hough alanine β, threonine γ, isoleucine γ, and methionine ε 
methyl labeling methods are available33. NMR spectra corre-

 

Figure 1  Automated methyl resonance assignment of solution-state NMR spectra by MAGMA. (a) Projections of a 3D (H)CCH 
HMQC NOE solution-state NMR spectrum of the R2 dimer of ATCase, recorded from a deuterated sample with [13CH3]-labelled 
Ile-δ, Leu-δ and Val-γ residues. Off-diagonal resonances reveal proximal pairs of methyl groups. These connectivities are used as 
distance restraints by MAGMA. (b) This is interpreted by MAGMA to include information about residue type. Analysis of regions 
associated with a single resonance (shaded) identifies the local network of connections for each methyl resonance. (c) The local 
networks can be combined to give a ‘data graph’. (d) Similarly, inter-methyl connections from a protein structure can be ob-
tained at a predefined distance threshold (detailed methods) and represented as a graph. (e) MAGMA compares all ways of map-
ping between the two graphs (figure S1), to give assignments that explain the maximum amount of data possible. 

a

1H (ppm)
1.0 0.2

b c

Peak3

Peak2

Peak1

Leu76

13C (ppm)
24 20 16 12

1
3
C

 (
p

p
m

)

24

20

12

16

1
3
C

 (
p

p
m

)

24

20

12

16

13C (ppm)
24 20 16 12

1H (ppm)
1.0 0.2

MAGMA

Leu76Peak3

Ile86Peak1
Val106Peak2

d

Leu
Val
IIe

e

Val106

Ile86

 
Figure 2. Graph matching for resonance assignment is a combinatorial problem. (a) If there are N methyls, the total number of 
assignment combinations is N! (blue). If scoring each assignment takes 10-3 seconds, the assignment of 10 residues would take 1 
hour whereas if N>21, the total time exceeds the age of the universe (~1017 seconds). (b) An illustrative structure (i) and data 
graphs (ii) containing 9 methyls, with 13 and 9 edges respectively. The data graph has fewer edges than the structure graph (dot-
ted lines) and contains a deliberate error (red line), an edge not present in the structure graph. The data graph can be mapped 
onto the structure, with common edges indicated (green). (c) Each of the 288 ways of mapping the vertices have different num-
bers of common edges, M, indicating the number of ‘explained’ data points. (d) Two poor assignments; M=2 (i) and M=5 (ii). (e) 
There are two maximal common edge subgraphs (MCES, ii, iii), where M=8 that comprise the solution. Pooling the results from 
these two solutions provides the final result, showing correspondence between methyl resonances (y-axis) and specific atoms (x-
axis), (i) where 7 methyl resonances are confidently assigned, and two positions are ambiguous as they are structurally identical 
(orange). The ‘correct’ assignment follows the x=y line. 



 

lating the 1H and 13C resonant frequencies of each methyl, 
which encode structural and dynamical properties, can be 
rapidly acquired (Figure 1a). The spectral frequencies encode 
the structural and dynamical properties of the molecule. 
NMR experiments can then be performed that reveal which 
methyl groups are close together in space (Figure 1a). These 
define a ‘data graph’, where each unique 1H13C correlation is a 
vertex, and each observed inter-methyl correlation is an edge 
connecting two vertices (Figures 1b, c, detailed methods). A 
complementary ‘structure graph’ can be derived from a struc-
tural model in which the vertices are the carbon atoms of the 
relevant methyl residues, and the edges comprise all connec-
tions between vertices within a distance threshold derived by 
MAGMA (Figure 1d, S3; detailed methods). Assigning methyl 
resonances requires comparison of the two graphs to find a 
mapping of the vertices that results in the maximum overlap 
of their edges (Figure 1e, Supporting information S.1). Physi-
cally, this mapping provides the assignments that explain the 
maximum number of experimentally observed inter-methyl 

distance restraints. Resonance assignment is therefore a 
‘graph-matching’ problem34, where we seek the set of map-
pings that define the ‘maximal common edge subgraphs’ 
(MCES, supporting information). Importantly, as each single 
mapping in the set explains a maximum number of inter-
methyl restraints, we require all such mappings, which to-
gether reveal any ambiguity in the assignment.  

The MCES between two graphs could be obtained ex-
actly by individually testing all assignment combinations 
(Figure 2). The total number of assignments to be tested in-
creases with N!, where N is the number of methyl groups in 
the protein, and so while a problem involving 10 methyls can 
be evaluated in less than one hour, a problem containing 21 
methyls (a 12 kDa protein of average residue composition) 
would take longer than the age of the universe (Figure 2a). A 
more efficient sampling strategy is necessary in order to solve 
the assignment problem exactly. A further complication is 
that the data graph will generally contain fewer edges than 
the structure graph, and which edges are missing will not be 

 

Figure 3. Performance of MAGMA on synthetic data derived from CDK2 (a) i) Secondary structure, ii) locations of Ile-δ (yel-
low), Leu-δ (red) and Val-γ (blue) methyl 13C atoms (spheres) and iii) the structure graph at 8 Å. (b) The results of MAGMA 
on synthetic data, derived from the structure graph at i) 30% and ii) 60% sparsity (supporting information), with Ala, Leu, Val 
and Ile methyl groups labelled (AILV). Methyl resonances are on the y-axis (Peak ID), and methyl carbon atoms are on the x-
axis (Atom ID) where correct assignments lie along the diagonal. Where a result is ambiguous, the correct assignment is al-
ways within the set of possibilities. Confident assignments have one option. (c) A comparison of the performance of MAGMA 
on randomly simulated synthetic datasets that vary in both their labelling (ILV and AILV) and sparsity. Mean and standard 
deviations of 10 independently simulated datasets are shown. (LV) denotes that the L and V residue types are not distin-
guished. Even with highly sparse data, a significant number of confident assignments can be achieved. Increasing the number 
of different types of residue, and decreasing the sparsity increase the success of MAGMA. (d) Performance of MAGMA (i), 
FLAMEnGO2.0 (ii) and MAP-XSII (iii) on a representative 50% sparse ILV inter-methyl data graph using CH3shift for chemi-
cal shift prediction. MAGMA provides confident assignments with 100% accuracy. 
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known a priori. Effects including spin diffusion, chemical 
exchange and local disorder can all obscure individual inter-
methyl correlations in NMR spectra. Moreover, low signal to 
noise ratios and overlap of resonances can lead to individual 
restraints being incorrectly interpreted.  

MAGMA utilises exact graph matching methods de-
signed to exclude large regions of the search space that 
would otherwise lead to suboptimal assignments early in the 

search35-36. This provides an exact result that is tolerant to 
the main types of expected uncertainty.  

Exact graph matching algorithms efficiently sam-
ple all possible methyl assignment solutions. We rely on 
two exact graph-matching algorithms, VF2 and McGregor35-

36. In the best case, where a data graph can be entirely em-
bedded in the structure graph, the MCES is ‘subgraph iso-
morphic’ (Supporting information S.1). In such a situation, 

 
Figure 4. Performance of MAGMA on experimental data (Table 1). (a/c) Histograms of inter-carbon distances are calculated 
from structures (black line), and compared with those experimentally observed (solid black). Structures of each protein are 
shown approximately to scale, with the Ile, Leu, Ala, and Val groups in red, yellow, purple, and blue, respectively. (b/d) As-
signment results from MAGMA. Methyl resonances are on the y-axis (Peak ID), and methyl carbon atoms are on the x-axis 
(Atom ID). Cross-validated assignments lie along the diagonal. The colourbar indicates the confidence in assignments from 
MAGMA. White boxes are resonances that have no inter-methyl restraints and so cannot be assigned. The total number of 
confidently assigned methyl groups, where only one assignment option is possible (black) is indicated together with the 
number of correct confident assignments. The accuracy of confident assignments in this benchmark was 100%. 
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where the two graphs are highly similar, the efficient VF2 
algorithm can be used36. This is not the case when there are 
erroneous inter-methyl distance restraints, which can arise 
through incorrect identification of the start and finish reso-
nance of a cross-peak, or through the inadvertent assignment 
of unfortunate conjunctions of noise in spectra. Here, 
MAGMA executes an algorithm based on that of McGregor35 
(detailed methods, Figure S1). These algorithms are well suit-
ed for sparse, labelled graphs as encountered in this applica-
tion (supporting information). Our implementation features 
a novel optimized ordering of the search that occurs both 
before and during the MCES search that substantially reduc-
es the time required for the calculation, rendering it feasible 
for large proteins (detailed methods, Figure S4). In brief, two 
inputs are provided by the user, a set of inter-methyl dis-
tance restraints from NMR experiments that define a data 
graph (Figures 1a, S1, Table S1) and a structure file from 
which atom positions and Euclidean distances are used to 
construct a structure graph (S.5, Figures 1d, S1). MAGMA 
returns all assignment possibilities for each methyl reso-
nance, which are drawn from the set of vertex mappings that 
define the MCES. Where exactly one methyl resonance is 
assigned to one residue in the structure, the assignment is 
defined here as ‘confident’. Otherwise, the assignment is 
‘ambiguous’. For each resonance, all possibilities are given a 
score equal to the reciprocal of the number of assignment 
possibilities. Identifying ambiguity inherent in the data is 
highly desirable as it reflects the maximum information con-
tent of the experimental data, identifying regions where the 
information is sparse or missing, enabling the design of addi-
tional experiments if required (Figure S2).  

To illustrate our method, a simplified problem involv-
ing nine methyl groups is considered, where the data graph 
contains fewer edges than the structure graph, and a deliber-
ate error (Figure 2). Due to the inclusion of an erroneous 
restraint, the data graph is not subgraph isomorphic to the 
structure graph and VF2 cannot be applied. Of the 288 possi-
ble solutions, MAGMA finds the 2 solutions that comprise 
the MCES early in the search (Figure 2c). This provides 7 
confident assignments and 2 that can be interchanged, as 
they are structurally identical.  

Proof-of-principle on simulated data. To demon-
strate that MAGMA is well suited for automatic methyl reso-
nance assignment, we performed calculations using simulat-
ed inter-methyl distance restraints. These were obtained 
from the structure graph of the 34 kDa human Cyclin-
dependent kinase 2 (CDK2, PDB: 2C60)37, with a distance 
threshold of 8 Å. Several common experimental methyl label-
ling schemes involving labelling of Ile-δ, Leu-δ, Val-γ and 
Ala-β residues were compared (Figure 3a). Increasingly 
sparse data graphs were simulated by randomly removing 
edges, weighted to enhance the probability of retaining 
shorter distances (supporting information S.2). In the as-
signments returned by MAGMA, even when an assignment 
was ambiguous, the correct solution was always present 
within the set of solutions for each labeling scheme and spar-
sity level tested (Figure 3b, d). The confident assignments 
returned by MAGMA were 100% accurate in all tested cases. 
Increasing the sparsity of the simulated data graph reduced 
the number of methyls that could be confidently assigned 
(Figure 3b-d), as expected given the lower information con-
tent of the data. Notably, having a large number of distin-

Table 1. The inter-methyl data defining our benchmark, and the performance of MAGMA. 

For each protein the molecular weight, structure, labelling scheme and type of NMR experiment used is specified. HSP90α was ana-
lysed independently of the benchmark to cross validate the method. Solution-state NMR experiments obtain restraints via NOE 
spectroscopy, and the solid-state NMR example obtained restraints via a 4D DREAM experiment. The number of inter-methyl dis-
tance restraints and the number of independent subgraphs within the data are indicated. (i) Assignable residues are those with in-
ter-methyl restraints. (ii) The average number of inter-methyl restraints per assignable methyl group. (iii) The distance threshold 
derived by MAGMA for each case (see text). (iv) Data sparsity, here defined as number of observed NOEs divided by the number of 
total number of possible distances, calculated at the optimal distance threshold, iii. (v, vi) The number of confident (unambiguous) 
assignments returned by MAGMA, together with the total assigned fraction. (vii) The time to arrive at the final result, including all 
ambiguity (Figure 4b), took a maximum of 2 days (α7α7). (viii) The time for the calculation to run to completion. *See Supp S. 
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guishable residue types increased the success of the method. 
Simulated data with Ile-δ, Leu-δ, Val-γ, and Ala-β methyl 
groups provided a higher proportion of confident assign-
ments than those from Ile-δ, Leu-δ and Val-γ, and being able 
to explicitly distinguish Leu from Val residues, an experi-
mentally achievable goal38, was advantageous (Figure 3c).  

We compared the performance of MAGMA to two oth-
er available automated methyl assignment approaches, 
FLAMEnGO2.023 and MAP-XSII24 (Figure 3d, Supporting 
information S.3). These both require chemical shift data 
(Figure S5) in addition to inter-methyl distance restraints. 
These were predicted using either ShiftX239 or CH3Shift40, 
with each method yielding similar results in the final as-
signments. The results from a representative data graph 
simulated at 50% sparsity with Ile-δ, Leu-δ, and Val-γ me-
thyl-labelling allow performance comparison of the three 
algorithms. The number of correct/incorrect assignments 
was 36/0 in the case of MAGMA, 18/17 for FLAMEnGO2.0 
and 30/21 for MAP-XSII (Figures 3, S4). Similar results were 
seen for other randomly simulated data graphs. These results 
demonstrate that MAGMA can provide both accurate and 
reliable methyl assignments.   

Testing of MAGMA on experimental NMR data. 
MAGMA was tested against a benchmark of experimental 
data obtained from either 3D or 4D NOE solution-state8, 15, 22-

23, 26, or proton detected 4D DREAM solid-state12 NMR spec-
tra of methyl-labelled proteins5, 15, 17, 41-43 (Table 1), whose as-
signments were previously determined and cross-validated 
(figure 4, Table 1)8, 12-13, 15, 22, 26. The benchmark is comprised of 
Ubiquitin (Ubq)5, 12-13, methionine-R- sulfoxide reductase B 
protein (MsrB)15, the N-terminal domain of E. coli Enzyme I 
(EIN1)19, a dimer of regulatory chains of aspartate transcar-
bamoylase from E. coli (ATCase R2)22, 41, maltose binding pro-
tein (MSB)15, malate synthase G (MSG)26, 43, and (α7α7)8, 42. 
This benchmark is, to our knowledge, the largest assembled 
for testing automatic methyl assignment programs and is 
freely available for download with MAGMA.  

The 8 experimental data sets are diverse in molecular 
weight, shape, amino acid labeling scheme, and data sparsity 
(Table 1). Using the known assignments, the distribution of 
inter-methyl distance restraints observed in the data was 
compared with the distribution of the total possible inter-
methyl distances within the protein structures (Figures 4a, 
c). In general, the majority of short ranges inter-methyl dis-
tances are observed (<8 Å), while relatively few restraints are 
observed at distances greater than 10 Å.  

The method requires a distance threshold to be set for 
calculation of the structure graph (Table 1). Running the cal-
culation with a distance that is too short can give incorrect 
solutions, whereas running with a threshold that is too long 
resulted in both artificially increased ambiguity and long 
calculation times. We ran our benchmark calculations for a 
wide range of distance thresholds in order to determine op-
timal values, allowing us to define the following empirical 
rule (Figure S3a). MAGMA determines its threshold as the 
shorter, either 10 Å, or the minimum distance required to 
explain 100% of the inter-methyl distance restraints (detailed 
methods). This empirical rule results in all proteins in our 
benchmark being run at 10 Å apart from ubiquitin, the small-
est protein in our dataset, which was run at 6.5 Å and 7.5 Å, 
solution- and solid-state NMR datasets, respectively. This 
definition results in 100% accuracy for all tested benchmark 

cases, and also for the N-domain of HSP90α, which was not a 
part of the benchmark (Figure 6).  

Using this method to automatically select for distance 
threshold, the number of confident assignments returned by 
MAGMA (Figure 4b, d; Table 1) was found to vary with the 
specific case. On average, over the benchmark, 3.5 inter-
methyl restraints were needed for each confident assignment 
(Figure 5a). Notably, one of the larger proteins under study, 
the α7α7 double ring of 20S proteasome core particle resulted 
in 93% confidently assigned methyl groups (Figure 4d iv); 
Table 1). Zero NOEs were observed from the three unas-
signed methyl resonances. This exceptional performance on 
α7α7 can be attributed to the remarkably high ratio of exper-
imental restraints to total inter-methyl distances within the 
protein structure model (80%, Table 1). The performance of 
MAGMA on the benchmark was compared to that of FLA-
MEnGO2.0 and MAP-XSII (Figures 5b, S4; Supporting infor-
mation S.3). Overall, MAGMA provided more confident as-
signments than the alternative programs. As with the simu-
lated data, confident assignments identified by MAGMA 
were 100% accurate. 

Chemical shifts do not help assignment. The resonance 
frequencies of methyl groups are in principle a useful addi-
tion for assignment, and both FLAMEnGO2.0 and MAP-XSII 
use these directly23-24. Methyl chemical shifts have a relatively 
low range of values in both the proton and carbon dimen-
sions, which are frequently close to the statistical prediction 
accuracy of prediction algorithms. The results from the 
benchmark were re-scored using either 13C, 1H or combined 
13CH3 chemical shifts, predicted on the basis of protein struc-
ture using different protocols (ShiftX2 and CH3Shift)39-40. We 
applied the chemical shifts in a highly conservative fashion. 
Within a set of ambiguous assignments, a new assignment 
was accepted if one and only one assignment option was 
within the prediction accuracy. This procedure resulted in 
incorrect confident assignments (Supporting information 
S.4, Figure S5). While chemical shifts are exceedingly useful 

 
Figure 5. (a) The number of confident assignments from 
MAGMA in our benchmark versus the total number of re-
straints in the calculation. On average, 3.6 were required for 
each confident assignment. (b) Comparison of MAGMA (black) 
to alternatives FLAMEnGO2.0 (dark grey), and MAP-XSII (light 
grey). The number of incorrect confident assignments are indi-
cated (red). No confident assignments for EIN1 and MSG were 
reported by FLAMEnGO2.0 (*). MAGMA provides more confi-
dent assignments on average, with exceptional performance on 
large targets (MBP, MSG, α7α7), with 100% accuracy overall. 
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for structural and dynamical studies, we conclude that at 
present, they are insufficiently reliable for assignments using 
these commonly used programs. 

MAGMA can guide site-directed mutagenesis to 
yield more methyl assignments. In the case where a spe-
cific assignment is ambiguous, MAGMA can predict which 
sites should be selected for site-directed mutagenesis exper-
iments to maximise the number of new expected assign-
ments. Illustrating this using a simulated 50% sparse ILV 
dataset from CDK2, our protocol predicts three single point 
mutations of the most ambiguous residues that will provide 
five new confident assignments (Figure S2). MAGMA allows 
any known assignments to be specified, which will reduce 
ambiguity of unknown assignments and can lead to a signifi-
cant increase in the final number of confident assignments.  

MAGMA can identify which protein conformation 
is predominantly present during the NMR measure-
ment. Multiple structural forms of a protein are commonly 
available. From our benchmark, the ATCase R2 dimer exists 
in ‘R’ and ‘T’ conformations (Figure 6a) and MSG adopts a 
different conformation when bound to certain ligands (Fig-
ure 6b). In addition, the N-terminal domain of HSP90α has 
two conformations, termed here ‘open’ and ‘closed’, with the 
largest differences in the binding pocket residues 104-114 
(Figure 6c). The MAGMA assignments for each structure 

were compared with assignments obtained independently 
through triple resonance experiments 6, 22, 27.  For the ex-
pected structural form, the results from MAGMA were in 
perfect agreement with the independent assignments. By 
contrast, the alternative conformations led to erroneous as-
signments (Figure 6). If multiple conformations of a protein 
are known and its structural form is uncertain, the results 
can be combined (Figure 6 a-c ii)), reducing the number of 
confident assignments but preventing errors caused by un-
certainty in the structure. 

Multiple structural forms can be distinguished by the 
differences in their MAGMA assignments. In each of the de-
scribed cases, multiple residues exist where confident as-
signments are in disagreement between the two forms. In 
such a case, by obtaining an independent assignment 
through, for example, mutagenesis, it is possible to effective-
ly exclude structural forms. In this way, MAGMA results 
combined with a small number of additional independent 
assignments determine ATCase R2 dimer to be in its ‘R’ state, 
MSG to be in its ‘free’ form, and the HSP90α N-terminal do-
main to be in the ‘closed’ conformation (Figure 6). In each 
case, the structure predicted by MAGMA is supported by the 
observed 1H13C chemical shifts. The accuracy of MAGMA 
therefore enables it to be used to distinguish structures. 

MAGMA can discriminate between different ligand 
binding modes to aid drug discov-
ery. Identifying the correct binding 
mode of ligands when bound to pro-
teins using sparse NMR data is of 
significant pharmacological interest6. 
HSP90α is a ubiquitous molecular 
chaperone and an oncology target44. 
Inhibitors targeting the ATPase are 
presently in various stages of clinical 
trials1. Here, we studied the N-
terminal domain of HSP90α bound 
to a fragment-hit aminotriazine 
compound1. Different binding modes 
of this compound have been deter-
mined previously by crystallography1 
and using NMR6 (Figure 7). 

 Protein/ligand NOEs6 from 
methyl labelled HSP90α in the pres-
ence of the fragment hit were record-
ed together with protein/protein 
NOEs. Both sets of distance restraints 
were analysed by MAGMA for each 
predicted binding mode (detailed 
methods). The results were then 
compared to the known ligand as-
signments, which are obtained from 
inspection of its isolated 1H spectrum 
(Figure 7aii). This reveals that only 
one of the structures is consistent 
with the MAGMA assignment (Figure 
7b iii). Moreover, the combined pro-
tein and ligand data provided 5 new 
confident protein assignments (25 in 
total) in the binding pocket45. This 
result reveals the utility of MAGMA 
in drug discovery, allowing filtering 
of ligand conformations by a combi-

 Figure 6. MAGMA results can discriminate between protein conformations. Two clas-
ses of structure are available for ATCase R2 dimer (a, R 1D09/T 1TUG), MSG (b, bound 
1D8C/free 1Y8B), and the N-terminal domain of HSP90α (c open 3B24/closed 1YER). 
Relevant methyl groups (spheres), and backbone orientations in the two structures are 
shown. Regions where MAGMA reports different assignments are indicated (ii). In a 
conservative case, these results can be pooled. Notably, sites are revealed with incor-
rect assignments for one of the two structural forms. Independent data such as a point 
mutant at one of the conflicting sites is then sufficient to unambiguously distinguish 
the two possible structures.  
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nation of protein/protein NOEs, protein/ligand NOEs, and 
known ligand resonance assignments. This method requires 
neither independently known protein assignments, nor new 
point mutants to be generated. 

DISCUSSION 

Inter-methyl connections can be obtained experimentally 
using either solution- or solid-state NMR. By relating these 
inter-methyl connectivity data to a structure, MAGMA can 

accurately and reliably provide an exact set of assignments. 
Using either simulated data, or our benchmark of experi-
mental data derived from both solution- and solid-state NMR 
experiments, we achieve 100% accuracy, with as many as 93% 
confident assignments revealed. The HSP90α assignments 
were obtained using the protocol developed on the bench-
mark. These results were independently cross-validated, 
demonstrating the method reliably predicts assignments 
beyond the benchmark. MAGMA outperforms alternative 
approaches in accuracy on our benchmark. Notably, 
MAGMA’s performance improves as the protein target gets 
larger (MBP, MSG, α7α7).  

Existing methods for automatic resonance assignment 
both for methyl groups and the backbone aim to minimise a 
continuous scoring function19, 23-24. Our approach is funda-
mentally different, using discrete mathematics to sample all 
possible assignment combinations, providing assignments 
that include all possible ambiguity. We anticipate that our 

core graph-matching algorithm will be highly applicable to a 
range of future data and structural analysis applications. 
From a computational complexity point of view, our algo-
rithm is NP-complete34 and in the worst case scenario the 
execution time will scale with N!, where N is the number of 
methyl groups to be assigned. The design of MAGMA makes 
such a case unlikely, as demonstrated by the execution times 
of our benchmark (Figure S4c). The total calculation time 
ranges from a few seconds to several weeks for the largest 
proteins, performed on a single Intel i5 processor (Table 1, 
Figure S3b). The longest time required to obtain the ‘final’ 
result in our benchmark with a complete description of am-
biguity was 2 days (Table 1), a duration substantially shorter 
than the ‘total’ calculation time. 

A typical MAGMA result will contain both confident (1 
option) and ambiguous (multiple option) assignments. Am-
biguity exists in regions where individual assignments can be 
exchanged and still satisfy a maximum number of restraints. 
In these regions, further information is required to resolve 
the assignment ambiguity. MAGMA contains a protocol to 
select candidates for point mutation that will yield the most 
significant number of new assignments per mutation made 
(Figure S2). In addition, the results can be re-scored against 
other experimental data. We have shown that commonly 
used chemical shift predictors are not sufficiently reliable at 
this time (Figure S5). By contrast, we anticipate re-scoring 
against PRE data will likely prove to be a powerful comple-
mentary restraint19. Similarly, signal intensities of cross-
peaks in inter-methyl NMR experiments contain information 
about inter-methyl separations. To quantitatively access this 
information for use in assignments, data spanning a range of 
mixing times could be employed (54), which might require a 
prohibitively large acquisition time. Signal intensities from 
solution-state NOE data with a single mixing time used for 
this work was unable to reliably reduce ambiguity in the as-
signments (Figure S6). Finally we expect optimum perfor-
mance from the graph matching algorithms where we in-
clude only inter-methyl restraints that can be confidently 
attributed to a unique pair of resonances and we do not al-
low for ambiguous restraints. We recommend recording high 
dimensional NMR spectra to increase the number of unam-
biguous experimental restraints. If this is not possible, 
MAGMA results can be re-scored to exclude any possibilities 
that are not consistent with any ambiguous restraints that 
were excluded from the calculation. Before re-scoring, 
MAGMA obtains more reliable information from inter-
methyl distance restraints than any alternative method. 

The choice of methyl labelling scheme for a protein can 
affect the success of the assignment (Figure 3, Supporting 
information S1.5). When working with leucines or valines, it 
is desirable to prepare a sample where both Leu-δ and Val-γ 
methyl pairs are labeled and perform an experiment to detect 
their proximity8, 27. This allows pairs of methyl groups to be 
combined into a single residue ‘pseudo atom’, which simpli-
fies analysis (detailed methods, Supporting information S1.5). 
Moreover, it is highly desirable to distinguish leucine and 
valine residues38, 46. In general, increasing the number of 
distinguishable residue types is highly beneficial and incor-
porating Met-ε and Ala-β methyl groups is desirable47, 
though for larger proteins, this could result in broader, po-
tentially unresolvable resonances.  

 

Figure 7. MAGMA can distinguish between ligand binding 
modes. An aminotriazine based fragment hit compound was 
bound to the N-terminal domain of HSP90α. a) A 1D 1H NMR 
spectrum of the compound, allows a straightforward assignment 
of H1, H2 and H3. b) Three structures show the compound in 
different arrangements (PDB: i) 3B24 chain A1, ii) 3B24 chain B1, 
NMR iii) 1YER_16). MAGMA was run on each, including both 
protein/protein and protein/ligand NOEs. One structure could 
be excluded as the magma result explained few ligand/protein 
NOEs, and none from H1. Of the remaining two similar struc-
tures, one resulted in incorrect ligand assignments. 1YER_1 was 
the only structure consistent with the NMR data, following 
screening by MAGMA. 
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MAGMA will be freely available for academic users. 
When provided with inter-methyl connectivity information 
from experimental NMR data and a structural model, it will 
provide an assignment list that contains all possibilities, re-
quiring no parameters to be specified by a user. On both the 
benchmark, and an independent test (Hsp90) we obtain 
100% accuracy. While we cannot guarantee this in all future 
cases, the benchmarked accuracy is sufficiently high to pro-
vide a reliable assignment for de novo systems analysed using 
methyl-based NMR spectroscopy. The accuracy of MAGMA 
allows it be used to discriminate structures (Figure 6). More-
over, when combined with ligand/protein restraints, it can 
distinguish between possible ligand-binding modes (Figure 
7). By removing the assignment bottleneck, MAGMA can 
enable routine application of methyl-based NMR experi-
ments for studies of high molecular weight molecular ma-
chines. 

DETAILED METHODS 

Analysis of experimental NMR data. Inter-methyl re-
straints were obtained from NOE spectra  (ATCase R2 dimer, 
EIN119, NTD of HSP90α), pre-analysed inter-methyl NOE 
restraints (α7α7

8, ubiquitin solution-state13) and data deposit-
ed in the BMRB and PDB (ubiquitin solid-state data, MsrB, 
MSG, and MBP)12, 15, 26. NOE spectra were available as 3D 
(H)CCH (ATCase R2 dimer, HSP90α) or 4D HCCH (EIN1) 
heteronuclear multiple quantum correlation (HMQC) forms, 
and were analysed using Sparky48 to obtain a list containing 
inter-methyl correlations, and signal-to-noise ratios. The 
following filters were applied by MAGMA to establish a list of 
inter-methyl distance restraints: 1) Each inter-methyl reso-
nance has a signal-to-noise ratio ≥2, where noise is given as 
the standard deviation of a region of the spectra devoid of 
signal. 2) Inter-methyl resonances that overlap significantly 
with a diagonal peak were not considered. 3) Inter-methyl 
resonances must be reciprocally observed from both starting 
and ending 1H-13C resonances. 4) The signal to noise ratios of 
the two cross peaks must be similar, to within 10%. Where 
we did not have access to the raw data containing signal in-
tensities, only condition 3 was applied (section S.5). For 
MAGMA operation, we recommend manual curation of in-
ter-methyl restraints such that there are only confidently 
identified cross peaks, excluding ambiguous data (section 
S.5). We recommend acquiring 4D inter-methyl NMR spectra 
to substantially reduce the ambiguity in cross-peak assign-
ment over 3D equivalents, which can be acquired expediently 
with non-uniform sampling. Moreover, both identifying the 
residue type of individual amino acids, and pairing the leu-
δ1/2 and val-γ1/2 residues using a short-mixing time experi-
ment on a double methyl labeled sample is highly desirable 
for maximising confident assignments (Figure 3, section 
S1.5). The benchmark will be freely downloadable from 
http://baldwinlab.chem.ox.ac.uk/ . 

Defining the data graph. Pairs of 1H/ 13C resonant fre-
quencies for each methyl group are selected to define a set of 
vertices, and experimental inter-methyl distance restraints 
define the edges (Figure 1c). The vertices of the graph are 
‘labelled’ according to the amino acid type. If both methyl 
groups within a single Leu-δ or Val-γ have been identified, 
then the distance restraints from each are combined to give a 
single vertex. If intermolecular NOEs between the ligand 
resonances and methyl resonances are available, the ligand 
resonances can be added to the set of data graph vertices, 

and ligand/protein distance restraints are included as addi-
tional edges.  

Defining the structure graph. Carbon atoms from 
relevant methyl groups in a structure are identified, and used 
to define a set of structure graph vertices, labelled by amino 
acid type. In the case where both methyl groups of Leu and 
Val residues can be combined into a single vertex in the data 
graph (see above), these are merged into a single pseudo-
atom located at the average position of the two carbon atoms 
in the structure graph. Euclidean distances between all me-
thyl carbon atoms are calculated. In the case where there are 
multiple copies of a protein, the shortest inter-carbon dis-
tances are taken. The inter-methyl distances that are below 
or equal to the threshold, determined as described below, 
define a set of edges of the structure graph (Fig 1d). When a 
protein structure contains a ligand of interest, the set of at-
oms of the ligand can be added as structure graph vertices. 
Euclidean distances measured between the methyl carbons 
and specified ligand atoms, which fall below the ligand-
methyl threshold, define additional structure graph edges.  

Setting the distance threshold too low can result in in-
correct results, whereas setting it too high leads to increased 
heterogeneity and longer, possibly intractable calculation 
times as discussed in the text (Figure S3). We determined an 
empirical method to automatically determine the appropri-
ate threshold to use that results in 100% accurate confident 
assignments both in our benchmark, and in the independent 
test case of HSP90α. MAGMA runs are initiated as described 
in detail below, at 10 Å. If a solution is found that explains all 
of the edges, the calculation is stopped, and the distance 
threshold is reduced in increments of 0.5 Å. This is repeated 
until the MCES is the same size as the number of restraints. 
MAGMA ran at 10 Å in all cases other than the ubiquitin da-
tasets, where a shorter threshold was determined.  

Matching of the data and structure graphs by 
MAGMA. MAGMA compares the structure and data graphs 
to obtain the mapping of their vertices (assignment) that 
results in the maximal overlap of edges between the two. If 
the data graph is disconnected, the number of independent, 
but internally connected data subgraphs is first determined, 
and a MAGMA run is performed independently on each, 
before they are recombined at the end. A data graph under 
consideration is tested to determine if it is subgraph isomor-
phic to the structure graph. If it is, the VF2 algorithm36 is run 
(faster). If not, the adapted McGregor35 algorithm is executed 
(slower). The implementation of the VF2 algorithm used in 
MAGMA is contained in the high performance graph library 
python-igraph0.749. The adapted McGregor MCES algorithm 
in MAGMA is implemented in Python. The program reports 
all possible mappings of the two graphs that provide the 
maximal overlap, from which the assignment is obtained. 
Both algorithms will explore all possible assignment possibil-
ities and provide the same final result, but will vary signifi-
cantly in execution time. 

The order in which data vertices are tested by the algo-
rithm, and the order in which structure vertices are tested for 
each data vertex in the MCES algorithm significantly affect 
its efficiency. MAGMA optimises both. A  ‘first guess’ order 
of matching is obtained by quantitatively comparing the lo-
cal similarities of each pair of vertices in the structure and 
data graphs. An implementation of the Hungarian method, 
the Munkres algorithm50  (Python package: munkres1.0.7.) 

http://baldwinlab.chem.ox.ac.uk/


 

uses this information to generate an optimised mapping be-
tween the two. This determines which structure vertex will 
be the first to be tested for each data vertex, and is typically 
found to already be the correct assignment. The subsequent 
order of structure vertices to be tested against a data vertex 
follows an ordered list of their Jaccard similarity coeffi-
cients51. 

An initial data vertex (root) is chosen as a starting posi-
tion and subsequent data graph vertices to be tested are or-
dered according to their adjacency to its predecessors. 
MAGMA performs a run where each data vertex is selected in 
turn as the root and the algorithm matches the structure 
vertices to each data vertex in the order described above. The 
first MCES found by the algorithm is returned. The root that 
provides the largest initial MCES is selected as the starting 
vertex, for a calculation that is allowed to run to completion. 
During the calculation, matching priorities are continuously 
updated to prioritise local adjacency relations in both the 
data and structure graphs (Table 1). These optimisations en-
able graphs to be matched efficiently by MAGMA. The opti-
misation protocol significantly reduces the total calculation 
time without introducing any approximation, and so the final 
result remains exact. 

MAGMA returns the set of assignments that maximises 
the number of assigned distance restraints. When multiple 
structure vertices are assigned to a data vertex, a score given 
to each possibility that is the reciprocal of the total number 
of possible assignments for that data vertex (Figures 2-7). For 
a confident assignment, there is only one possibility of 
matching of a methyl resonance to a single CH3 group in the 
structure, and the score is unity. Analyses and plotting of 
graphs were supported by the Python package networkx-1.952 
and the Mayavi application53.  

Software implementation. MAGMA will be available 
for download and free for academic use. Input files for the 
benchmark will be provided with the download to facilitate 
operation of the program. A user needs to supply the pro-
gram with a suitably formatted list containing the inter-
methyl distance restraints (data graph edges), a structure file 
in a PDB format, and the labels to extract. The program re-
turns an output file listing all assignment possibilities for 
each methyl resonance.  

ASSOCIATED CONTENT 

Supporting information. SI is available containing 
formal definitions and concepts from graph theory and how 
these are exploited by MAGMA. The protocol for simulated 
data, and methods for the performance comparison to MAP-
XSII, and FLAMEnGO2.0, and chemical shift scoring are in-
cluded with supporting figures S1-5. This material is available 
free of charge via the Internet at http://pubs.acs.org. 
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