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Automatic Attribute Profiles
Gabriele Cavallaro, Member, IEEE, Nicola Falco, Member, IEEE,

Mauro Dalla Mura, Member, IEEE, and Jón Atli Benediktsson, Fellow, IEEE

Abstract—Morphological attribute profiles are multilevel de-
compositions of images obtained with a sequence of transfor-
mations performed by connected operators. They have been
extensively employed in performing multi-scale and region-based
analysis in a large number of applications. One main, still
unresolved, issue is the selection of filter parameters able to
provide representative and non-redundant threshold decompo-
sition of the image. This paper presents a framework for the
automatic selection of filter thresholds based on Granulometric
Characteristic Functions (GCFs). GCFs describe the way that
non-linear morphological filters simplify a scene according to
a given measure. Since attribute filters rely on a hierarchical
representation of an image (e.g., the Tree of Shapes) for their
implementation, GCFs can be efficiently computed by taking
advantage of the tree representation. Eventually, the study of the
GCFs allows the identification of a meaningful set of thresholds.
Therefore, a trial and error approach is not necessary for
the threshold selection, automating the process and in turn
decreasing the computational time. It is shown that the redundant
information is reduced within the resulting profiles (a problem
of high occurrence, as regards manual selection). The proposed
approach is tested on two real remote sensing data sets, and the
classification results are compared with strategies present in the
literature.

Index Terms—automatic attribute profiles, filter parameter
selection, tree representation, mathematical morphology, remote
sensing, image processing.

I. INTRODUCTION

TAKING into account the spatial information of images

(e.g., the contextual relations among neighboring pixels,

shape characteristics of regions, scale, etc) has proved to

be beneficial for the interpretation of the image content in

many application domains, such as astronomy [1], medical

imaging [2] and remote sensing [3], [4]. However, modeling

and retrieving spatial features is a challenging task. In this

context, mathematical morphology (MM) [5] has been playing

an important role, since it provides a wide set of operators

that perform contextual image transformations. These trans-

formations are able to probe the image content and can be

useful to infer hints on spatial characteristics of objects in
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the image (e.g., geometry, shape, and edges) according to

the output of the transformations. In remote sensing, the MM

finds its main applications in image filtering, segmentation and

measurements [6]. In order to solve such problems, pixel-based

approaches are not usually considered as good candidates. To

meet this need, the MM framework contains useful tools that

provide tree-based image representations, i.e., a representation

of the image content in a tree structure in which each node

corresponds to a region in the image. Tree representations

are an important solution for many image processing appli-

cations, e.g., pattern recognition in astronomical imaging [7],

representation of different types of multivariate images (e.g.,

color natural images, multimodal medical imaging, etc.) [8],

detection and localization of objects in images [9], etc. Tree

representations of images can be divided into two groups [10]:

hierarchies of segmentation (i.e., hierarchy of image partitions

such as minimum spanning tree (MST) [11], alpha-tree [12],

binary partition tree (BPT) [13]) and threshold decompositions

(i.e., hierarchy of regions such as min- and max-tree [14],

[15], Tree of Shapes (ToS) [16]). The difference between a

hierarchy of segmentation and tree based on the threshold

decomposition is that when taking a horizontal cut, the former

leads to a partition of the image (i.e., set of non-overlapping

regions whose union covers the entire image domain) whereas

the latter to a set of regions representing a partial partition.

In general, these representations enable multi-scale analysis of

objects and spatial analysis of the image organization [17].

The work presented in this paper deals with the threshold

decomposition representations, which are composed of a set of

regions organized in a hierarchical way. Threshold decompo-

sitions have been popularized by connected operators, such as

attribute filters [5] [18], which have been extensively used for

the modelling of spatial information of images from remote

sensing [19], astronomy [20] and medical scanning [21] [22].

Attribute filters are edge-preserving and flexible operators

since they preserve the contours of the processed objects and

rely on many different spatial measures (i.e., attributes). For

example, one can express the objects to be filtered out through

a criterion (attribute) that tells the connected components (i.e.,

flat zones [23]) whether to be preserved or removed. This

attribute can be increasing (e.g., the area of the component)

or non-increasing (e.g., standard deviation, moment of inertia,

etc.). A given attribute causes a specific filtering transforma-

tion, extracting contextual information that is complementary

to the one extracted by other attributes. The possibility to

perform a multi-attribute analysis (i.e., attribute filters built

by employing different attributes) enriches the extraction of

spatial arrangement and improves the discrimination between

different structures. However, the analysis of a scene becomes

more challenging when heterogeneous structures populate
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the scene. In this case, a multi-level decomposition of the

original gray-level image obtained by applying a sequence

of attribute filters according to a pre-defined set of filter

thresholds is preferable. The result of this operation are the

so-called attribute profiles (APs) [24] or self-dual attribute

profiles (SDAP) [25], [26], in case of min- and max-tree or

ToS, respectively. Due to the aforementioned properties, these

operators and their multi-channel and multi-attribute exten-

sions [27] [28] have gained an increasing popularity. They

have been exploited mainly in remote sensing (e.g., classifi-

cation [29]–[32], data fusion [33] and change detection [34],

[35]) and medical imaging processing (e.g., segmentation of

computed tomographic images [36]).

Multi-attribute profiles can extract complementary infor-

mation and effectively model the spatial context. However,

the filter parameter selection (i.e., a set of values used in

the filtering in order to construct a profile) remains one

of the main operational issues, affecting their usability in

different applicative contexts, such as feature extraction, visual

exploration, compression, etc. Although the parameter tuning

is unavoidable, most of the works dealing with morphological

operators for multi-level analysis do not tackle this issue,

whereas the use of similar parameters, even for different case

studies, seems to be the general strategy. In the literature, only

few works addressing this issue can be found [37]–[40]. Since

the morphological analysis is data dependent, the identification

of the suitable threshold sets should be based on empirical

searching. However, such strategy can be time-consuming and

perceptively not trivial.

Focusing on this issue, this paper presents a novel automatic

approach for the selection of filter parameters1 for morpholog-

ical attribute profiles. The proposed method aims to provide

a data-adaptive and user-independent strategy to identify a

suitable threshold set for computing profiles that need to be

both representative (i.e., containing salient structures of the

image) and non-redundant (i.e., objects are present only in

one or few levels of the profile). The method exploits the

threshold decomposition representation of an image, from

which can be derived useful information related to the actual

range of the attribute values. This design choice is extremely

important since no filtering has to be performed to the image

in order to carry out the thresholds selection. The main idea

underlying the automatic selection procedure is to identify

a set of threshold values that approximate a given behav-

ior of the multi-level decomposition. For this purpose, the

concept of granulometric characteristic functions (GCFs) is

here introduced as an extension of the conventional notion

of granulometry [41]. We recall that a granulometric curve (or

granulometry) is a representation of the distribution of sizes in

an image based on the intermediate residuals of a sequence of

increasingly coarser anti-extensive or extensive morphological

filters (a granulometric family) [42, Ch. 1.4.2]. A GCF is

defined as a mapping from a grayscale image to a scalar

value which computes a global measures of the image. When

considering a set of images resulting from the application

1The parameters of the morphological filters are hereafter referred to also as
filter thresholds, since attribute filters are based on the evaluation of a binary
criterion which compare an attribute value against a given threshold

of a sequence of increasingly coarser filters, the GCF shows

the variation of the underlying measure with respect to the

increasing filtering effect. Granulometries are useful descrip-

tors for texture analysis and for gathering information on the

characteristics of objects in the image [41]. The conventional

granulometry uses the volume of the image (i.e., the sum of

the grayvalues of all pixels in the scene) as measure. However,

several measures other than the sum of graylevels can be

considered for defining functions able to represent the effects

of a sequence of filters from different aspects. For example,

in this work we propose two additional GCFs that are not

based on graylevels (i.e., the number of pixels and regions

that are affected by a filtering). However, other definitions

are possible according to which characteristic one wants to

monitor in a filter-based decomposition of the image. Since

the morphological filters considered in this work are efficiently

implemented on a hierarchical representation of the image, the

computation of GCFs that we propose also exploits the tree

representation. This is an extremely interesting feature of the

proposed selection strategy since the GCFs can be efficiently

computed directly on the tree, without requiring any prior filter

step.

For the automatic threshold selection we proceed as follows.

Similarly to [40], in this work, the set of thresholds that best

approximates the GCF computed on the full set of thresholds

is sought. The main assumption is that the distribution of a

given measure along the profile can be extracted and approx-

imated by using a subset of selected thresholds. An adaptive

regression model [43] approximates the original GCF for an

increasing number of thresholds. Eventually, the final set of

thresholds is identified when the estimation error between the

original and the approximated GCFs is minimized.

To summarize, the contributions of this paper are three-

fold: i) a framework for the automatic and efficient selection

of morphological attribute filters’ parameters, which does not

require any actual filtering of the image; ii) the definition

of Granulometric Characteristic Functions as a generalization

of the conventional granulometric curve based on grayvalues;

and iii) a strategy based on regression for the selection of

thresholds from GCFs.

The remainder of the paper is as follows: In Section II an

overview on the strategies proposed in the literature is pre-

sented. Section III provides a briefly introduction to the mor-

phological operators and tree representations. In Section IV the

proposed method is described, while the experiment analysis

is shown in Section V. Section VI concludes the paper,

discussing the findings of the study.

II. RELATED WORK

There have been only few attempts to solve the problem

of the filter threshold selection in mathematical morphology.

In general, a common approach is to derive a reasonable set

of thresholds based on the field-knowledge of the scene. This

requires a visual inspection of the scene under investigation,

followed by a manual selection. This approach often requires

multiple filtering tests to select the appropriate final threshold

set. Depending on the considered attribute and the complexity
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of the scene, this process can be computationally expensive

and time consuming.

To the authors’ best knowledge, the first automatic approach

aimed at decreasing the manual intervention was proposed in

[37], where a vector of thresholds was derived by computing

a given attribute on each object extracted by a preliminary

clustering or classification computed on the original scene.

The final set of thresholds was identified by clustering the

threshold vector and selecting for each cluster the threshold

corresponding to the minimal attribute value. The method

provided better or similar results to the manual selection.

A drawback of the approach is represented by the possible

inconsistency between the attribute values of the connected

components extracted by the classification map and those

represented by the tree, making the approach very sensitive

to variations in the pre-classification map.

In a supervised classification scenario, an automatic pro-

cedure for the threshold selection of the standard deviation

attribute was proposed in [38]. The selected thresholds were

identified based on a statistical analysis of the available

training samples. Similar approach was extended to the area

attribute in [39]. These procedures identify a large set of

thresholds, providing high dimensional profiles that intrinsi-

cally contain redundant features, and thus, requiring a further

dimensionality reduction procedure in order to avoid the

raising of the Hughes’ phenomenon.

An interesting strategy was proposed in [40], where the

filter thresholds of the area profile were selected based on

the analysis of the characteristic function of the pattern spec-

trum [44], [45], which corresponds to the probability density

function of the granulometric curve of the area profile, i.e.,

a curve related to the size distribution of the structures in

the image [41]. In particular, the selected thresholds were

those whose characteristic function best approximated the one

obtained by considering a larger set of thresholds. The method

required an initial set of thresholds, which was manually de-

fined prior to the filtering. The selection was then based on the

sampling of the original characteristic function with a constant

rate. In this case, a number of filtered images (potentially with

all possible thresholds) were produced in order to compute

both the original and the approximated granulometric curves,

resulting in a computationally non-efficient strategy.

What associates all the aforementioned methods is that

they might not exploit the full information contained in the

tree representations. For instance, instead of exploiting the

nodes information they involve additional statistical learning

methods (e.g., supervised/unsupervised classification, feature

extraction). The idea of this work started by a simple consider-

ation: the filtered images that compose a profile are computed

by pruning a tree. A simple and effective threshold selection

method can be based entirely on morphological information

contained in the tree.

III. THEORETICAL BACKGROUND

A. Trees based on threshold decomposition

This section reviews three tree representations based on

threshold decomposition of the image, namely, the min- and

max-tree (i.e., component trees) and the Tree of Shapes (ToS).

Component trees were introduced by Jones [14], [46] as

efficient image representations that enable the computation of

advanced morphological filters in a simple way. These trees

are actually hierarchical structures that encode the threshold

sets and their inclusion relationship and allow efficient imple-

mentations of connected filters.

More formally, let f : Ω→ E be a discrete two-dimensional

grayscale image, defined on a spatial domain Ω ⊆ Z
2 and

taking values on a set of scalar values E ⊆ Z. For any λ ∈ Z,

a lower L(f) and upper U(f) threshold set is defined by:

L(f) = {x ∈ Ω, f(x) < λ}, (1)

U(f) = {x ∈ Ω, f(x) > λ}, (2)

Let P(Ω) be the power set of all the possible subsets of

Ω. Given X ∈ Ω, the set of connected components of X is

denoted as C(X) ∈ P(Ω). If ≤ is a total relation, any two

connected components X,Y ∈ C(L(f)) are either disjointed

or nested. The min-tree and max-tree structures represent the

components in L(f) and U(f) respectively with their inclusion

relations. For example, Fig. 2(c) shows the max-tree structure

of the image in Fig. 2(a). The arrows in denote the parent

relation between the nested connected components that are

identified in Fig. 2(b).

The Tree of Shapes (also known as topographic map), is a

hierarchical representation of a gray-level image in terms of

the inclusion of its level lines. The ToS is a morphological

self-dual representation of the connected components within

an image (i.e., zones enclosed by an isolevel line). Since it is

self-dual, it makes no assumption about the contrast of objects

(either light object over dark background or the contrary).

The ToS can be interpreted as the result of merging the min-

and max-tree [15] into a single tree. It was firstly introduced

by Monasse et al. [47], where the structure was computed

with the Fast Level Line Transform (FLLT) algorithm: it first

computes the pair of dual component trees and then obtains

the ToS by merging both trees. Afterwards, Caselles et al. [48]

introduced the Fast Level Set Transform algorithm (FLST),

which relies on a region-growing approach to decompose the

image into shapes. An operation called saturation is applied to

the connected components, resulting in flat regions obtained

by progressively merging nested regions. Specifically, the

algorithm extracts each branch of the tree starting from the

leaves and growing them up to the root until only a single flat

region is reached. Song et al. [49], proposed to retrieve the ToS

by building the tree of level lines and exploiting the interior

of each level line. Recently, Geraud et al. [50] proposed

a new algorithm to compute the ToS in order to reduce

the computational complexity and overcome the restriction

to only 2D images of the previous methods. The algorithm

computes the ToS with quasi-linear time complexity when data

quantification is low (typically 12 bits or less) and it works

for nD images. Moreover, Crozet et al. [51] presented the first

parallel algorithm to compute the morphological ToS based on

the previous algorithm [50].
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Described more formally, given the set X ∈ Ω let ∂X be the

border of X and X̄ the complementary of X . The hole-filling

operator H : P(Ω)→ P(Ω) is defined by:

H(X) = Ω \ C(X̄, ∂X) (3)

where C(X̄, ∂X) is the connected component of X̄ linking

with the image border. Given the operator H, a shape is any

element of the set:

S = {H(L)}λ ∪ {H(U)}λ (4)

If ≤ is total, any two shapes are either disjointed or nested,

hence the cover of S,⊆ makes the ToS. The definition of the

shapes as hole-filled connected components of the lower L(f)
and upper U(f) threshold set proofs that the ToS can be seen

as a merge of the min- and max-tree. However, the hole-filling

operation creates shapes within neither to the min-tree nor to

the max-tree.

B. Attribute filters

The way C is defined leads to different tree representations

(see previous section) and hence distinct partition πf (i.e., set

of connected components of f ) of the spatial domain Ω. If we

consider a connected operator ψ, by definition it will operate

on f only by merging the connected components of the given

set C [23]. Thus, the result of the filtering will be a new

partition πψ that is coarser (i.e., containing fewer regions) than

the initial one: πf ⊑ πψ(f) meaning that for each pixel p ∈ Ω,

πf (p) ⊆ πψ(f)(p) [42, Ch. 7]. The coarseness of the partition

generated by a connected operator is determined by a threshold

λ (i.e., a size-related filter threshold). Given two instances of

the same connected operator with different filtering thresholds,

ψλi
and ψλj

, which we denote for simplicity as ψi and ψj ,

respectively, there is an ordering relation between the resulting

partitions: πψi
⊑ πψj

given λi ≤ λj . Among the different

types of connected operators, attribute filters have largely

diffused. Attribute filters remove connected components in

C according to an attribute A that is computed on each

component. In greater detail, the value of an attribute A is

evaluated on each connected component in C and this measure

is compared with a reference threshold λ in a binary predicate

Tλ (e.g., Tλ := A ≥ λ). An attribute can be increasing

(e.g., the area of the component) or non-increasing (e.g.,

standard deviation, moment of inertia, etc.). In the former, the

increasingness of A leads to an attribute closing or opening

(min-tree and max-tree, respectively). The tree filtering is

rather straightforward, since it is performed by pruning the

nodes whose attribute function A is under a given threshold,

which can be seen as an attribute thresholding. In the latter,

the non-increasingness of A leads to attribute thinnings and

thickenings. Specific filtering and restitution rules have been

defined in [15] [45] for non-increasing attributes that can be

categorized in two groups: pruning and non-pruning strategies.

In general terms, if the predicate is true the component is

maintained, otherwise it is removed. According to the attribute

considered, different filtering effects driven by characteristics

such as the regions’ scale, shape or contrast can be obtained,

leading to a simplification of the image.

C. Attribute profiles

Let us consider a family of L connected operators ψ

computed considering a sequence of L either increasing or

decreasing values of the filter threshold Λ = {λi}
L
1 that we call

it a profile Pψ := {ψi}
L
1 . Considering the entries of a profile,

the absorption property holds on the resulting partitions such

that ψjψi will lead to πψj
for i ≤ j. So filtered results can be

ordered sequentially.

In this work, we will focus on profiles built with attribute

filters, so called attribute profiles (APs). Profiles considering

attribute filters were initially proposed for the analysis of

remote sensing images in [24]. By considering a max and a

min-tree, attribute opening and closing profiles were defined,

respectively as:

Pγ = {γT0 , γTλ1 , . . . , γTλL }, (5)

Pφ = {φT0 , φTλ1 , . . . , φTλL }, (6)

where γT and φT represent the attribute opening and closing,

respectively, {Ti} is a criterion evaluated on the set of thresh-

olds Λ and φT0(f) = γT0(f) = f , which is the original image.

By denoting with P−

φ the closing profile taken in reverse order

(such that each entry is greater or equal than the subsequent

one), in [24] its concatenation with an attribute opening profile

was named Attribute Profile (AP):

AP = {P−

φ \ φ
T0 ,Pγ}. (7)

The AP is composed of 2L+1 images (L closings, the original

image and L openings).

Analogously, when considering the contrast invariant operator

ρ based on the inclusion tree, the profile Pρ, named Self-Dual

Attribute Profile (SDAP) [25], [26], can be obtained:

Pρ = {ρ
T0 , ρTλ1 , ..., ρTλL }, (8)

with ρT0(f) = f .

IV. PROPOSED APPROACH FOR AUTOMATIC

THRESHOLD SELECTION

A. Definition of Granulometric Characteristic Function

The proposed automatic threshold system is based on the

definition of a descriptive function that globally quantifies

the filtering effect on gray-level image due to the image

transformation performed by a connected operator ψ. Being

inspired by the concept of granulometric curves, which show

the interaction of the size of the image structures with the

filters when the filter threshold varies, we extend the gran-

ulometry definition by considering other characteristics that

can be measured to provide information on the effect of in-

creasingly coarser filtering. Exploiting the tree representation,

a measureM(ψ), representing a specific aspect of the filtering

effect we want to measure, can be easily computed at each

threshold value, resulting in the definition of a granulometric

characteristic function (GCF), which is formally defined as:

GCF(Pψ(f)) = {M(ψi)}
L
i=1. (9)

Thus, if M : f → R, GCF(Pψ(f)) leads to L scalar

values (one for each value of threshold extracted from the

tree representation).
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In this study, we present three definitions of GCFs based

on the following three measures M:

1) Sum of gray-level values: Similarly to the conventional

granulometry, this measure provides information related to the

effect of the filtering with respect to the changes in terms of

gray-levels that are produced in the image.

GCFval(Pψ(f)) =
{

∑

|f − ψi(f)|
}L

i=1
. (10)

When attribute filters are applied on the ToS, the sum of

gray-level values might not be meaningful since the hierarchy

in which the nodes are organized is not driven by an ordering

relation among gray levels (i.e., as for min-tree and max-tree).

The nodes of the ToS follow the inclusion relationship of

the regions and hence the interpretation of the GCF is not

straightforward. For instance, in Fig. 1 the effect of the filtering

applied on the image is not accounted by the GCF measure

since there is no change in the total sum of gray values before

and after the filtering.

3 3 3 3 3 3 3 3 3 3 3

3 5 5 5 5 3 0 0 0 0 3

3 5 0 0 5 3 0 5 5 0 3

3 5 5 5 5 3 0 0 0 0 3

3 3 3 3 3 3 3 3 3 3 3

(a)

3 3 3 3 3 3 3 3 3 3 3

3 5 5 5 5 3 0 0 0 0 3

3 5 5 5 5 3 0 0 0 0 3

3 5 5 5 5 3 0 0 0 0 3

3 3 3 3 3 3 3 3 3 3 3

(b)

Fig. 1. Attribute filter computed on the ToS: T = A(area) ≤ 2. Original
image (a) and filtered image (b). In both images, the sum of the gray-level
values is equal to 153.

2) Number of changed pixels: This measure provides in-

formation on the number of pixels that change gray-value at

different filtering. The obtained GCF results more sensitive

to changes in the spatial extent of the regions rather than in

gray-levels.

GCFpix(Pψ(f)) = {card[f(p) 6= ψi(f)(p)], ∀p ∈ E}
L
i=1 ,

(11)

where card[·] denotes the cardinality of a set.

3) Number of changed regions: This measure extracts in-

formation on the number of connected components that are

affected at each filtering level. It is topological invariant to

both the spatial extent and gray-level variations induced by

the filtering.

GCFreg(Pψ(f)) = {card[C(f)]− card[C(ψi(f))]}
L
i=1 . (12)

The considered measures increase for progressively coarser

filters, providing monotonic increasing GCFs. An example of

the extraction of a GCF is shown in Fig. 3, where a toy image

is used. Starting from the tree representation of the image,

which, in this case, is a max-tree, the GCF is obtained by

considering the number of regions as measure.

It is worth noting that other measures able to describe

specific characteristics of the filtering effects could be also

considered and implemented for the definition of more GCFs.

B. Automatic threshold selection

1) Purpose: The problem we want to address can be

formulated as the identification of a subset Λ̂ = {λ̂i}
L̂
z=1

among the set of all possible values of λs, Λ̄ = {λi}
L
i=1,

with L̂≪ L. The full set Λ̄ is extremely scene dependent and

can potentially be very large making the problem of selecting

the subset Λ̂ more complicated, since the full set is not readily

accessible. A possible strategy for the selection relies on the

computation of a profile by considering a relatively large

number of λs (considering all of them in real scenarios is

impractical) and prune the profile by selecting some of filtered

images and related filter thresholds so defining Λ̂. However,

such an approach is limited by the need of generating the

filtered images in order to perform the selection and by the

lack of guarantee that all possible thresholds are considered

for selection. Here we propose to consider the GCFs defined

in Sec. IV-A in order to select those values λs that lead to

“significant” changes in the effect of the filters (as measured

by the considered GCF). A similar approach was first exploited

in [40], where granulometric curves were used for estimating

a pre-defined sub-set of values of λ that generate salient

filtered images (see Section II). The main advantage of the

proposed method is the use of tree representation of the image

(augmented with the values of the attributes for each node),

which allows us to obtain prior information on the image

decomposition, such as the full set Λ̄ (i.e., all possible values of

λ), to compute a GCFs prior any filtering. In particular, each

node, which maps a region of spatially connected pixels in

the image, gives information related to the value of attributes,

gray-level and number of pixels. Such information is exploited

for the computation of the GCFs.

2) Proposed solution: Similarly to [40], in the proposed

approach, the set Λ̂ of the selected thresholds corresponds

to the one that best approximates a GCF computed on the

set Λ̄. By approximating a GCF curve, we assume that the

distribution of the measure M that underlies the GCF can be

extracted and approximated by using the selected L̂ thresholds.

The approximated GCF curve, hereafter GĈF, is obtained by

using a piecewise linear regression approach [43]2 which C++

implementation is freely available.

The method implements an adaptive segmentation ap-

proach for time-series where segmentation points (or break-

points) divide the time series into intervals (or segments).

In our case, time-series represent sequences of data points

(x0, y0), . . . , (xn−1, yn−1), with xi representing the threshold

i and (yi) the correspondent GCF’s intensity. A polynomial

function is exploited to approximate each interval according

to a chosen model that describes the interval itself (e.g.,

constant, linear, etc.). The segmentation error is estimated by

computing the Euclidean (l2) norm between the interval and its

polynomial approximation. In our approach, the segmentation

of the original GCF is achieved by considering constant

and linear models. This would drive the segmentation to

have segments that cover intervals characterized by a linear

behaviour and have segmentation points where a change in

2The C++ implementation used in this work is freely available at http:
//lemire.me/fr/abstracts/SDM2007.html
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Fig. 2. Example of max-tree representation derived by a toy image. (a) Toy image where for each pixel the grey-value is shown. (b) The iso-level regions,
which represent the connected regions, are identified. (c) The structure of the max-tree that describes the image in its components C (note that the subscript
represents the gray-level while the superscript uniquely identifies the component within the gray-level).
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Fig. 3. Example of a GCF computed on a toy image by considering the number of changed regions as measure. The figure shows the effect of the filtering
on the toy image and the evolution of the GCF for each possible threshold.
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trend appears, i.e., where the curvature is changing. The

segmentation points are then exploited to derive the candidate

thresholds by projecting the breakpoints over the x-axis (see

Fig. 9). For more details on the piecewise linear regression

approach, the Authors encourage the Reader to consult the

work in [43].

The proposed method implements two possible strategies for

the selection of the final subset: a) the size, L̂, of the subset,

Λ̂, is provided by the user as input threshold for the regression

model; b) the final number of thresholds is automatically iden-

tified according to the estimation error. Focusing on the second

strategy, the automatic thresholds identification is based on an

iterative analysis of the estimation error computed in terms of

the normalized root mean squared error (NRMSE) between the

original GCF, which is obtained by considering the full set Λ̄,

and the GĈF computed for an increasing number of thresholds,

nth, starting from nth = 1. As shown in Fig. 9, the estimation

error curve decreases when more thresholds are considered,

showing a L-shape distribution, i.e., a monotone decreasing

curve that becomes stable after a certain point located in the

elbow region of the curve. The aim of the iterative procedure

is to identify such point, which corresponds to the one of

maximum curvature. A simple pseudo-code that shows the

entire procedure for the automatic strategy is described in

Algorithm 1. The algorithm takes as input the 2D gray-scale

image f , the tree T , the attribute A and the measure M.

For each input, various options are given in brackets. Due to

the nature of the employed regression model, the first and the

last breakpoints correspond to the first threshold (i.e., equal

to 0, resulting in the original input image) and to the last

threshold (resulting in all pixels having the same gray-scale

value), respectively, which do not provide useful information

(see Fig. 3) and thus discarded.

V. EXPERIMENTAL ANALYSIS

Aiming at comparing the proposed approach with other

existing strategies, the experimental analysis is carried out

on two real remote sensing data sets and the performance

is evaluated in terms of classification accuracies. It worths

to note that the proposed selection method is unsupervised,

which means that no class information is used in the selection

procedure. For instance, the set of the selected thresholds and

its associated features might not be discriminative of objects

belonging to different classes. Therefore, the comparison with

[38] is partly unfair since it make use of information of the

labeled samples (i.e., training set). Anyway the experimental

results show the flexibility of the proposed approach in pro-

viding complementary contextual information as a support for

a classification problem.

A. Data set description

1) Rome: The data set is composed by panchromatic and

multispectral (blue, green, red and near IR) channels acquired

by QuickBird satellite sensor over the city of Rome, Italy. The

data size is 1188 × 972 pixels with a geometrical resolution of

0.65m in panchromatic and of 2.62m in multispectral. The

acquired scene is a dense heterogeneous urban area, which

Algorithm 1: Thresholds selection

input : 2D grayscale image f ,

Tree T (‘min-tree’,‘max-tree’,‘ToS’),

Attribute A (‘area’,‘standard deviation’,etc.),

Measure M (‘val’,‘pix’,‘reg’)

output: A set of thresholds Λ̂

1 Computation of tree representation T (f);
2 Computation of attribute A(T ) on nodes;

3 {λi}
L
i=1 ←− sort(A(T ));

4 for i = 1 to L do

5 GCF(Pψλi
(f))←−M(ψλi

(T ))

6 end

7 Initialization: nth←− 1;

8 while elbow position is not stable do

9 Estimation of GĈF(Pψ(f), nth);

10 GĈFinterp ←− Interpolation of GĈF over Λ̄;

11 errnth ←− 1−NRMSE(GCF, GĈFinterp);
12 if nth > 1 then

13 compute the elbow position of err;

14 end

15 nth←− nth+ 1;

16 end

17 L̂←− nth;

18 Λ̂←− {λ̂i}
L̂
z=1;

includes 9 ground reference classes, namely: buildings, blocks,

roads, light train, vegetation, trees, bare soil, soil, towers. The

data set and the related reference map are shown in Figs. 4a

and 4b, respectively, while the class information is reported

in Table I. This data set is considered challenging due to the

oblique acquisition angle and the presence of long shadows.

Pansharpening was applied to the panchromatic and multi-

spectral channels using the Undecimated Discrete Wavelet

Transform method [52].

2) Pavia: The data set is a hyperspectral image acquired by

ROSIS-03 (Reflective Optics Imaging Spectrometer) airborne

sensor over the university area of the city of Pavia, Italy. The

sensor has 115 data channels with a spectral coverage ranging

from 0.43 to 0.86 µm. After removing 12 noisy data channels,

the final data set counts 103 spectral bands, showing an area of

610 × 340 pixels with a geometrical resolution of 1.3m. The

ground-truth includes nine classes of interest, namely: asphalt,

meadow, gravel, trees, metal sheets,bare soil, bitumen, self-

blocking bricks and shadows. The data set and the related

reference map are shown in Figs. 4c - 4e, while the class

information is reported in Table I.

B. Experimental setup

For each data set, the profiles derived from the different

tree structures (min-tree, max tree and ToS) are computed as

described in Section III-C for both the attributes of area and

standard deviation.

In the case of Pavia data set and, more in general, when

hyperspectral images are analysed, performing the morpho-

logical decomposition considering the full spectral dimension
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(a) (b) (c) (d) (e)

Fig. 4. Rome data set: (a) true colour image and (b) reference data. Pavia University data set: (c) true colour image; (d) test set and (e) training set.

TABLE I
CLASSES AND NUMBERS OF TRAINING AND TEST SAMPLES FOR ROME AND PAVIA DATA SETS.

Rome Pavia

No. Class Training Test No. Class Training Test

1 Buildings 18126 163129 1 Asphalt 548 6304
2 Blocks 10982 98834 2 Meadow 540 18146
3 Roads 16353 147176 3 Gravel 392 1815
4 Light train 1606 14454 4 Trees 524 2912
5 Vegetation 6962 62655 5 Metal sheets 265 1113
6 Trees 9088 81792 6 Bare soil 532 4572
7 Bare soil 8127 73144 7 Bitumen 375 981
8 Soil 1506 13551 8 Self-blocking bricks 514 3364
9 Towers 4792 43124 9 Shadows 231 795

TABLE II
THE SIZE L OF THE FULL SETS OF VALUES Λ̄ = {λi}

L
i=1

FOR EACH DATA

SET, DIFFERENT TREE REPRESENTATIONS AND ATTRIBUTES.

f A min-tree max-tree ToS

Panch.
area 3206 5337 5910

standard deviation 109 212 210

1st pc
area 1907 1823 2302

standard deviation 90 212 208

2nd pc
area 1191 1972 2181

standard deviation 67 111 108

3rd pc
area 970 944 1124

standard deviation 87 74 89

4th pc
area 365 398 431

standard deviation 32 62 73

is not feasible. In such case, dimensionality reduction is com-

monly applied in order to derive a sub-set of few feature on

which perform the multi-scale morphological feature extrac-

tion. In our experiment analysis, dimensionality reduction is

performed via principal component analysis retaining the first

four principal components (pc) corresponding to the highest

eigenvalues.

Table II reports the size L of the full sets of possible

thresholds Λ̄ = {λi}
L
i=1 (i.e., the full set of attribute values)

that characterize each data set. The thresholds used to extract

the final profile are automatically selected by employing the

automatic strategy described in Section IV-B, which is based

on the estimation error analysis, and using the measures

detailed in Section IV-A.

For the classification task, a random forest algorithm is

employed as supervised learning algorithm with the number of

trees set at 200. In the case of Roma data set, the classification

results are obtained by performing a 10-fold cross-validation

with random selection of the training set to be the 10 % of the

reference samples, while the remaining samples are used as

test set. For such data set, mean values and standard deviations

of the classification results are computed and reported in the

final analysis. In the case of Pavia data set, both the training

and testing sets are available in the literature and considered

fixed.

Furthermore, the classification results obtained by exploiting

the proposed approach are compared against those obtained

from tree strategies available in the literature and presented

in [39] (hereafter Gha13), [38] (hereafter Mar13) and [37]

(hereafter Mah12), taking into account their context of appli-

cation (e.g., Mar13 is an approach developed to work with

the standard deviation attribute, therefore is not included in

the analysis when the area attribute is used). The methods are

briefly described in Sec. II.

C. Results and discussion

In this section, the experimental results are presented and

discussed for each data set. For Rome data set, we report in

Fig. 9 the estimated GĈFs for the ToS and each measure,
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TABLE III
CLASSIFICATION RESULTS OBTAINED FOR ROME DATA SET. EACH

PROFILE IS BUILT ON THE PANCHROMATIC IMAGE CONSIDERING THE

ATTRIBUTE area. FOR EACH METHOD AND PROFILE, THE TABLE REPORTS

THE AVERAGE OF 10-FOLD CROSS-VALIDATION PROCEDURE OF THE

PERCENTAGE OVERALL ACCURACIES OA(%), THE PERCENTAGE AVERAGE

ACCURACIES AA(%) AND THE KAPPA COEFFICIENTS K, WITH RELATIVE

STANDARD DEVIATIONS SHOWN IN BRACKETS.

GCFval GCFpix GCFreg Gha13

No. features 5 5 4 15

26.81 (0.22) 34.34 (0.13) 40.66 (0.14) 37.28 (0.16) AA

Pφ 42.46 (0.16) 49.58 (0.11) 54.16 (0.05) 52.33 (0.11) OA

28.73 (0.27) 37.78 (0.11) 44.30 (0.11) 41.76 (0.15) K

No. features 5 5 4 15

57.33 (0.69) 67.31 (0.18) 59.43 (0.16) 68.88 (0.19) AA

Pγ 62.56 (0.35) 71.68 (0.08) 63.57 (0.05) 70.62 (0.09) OA

54.42 (0.48) 65.91 (0.11) 56.01 (0.07) 64.58 (0.11) K

No. features 9 9 7 29

55.34 (0.49) 75.96 (0.17) 65.86 (0.14) 77.94 (0.13) AA

AP 61.90 (0.32) 78.21 (0.06) 69.95 (0.07) 78.25 (0.09) OA

53.55 (0.41) 73.96 (0.08) 64.03 (0.08) 74.12 (0.11) K

No. features 6 3 4 15

82.57 (0.14) 67.36 (0.32) 72.26 (0.12) 77.91 (0.18) AA

Pρ 84.27 (0.06) 76.59 (0.15) 75.41 (0.04) 79.76 (0.08) OA

81.25 (0.07) 71.90 (0.19) 70.63 (0.05) 75.77 (0.11) K

No. features 5 + 4 5 + 4 4 + 4 15 + 4

69.24 (0.13) 73.60 (0.09) 73.78 (0.09) 73.25 (0.11) AA

Pφ + MS 74.93 (0.06) 78.84 (0.06) 79.12 (0.04) 79.14 (0.04) OA

69.89 (0.07) 74.67 (0.07) 75.01 (0.05) 75.03 (0.05) K

No. features 5 + 4 5 + 4 4 + 4 15 + 4

85.75 (0.11) 89.45 (0.09) 81.14 (0.11) 87.62 (0.06) AA

Pγ + MS 86.08 (0.04) 89.75 (0.04) 82.87 (0.05) 87.67 (0.03) OA

83.43 (0.06) 87.81 (0.05) 79.56 (0.07) 85.33 (0.04) K

No. features 9 + 4 9 + 4 7 + 4 29 + 4

82.21 (0.18) 91.15 (0.11) 84.78 (0.11) 91.39 (0.11) AA

AP + MS 83.84 (0.11) 91.99 (0.06) 86.75 (0.04) 91.80 (0.05) OA

80.70 (0.14) 90.48 (0.07) 84.22 (0.04) 90.27 (0.06) K

No. features 6 + 4 3 + 4 4 + 4 15 + 4

94.18 (0.07) 90.87 (0.12) 85.42 (0.12) 92.74 (0.09) AA

Pρ + MS 94.72 (0.04) 92.41 (0.05) 87.36 (0.07) 92.93 (0.03) OA

93.73 (0.05) 90.98 (0.06) 84.95 (0.09) 91.61 (0.04) K

showing the selected thresholds used for building the relative

profile considering the attribute area. Moreover, for each

estimated GĈF, the relative estimation error, which provides

the size of the final threshold set, is also provided. It is

worth noting that by employing the Algorithm 1, the point

selected on the curve represents a trade-off between the size

of the threshold set and the minimum estimation error. In each

GĈF’s graph, the line composed by blue dots represents the

real GCF (computed with the full set of thresholds), the red

line denotes the estimated GĈF and yellow circles identifies

the breakpoints, which are used to derive the thresholds for

building the profile. It can be seen that each GCF, computed by

considering a different measure, describes a certain behaviour

of the morphological decomposition, and thus, provides a

different set of thresholds.

Considering the Rome data set, the classification results of

the experiments in which the attribute area is employed are

shown in Table III. The table shows the results obtained by the

proposed approach for the three GCFs (i.e., GCFval, GCFpix,

GCFreg), and those obtained by Gha13 method. First, the

experimental analysis is conducted by considering the only

panchromatic channel, and later, the analysis is extended to

include the spectral channels in the feature space. In both

TABLE IV
CLASSIFICATION RESULTS OBTAINED FOR ROME DATA SET. EACH PROFILE

IS BUILT ON THE PANCHROMATIC IMAGE CONSIDERING THE ATTRIBUTE

standard deviation. FOR EACH METHOD AND PROFILE, THE TABLE

REPORTS THE AVERAGE OF 10-FOLD CROSS-VALIDATION PROCEDURE OF

THE PERCENTAGE OVERALL ACCURACIES OA(%), THE PERCENTAGE

AVERAGE ACCURACIES AA(%) AND THE KAPPA COEFFICIENTS K, WITH

RELATIVE STANDARD DEVIATIONS SHOWN IN BRACKETS.

GCFval GCFpix GCFreg Gha13 Mar13

No. features 3 2 6 12 5

20.25 (2.64) 32.78 (0.12) 39.62 (0.09) 42.89 (0.16) 28.91 (0.21) AA

Pφ 38.23 (1.81) 46.63 (0.09) 53.25 (0.05) 56.68 (0.07) 44.76 (0.18) OA

20.92 (3.28) 34.51 (0.11) 43.03 (0.09) 47.25 (0.08) 31.49 (0.24) K

No. features 6 4 8 12 5

63.55 (0.44) 63.20 (0.11) 70.17 (0.21) 70.48 (0.13) 68.43 (0.15) AA

Pγ 68.00 (0.21) 66.40 (0.06) 70.92 (0.05) 70.51 (0.04) 70.66 (0.11) OA

61.39 (0.25) 59.55 (0.08) 64.99 (0.08) 64.55 (0.07) 64.71 (0.14) K

No. features 8 5 13 23 9

55.32 (1.77) 66.09 (0.11) 75.95 (0.08) 78.19 (0.12) 69.55 (0.25) AA

AP 64.42 (0.51) 68.75 (0.06) 76.55 (0.04) 79.07 (0.09) 72.07 (0.11) OA

56.74 (0.66) 62.58 (0.08) 71.98 (0.05) 74.96 (0.11) 66.34 (0.14) K

No. features 4 5 7 12 5

73.53 (0.29) 78.05 (0.12) 80.13 (0.14) 80.26 (0.13) 74.05 (0.28) AA

Pρ 76.23 (0.17) 80.23 (0.06) 81.01 (0.08) 80.98 (0.07) 76.54 (0.16) OA

71.60 (0.21) 76.45 (0.07) 77.39 (0.11) 77.26 (0.08) 71.86 (0.19) K

No. features 3 + 4 2 + 4 6 + 4 12 + 4 5 + 4

67.60 (0.12) 71.80 (0.12) 73.40 (0.12) 74.41 (0.09) 70.83 (0.08) AA

Pφ + MS 73.85 (0.08) 76.79 (0.03) 78.61 (0.05) 79.80 (0.04) 76.21 (0.03) OA

68.59 (0.11) 72.20 (0.04) 74.40 (0.06) 75.83 (0.05) 71.50 (0.04) K

No. features 6 + 4 4 + 4 8 + 4 12 + 4 5 + 4

87.70 (0.08) 83.29 (0.08) 86.28 (0.09) 86.43 (0.07) 87.74 (0.05) AA

Pγ + MS 88.56 (0.03) 84.73 (0.06) 86.60 (0.05) 87.31 (0.05) 88.50 (0.04) OA

86.39 (0.04) 81.81 (0.07) 84.04 (0.06) 84.89 (0.06) 86.32 (0.05) K

No. features 8 + 4 5 + 4 13 + 4 23 + 4 9 + 4

86.33 (0.07) 85.51 (0.13) 88.51 (0.07) 89.46 (0.07) 86.18 (0.11) AA

AP + MS 87.79 (0.05) 86.63 (0.08) 89.22 (0.04) 90.76 (0.04) 87.87 (0.05) OA

85.47 (0.07) 84.09 (0.11) 87.17 (0.05) 89.00 (0.05) 85.55 (0.06) K

No. features 4 + 4 5 + 4 7 + 4 12 + 4 5 + 4

88.74 (0.06) 91.14 (0.09) 90.36 (0.11) 90.06 (0.06) 89.60 (0.08) AA

Pρ + MS 90.06 (0.07) 92.22 (0.05) 91.26 (0.08) 91.06 (0.02) 90.64 (0.06) OA

88.18 (0.08) 90.76 (0.06) 89.61 (0.11) 89.36 (0.03) 88.87 (0.08) K

scenarios, it can be seen that by employing the Pφ or Pγ
profiles alone leads to poor classification accuracies. This is

due to the fact that both the attribute opening and attribute

closing profiles extract partial information of the scene, related

to dark and bright regions, respectively. Such behaviour is

also explained by the high complexity and heterogeneity

of the scene, in particular for the class building, which is

characterized by an high spectral variability (gray-level range

of values). The classification results are improved when the

attribute opening and closing are considered as part of the

same structure, as it is in the case of AP . By using such

operator, the opening and closing profiles derived by the min-

tree and max-tree representations are concatenated, providing

complementary information, but requiring a higher number of

thresholds for the estimation of GĈFs. A further improvement

is achieved by employing the ToS representation to obtain the

Pρ profiles, which obtains the highest classification accuracy.

The Pρ performs the morphological decomposition consid-

ering dark and bright regions at the same time, making this

operator more adaptable to different gray-levels conditions. By

comparing the different methods, it is important to notice that

the proposed method creates, in general, profiles characterized

by a very small number of features, while obtaining classifica-
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TABLE V
CLASSIFICATION RESULTS OBTAINED FOR PAVIA DATA SET. EACH PROFILE

IS BUILT ON THE FIRST FOUR PRINCIPAL COMPONENTS CONSIDERING THE

ATTRIBUTE area. FOR EACH METHOD AND PROFILE, THE TABLE REPORTS

THE PERCENTAGE OVERALL ACCURACIES OA(%), THE PERCENTAGE

AVERAGE ACCURACIES AA(%) AND THE KAPPA COEFFICIENTS K.

GCFval GCFpix GCFreg Gha13 Mah12

No. features 16 21 18 60 36

76.67 83.57 83.45 84.16 85.77 AA

EPφ 77.72 79.70 81.82 79.79 80.84 OA

70.85 73.27 75.70 73.55 74.80 K

No. features 17 13 16 60 36

85.96 86.65 84.90 88.59 87.57 AA

EPγ 75.08 86.48 75.87 85.50 82.25 OA

68.86 82.41 69.84 81.25 77.35 K

No. features 29 30 30 116 68

85.63 89.79 85.50 93.07 91.15 AA

EAP 76.54 88.04 80.91 91.25 88.08 OA

70.49 84.01 74.88 88.46 84.27 K

No. features 19 16 14 60 36

93.73 94.22 85.75 91.88 88.39 AA

EPρ 94.01 94.34 83.58 91.06 85.08 OA

91.82 92.33 78.12 88.12 80.33 K

tion accuracies that are better or similar to those obtained by

Gha13 method. The classification maps corresponding to the

best results achieved by each technique are shown in Fig. 5.

The classification results obtained by considering the stan-

dard deviation attribute are shown in Table IV. The obtained

results have a similar trend to those obtained with the attribute

area. As in the previous case, when the Pφ or Pγ are used

alone, they achieve the lowest classification accuracies, while

by employing the AP and Pρ, the results are improved. For

this case, we report the accuracies achieved by the Gha13 and

Mar13 methods. From the comparison it can be observed that

all the methods achieved very similar classification results.

However, the proposed approach requires less features com-

pared to the Gha13, while Mar13 provides profiles of similar

size. Fig. 6 shows the classification maps corresponding to

the best results achieved by each technique considered in the

comparison.

For the Pavia data set, the results of the attribute area are

reported in Table V. Unlike the Rome data set, the use of

Pφ or Pγ profiles provide already good classification results.

Such accuracies are slightly improved by exploiting the AP
and in particular the Pρ, which provided the best classification

accuracies. For comparison, the Gha13 and Mah12 methods

are considered. From the table, it can be seen that our approach

is able to achieve better or similar results than those obtained

by the Gha13 and Mah13 by creating low dimensional profiles.

The classification maps corresponding to the best results

achieved by each technique are shown in Fig. 7.

The classification results obtained for the same data set

using the standard deviation attribute are listened in Table VI.

Also in this case, it can be seen the effectiveness of the

proposed approach in providing the highest classification ac-

curacies (except when the Pγ is used) while providing profiles

charactered by a low number of features. In contrast, Gha13,

Mah12 and Mar13 identify profiles characterized by a high

TABLE VI
CLASSIFICATION RESULTS OBTAINED FOR PAVIA DATA SET. EACH

PROFILE IS BUILT ON THE FIRST FOUR PRINCIPAL COMPONENTS

CONSIDERING THE ATTRIBUTE standard deviation. FOR EACH METHOD

AND PROFILE, THE TABLE REPORTS THE PERCENTAGE OVERALL

ACCURACIES OA(%), THE PERCENTAGE AVERAGE ACCURACIES AA(%)
AND THE KAPPA COEFFICIENTS K.

GCFval GCFpix GCFreg Gha13 Mah12 Mar13

No. features 13 14 16 48 36 19

79.54 83.16 83.42 84.79 82.87 76.42 AA

EPφ 74.55 78.90 78.94 78.22 73.40 75.29 OA

67.10 72.28 72.17 71.57 66.09 67.36 K

No. features 21 18 15 48 36 19

93.84 90.26 85.59 89.35 84.91 89.97 AA

EPγ 90.89 89.07 85.99 88.46 84.09 91.41 OA

88.05 85.68 81.76 84.88 79.46 88.60 K

No. features 30 28 27 92 68 34

93.83 90.34 88.11 91.27 87.98 88.83 AA

EAP 92.01 88.62 86.18 89.43 85.04 88.92 OA

89.48 84.87 81.62 85.98 80.14 85.44 K

No. features 13 16 18 48 36 19

95.18 92.40 89.29 91.64 87.83 89.15 AA

EPρ 90.94 91.35 90.00 87.79 86.07 89.57 OA

88.15 88.25 86.37 83.65 81.38 85.78 K

number of features without improving the final classification

results. Fig. 8 shows the classification maps corresponding to

the best results achieved by each technique.

VI. CONCLUSIONS

This paper presented an approach for the computation

of morphological attribute profiles, which relies on a novel

framework for the automatic selection the filters’ thresholds3.

The automatic selection procedure is based on Granulometric

Characteristic Functions, a generalization of the conventional

granulometric curve. Three GCFs have been defined based on

different measures, such as the sum of the gray-level values,

the number of pixels and the number of regions affected by

the filtering. The motivation for using different GCFs relies on

the fact that the filtering effects in the image decomposition

are represented according to different characteristics (e.g., in

terms of variations of contrast, scale of the areas affected

by filtering, etc). GCFs have been then considered in the

threshold selection strategy. Specifically, the proposed selec-

tion algorithm allows to retrieve the set of thresholds whose

associated GCF better approximates the GCF computed with

all possible thresholds. It worths noting that the exploitation

of tree representations (i.e., component trees or ToS) allows

us to compute the GCFs directly from the tree representation.

This is a great advantage since manual (i.e., trial & error) and

existing automatic strategies need to actually filter an image

for carrying out the threshold selection. This is unpractical for

real applications due to the potentially high cardinality of the

set of all possible filter thresholds, resulting in a suboptimal

exploration of the domain of the filter parameters.

Experiments were conducted addressing a scene classifi-

cation problem in order to make a comparison with other

3The Matlab executable files of the proposed method are provided at http:
//www.openremotesensing.net
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(a) GCFval (OA 94.72) (b) Gha13 (OA 92.93)

Fig. 5. Classification maps of Roma data set for the experiments reported in Table III (area attribute): (a-b) Pρ + MS.

(a) GCFpix (OA 92.22) (b) Gha13 (OA 91.06) (c) Mar13 (OA 90.64)

Fig. 6. Classification maps of Rome data set for the experiments reported in Table IV (standard deviation attribute): (a-b-c) Pρ + MS.

threshold selection methods available in the literature. The

comparison showed the effectiveness of the proposed approach

in achieving overall higher classification accuracies and, at the

same time, in providing more representative profiles composed

of a lower number of filtered images. This fact is particularly

advantageous because leads to a further reduction of the

computational cost since the image analysis is performed in

a feature space of lower dimensionality. The experimental

results showed also that, considering the proposed automatic

strategy, overall the attribute profiles computed on the three of

shapes lead to a better representation (in terms of classification

accuracy) of the image content with respect to those based on

component trees.

Several aspects would deserve a more in depth analysis

starting from this work. For example, the choice of the GCF

used for the selection seems to be dependent on the scene and

on the filter used for computing the profiles. In this regard, we

plan a deeper investigation on the effects of different GCFs

in the representation of the image content. Decision fusion

strategies could be employed if one wants to consider multiple

GCFs in the analysis. Another interesting future developments

is the investigation of threshold selection when considering

jointly different attributes. Furthermore, despite the suitability

of the proposed selection technique for computing an attribute

profile used in a supervised analysis of an image, the selection

procedure is fully unsupervised. We plan to better address

the supervised classification scenario by designing a selection

technique that integrates the a priori information available in

the scene.
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[50] T. Géraud, E. Carlinet, S. Crozet, and L. Najman, “A Quasi-Linear
Algorithm to Compute the Tree of Shapes of nD Images,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics), vol. 7883 LNCS,
2013, pp. 98–110.

[51] S. Crozet and T. Geraud, “A First Parallel Algorithm to Compute the
Morphological Tree of Shapes of nD Images,” in Proceedings of the

IEEE International Conference on Image Processing (ICIP), 2014, pp.
2933–2937.

[52] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Context-driven
fusion of high spatial and spectral resolution images based on oversam-
pled multiresolution analysis,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 40, no. 10, pp. 2300–2312, Oct 2002.

Gabriele Cavallaro received the B.S. and M.S.
degrees in telecommunications engineering from the
University of Trento, Italy, in 2011 and 2013, re-
spectively. He holds a Ph.D. degree in Electrical
and Computer Engineering from the University of
Iceland, obtained in 2016. At present he is a post-
doctoral research assistant at the Juelich Supercom-
puting Centre, Juelich, Germany. At this institute, he
is part of a scientific research group focused on high
productivity data processing within the Federated
Systems and Data Division. His research interests

include remote sensing and analysis of very high geometrical and spectral
resolution optical data with the current focus on mathematical morphology
and high performance computing. He was the recipient of the IEEE GRSS
Third Prize in the Student Paper Competition of the 2015 IEEE International
Geoscience and Remote Sensing Symposium 2015 (Milan, Italy, July 2015).
He serves as a reviewer for IEEE Geoscience and Remote Sensing Letters and
IEEE Journal of Selected Topics in Earth Observations and Remote Sensing.

Nicola Falco (S10-M’15) received the B.Sc. and
M.Sc. degrees in Telecommunication Engineering
from the University of Trento, Italy, in 2008 and
2011, respectively. He holds a joint Ph.D. degree
in Electrical and Computer Engineering from the
University of Iceland, and in Information and Com-
munication Technologies from the University of
Trento obtained in 2015. He is currently a Postdoc-
toral Fellow at the Climate & Ecosystem Sciences
Division (CESD), Lawrence Berkeley National Lab-
oratory, Berkeley, California. His research interests

focus on remote sensing image analysis and processing with applications in
environmental monitoring and climate change. His work concentrates on the
development of methodologies for data analysis and information extraction
mainly in optical and hyperspectral imagery, spanning multiple disciplines,
such as image and signal processing, mathematical morphology, pattern
recognition and machine learning. Dr. Falco was a recipient of the Recognition
of IEEE GEOSCIENCE REMOTE SENSING LETTERS BEST REVIEWERS in
2013. He was co-recipient of the IEEE GRSS third price in the Student Paper
Competition of the 2015 IEEE International Geoscience and Remote Sensing
Symposium.

Mauro Dalla Mura (S’08 – M’11) received the lau-
rea (B.E.) and laurea specialistica (M.E.) degrees in
Telecommunication Engineering from the University
of Trento, Italy, in 2005 and 2007, respectively. He
obtained in 2011 a joint Ph.D. degree in Information
and Communication Technologies (Telecommunica-
tions Area) from the University of Trento, Italy and
in Electrical and Computer Engineering from the
University of Iceland, Iceland. In 2011 he was a Re-
search fellow at Fondazione Bruno Kessler, Trento,
Italy, conducting research on computer vision. He is

currently an Assistant Professor at Grenoble Institute of Technology (Grenoble
INP), France. He is conducting his research at the Grenoble Images Speech
Signals and Automatics Laboratory (GIPSA-Lab). His main research activities
are in the fields of remote sensing, image processing and pattern recognition.
In particular, his interests include mathematical morphology, classification and
multivariate data analysis. Dr. Dalla Mura was the recipient of the IEEE GRSS
Second Prize in the Student Paper Competition of the 2011 IEEE IGARSS
2011 and co-recipient of the Best Paper Award of the International Journal
of Image and Data Fusion for the year 2012-2013 and the Symposium Paper
Award for IEEE IGARSS 2014. Dr. Dalla Mura is the President of the IEEE
GRSS French Chapter since 2016 (he previously served as Secretary 2013-
2016). He is on the Editorial Board of IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing (J-STARS) since 2016.



15

Jón Atli Benediktsson (S’84-M’90-SM’99-F’04)
received the Cand.Sci. degree in electrical engi-
neering from the University of Iceland, Reykjavik,
in 1984, and the M.S.E.E. and Ph.D. degrees in
electrical engineering from Purdue University, West
Lafayette, IN, in 1987 and 1990, respectively. On
July 1, 2015 he became the Rector of the University
of Iceland. From 2009 to 2015 he was the Pro Rector
of Science and Academic Affairs and Professor of
Electrical and Computer Engineering at the Univer-
sity of Iceland. His research interests are in remote

sensing, biomedical analysis of signals, pattern recognition, image processing,
and signal processing, and he has published extensively in those fields. Prof.
Benediktsson was the 2011-2012 President of the IEEE Geoscience and
Remote Sensing Society (GRSS) and has been on the GRSS AdCom since
2000. He was Editor in Chief of the IEEE Transactions on Geoscience and
Remote Sensing (TGRS) from 2003 to 2008 and has served as Associate
Editor of TGRS since 1999, the IEEE Geoscience and Remote Sensing Letters
since 2003 and IEEE Access since 2013. He is on the Editorial Board of the
Proceedings of the IEEE, the International Editorial Board of the International
Journal of Image and Data Fusion and was the Chairman of the Steering
Committee of IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing (J-STARS) 2007-2010. Prof. Benediktsson is a co-
founder of the biomedical start up company Oxymap (www.oxymap.com).
He is a Fellow of the IEEE and a Fellow of SPIE. Prof. Benediktsson is
a member of the 2014 IEEE Fellow Committee. He received the Stevan
J. Kristof Award from Purdue University in 1991 as outstanding graduate
student in remote sensing. In 1997, Dr. Benediktsson was the recipient of
the Icelandic Research Council’s Outstanding Young Researcher Award, in
2000, he was granted the IEEE Third Millennium Medal, in 2004, he was a
co-recipient of the University of Iceland’s Technology Innovation Award, in
2006 he received the yearly research award from the Engineering Research
Institute of the University of Iceland, and in 2007, he received the Outstanding
Service Award from the IEEE Geoscience and Remote Sensing Society. He
was co-recipient of the 2012 IEEE Transactions on Geoscience and Remote
Sensing Paper Award and in 2013 he was co-recipient of the IEEE GRSS
Highest Impact Paper Award. In 2013 he received the IEEE/VFI Electrical
Engineer of the Year Award. In 2014 he was a co-recipient of the International
Journal of Image and Data Fusion Best Paper Award. He is a member of the
Association of Chartered Engineers in Iceland (VFI), Societas Scinetiarum
Islandica and Tau Beta Pi.


