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Automatic Baseline Recognition for the Correction of Large
Sets of Spectra Using Continuous Wavelet Transform and
Iterative Fitting

Carlo G. Bertinetto,* Tapani Vuorinen

Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland

A new algorithm for the automatic recognition of peak and baseline

regions in spectra is presented. It is part of a study to devise a

baseline correction method that is particularly suitable for the

simple and fast treatment of large amounts of data of the same type,

such as those coming from high-throughput instruments, images,

process monitoring, etc. This algorithm is based on the continuous

wavelet transform, and its parameters are automatically determined

using the criteria of Shannon entropy and the statistical distribution

of noise, requiring virtually no user intervention. It was assessed on

simulated spectra with different noise levels and baseline ampli-

tudes, successfully recognizing the baseline points in all cases but

for a few extremely weak and noisy signals. It can be combined with

various fitting methods for baseline estimation and correction. In

this work, it was used together with an iterative polynomial fitting to

successfully process a real Raman image of 40 000 pixels in about

2.5 h.

Index Headings: Baseline correction; Continuous wavelet transform;

CWT; Iterative fitting; High-throughput spectroscopy; Raman

imaging.

INTRODUCTION

During the past decades, the evolution of techniques

for multivariate analysis, spectral resolution, and ma-

chine learning led to an increasingly sophisticated level

of information that can be extracted from spectroscopic

measurements. At the same time, these techniques

require an ever higher quality of the data in order to

produce reliable results. For this reason, experimental

measurements often undergo a preprocessing phase to

separate indeterministic signal components from the

spectral features of interest. Frequently, spectra are

contaminated by what is commonly referred to as

‘‘baseline’’, i.e., wide fluctuations of the measured signal

that are unrelated to the phenomenon under investiga-

tion. Whereas these fluctuations do not always hamper

qualitative analysis, as spectral features may still be

recognizable with the baseline embedded,1 they have

adverse effects on quantitative analysis, reducing the

simplicity and robustness of any mathematical model

based on these spectra.2

Several methods were developed for baseline correc-

tion. Roughly, they can be classified as: (a) methods that

estimate the baseline from a set of spectra, and (b)

methods that process spectra individually. The first

category derives the baseline from the relationships

among the spectra of an entire set, usually employing

multivariate analysis techniques. The simplest methods

consist in identifying a spectral component that is

approximately constant throughout the set and separat-

ing it from the rest of the signal. Depending on the

situation, this component may be attributed to the

baseline3 or the spectral peaks.4 This approach is simple

and often effective, but the constant-component assump-

tion limits its use to very specific cases, such as

calibrations. Other methods make use of additional data

associated to the spectra, e.g., the concentration of a

particular substance, and identify as baseline the

component that has no correlation to these data. The

mathematical techniques used for this purpose include

orthogonal signal correction,5 partial least squares,6 and

methods based on information theory.7,8 This approach

is generally very accurate and reliable, but can be used

only when some associated information is available.

Moreover, its outcome is strongly related to this specific

information and may not be suitable in different

investigations or experimental setups.

The second category of baseline correction methods

processes spectra individually using criteria, such as

shape and characteristics of bands, to separate the

signal originated by a particular phenomenon of interest

from other effects occurring in the analyte or in the

instrument (e.g., distinguishing Raman scattering from

fluorescence emission or variations in laser intensity). In

general, the baseline is expected to have a low

curvature, whereas the most rapid oscillations are

considered random noise, and the ‘‘true’’ signal lies

somewhere in the middle. Although these methods do

not make use of precise numerical data associated to the

spectra, they do exploit some form of background

knowledge, such as the type of function and/or param-

eters to approximate the baseline curve or the signal

peaks. The background knowledge for baseline correc-

tion may also be provided by the scientist’s experience,

as in manual methods. These consist in selecting a

series of points representative of the baseline by visual

inspection and then interpolating or fitting these points

with a suitable function, e.g., linear, polynomial, or

spline functions. A more sophisticated variant has

manual correction performed on the principle compo-

nents of a set of spectra.9 Although the manual approach

is still widely used, it is subjective, not perfectly

reproducible, and time consuming.10

Many different methodologies were developed to

obtain an objective and reproducible baseline correc-

tion. A comprehensive description of most of them can

be found in the work of Schulze et al.11 and a more recent
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one in the paper by Rowlands and Elliott.12 These

methods differ in the algorithms and mathematical

criteria, e.g., derivatives, entropy, or frequency, used

to separate the ‘‘true’’ signal from the baseline and other

kinds of noise. They all require the user to specify

certain parameters and/or stopping criteria, though the

number of these parameters varies for each method.

The increasing use of high-throughput measurement

techniques that produce large amounts of data brought

about the need for fast spectral processing. Various

authors tackled this issue by proposing automated or

semi-automated algorithms for baseline correction that

reduce human intervention. Effective solutions were

devised using iterative polynomial fitting,13 penalized

quantile spline regression,14 adaptive least squares/

Whittaker smoother,15–17 moving average-peak strip-

ping,18–20 local second derivative,12 and morphological

or geometrical approaches.21,22 The performance of

these methods differ in terms of accuracy, computational

speed, amount of human intervention, and types of

spectra to which they can be applied; these goals are

usually conflicting. Some methods are designed, at least

in principle, to be able to process any spectrum using

absolutely no human intervention or knowledge. Howev-

er, these fully automated methods often require compu-

tational times that are too long for certain applications.

For example, the algorithm proposed by Schulze et al.19

is reported to correct a single baseline in at least 20 s.

For a typical spectral image of 100 3 100 pixels, the

corresponding overall correction time is in the order of

days. Moreover, the applicability of such methods is

limited by the actual difficulty in defining a universal

criterion to identify the ‘‘true’’ signal that works for any

spectrum. This even caused some authors to introduce

user-defined knowledge back into algorithms that were

initially devised as parameter free, e.g., to distinguish

broad spectral bands from baseline sections with a high

curvature.15,23 In our opinion, getting completely rid of

instance-related background knowledge may not even

be achievable, not least because the very definition of

what constitutes ‘‘true’’ signal and noise depends on the

particular investigation.

In this framework, it would be highly useful to devise a

method that is as general, automatic, and reproducible

as possible, but at the same time, fast enough to handle

large sets of spectra. To achieve such a compromise, we

explore the capabilities of an approach based on the

selection and fitting of points representative of the

baseline, as in manual methods, but introducing some

mathematical tools that make this process automatic. In

particular, the present paper focuses on the issue of

baseline recognition and proposes an algorithm that

employs the continuous wavelet transform (CWT) togeth-

er with Shannon entropy and statistical distribution of

noise.

The wavelet transform (WT) is a mathematical tech-

nique that can extract information on the frequency and

position of a signal through decomposition into appro-

priate basis functions.24 The discrete form of WT has

been used to correct baselines in many works, but was

not deemed very suitable for automated methods

because its outcome is highly dependent on several

manually selected parameters.11 The CWT was used

more seldom for baseline correction. In the most notable

application,25 it was employed together with an iterative

thresholding on the power spectrum to recognize

baseline points, which were subsequently fitted with a

Whittaker smoother. This method was later improved17 to

better recognize broad peaks and baseline points in low

and congested regions. The reported spectra were

corrected almost completely automatically, but the user

was still required to manually indicate the presence of

broad peaks and set a smoothness parameter for the

fitting function.

The algorithm presented in this paper is first assessed

by performing baseline recognition on simulated spectra

with different curve types, noise levels, and signal

intensities. As this study is still in an initial stage, not

all cases are taken into account, and some approxima-

tions are introduced. However, the shown results are

significant for a practical use of this algorithm in several

types of spectroscopy and in very frequent cases, such

as the treatment of a large set of spectra with similar

characteristics, in which at least a part of the spectra

have a good signal. Typical examples of these situations

are the analysis of spectral images or the monitoring of

industrial processes. To show that practical applications

are already possible at this stage, the algorithm is also

employed in combination with an iterative polynomial

fitting to carry out a full baseline correction of real

Raman spectra from an image of 200 3 200 pixels.

METHOD

Baseline Recognition Algorithm. The vector y of

spectral intensities is modeled as y¼ sþ gþ n, where s
is the spectral signal of interest, g is the baseline, and n
is zero-mean random noise. The spectral correction

consists in estimating g and subtracting it from y. Two
initial assumptions are made: (i) the baseline has a

lower curvature (i.e., is smoother) than the rest of the

signal; (ii) there are segments of the spectrum that do

not contain spectral bands, i.e., these segments of y are

composed of g and n only. These conditions are

commonly met in many types of spectroscopy, e.g.,

Raman, infrared (IR), nuclear magnetic resonance

(NMR), or mass spectrometry. The baseline is estimated

by fitting the band-free points with an appropriate

function, depending on the type of spectrum. These

points are automatically selected by a baseline recog-

nition algorithm, denoted in this paper as CWT-BR,

based on the continuous wavelet transform (CWT).

The wavelet transform is a mathematical tool for time-

frequency analysis that involves decomposing a signal

into a set of appropriately defined basis functions named

wavelets. A detailed explanation of the theory can be

found in the work of Meyer.24 Very briefly, wavelets are

obtained by linear transformation (scaling and transla-

tion) of a locally oscillating curve w called mother

wavelet. The scaling and translation are quantified by

two parameters a and b, respectively; their allowed

values discriminate between discrete wavelet transform,

in which a and b are quantized, and CWT, in which a and

b can assume any value. The scaling parameter a can be

associated with the curvature of the signal, whereas b

refers to its original domain, e.g., spectral units. Being
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f(x) the signal under consideration and wa,b a wavelet

derived from a particular choice of w, a, and b, the formal

expression of the CWT is

CWT ða; bÞ ¼
Z ‘

�‘

w�a;b 3 f ðxÞdx ¼ wa;b jf ðxÞ
� �

ð1Þ

with w�a;b indicating the complex conjugate of wa,b and

hwa,bjf(x) being a notation used for the inner product. In

other words, it is a convolution of the wavelet with the

signal over a continuous range of scales (a). It expresses

the similarity coefficient between the wavelet and the

signal at each point b, and it may thus be used to extract

the part of the signal that is most similar to the employed

wavelet and scale. By choosing a wavelet and scale

similar to the peaks, one can highlight the spectroscopic

bands and suppress the rest, i.e., background and

random noise.

The basic scheme of the CWT-BR method is illustrated

in Fig. 1. Given a spectrum (Fig. 1a), its CWT is

calculated for several scales (Fig. 1b), and a particular

value of a, denoted as â, is selected (Fig. 1c). The

spectral regions with low CWT(â) values, i.e., lower than

a threshold h (Fig. 1d), are considered as peak free and

belonging to the baseline (Fig. 1e). The mother wavelet

employed in this algorithm is the inverse of the second

derivative of the Gaussian curve, also called Mexican hat

function, depicted in Fig. 1f. This function has already

been used in other studies26,27 and is known to

effectively approximate most types of spectroscopic

signals. The parameters â and h are determined by

automatic series of operations explained below, which

work on a few additional assumptions: (i) random noise

is considered to have a normal distribution; (ii) when

analyzing a set of several spectra, at least some of them

have a good signal-to-noise ratio (SNR); and (iii) the

spectra within the set are not very different in shape and

minimum distance among peaks (meaning the distance

between the closest peaks in a spectrum).

Selection of Scale. Let ca be the CWT of the spectrum

vector y for a given scale parameter a. Let H be the

Shannon entropy of ca, defined as

H ¼ �
X

i

ci

C
� ln ci

C

� �
ð2Þ

where ci are the elements of ca and C ¼
P

ici; the term

inside parentheses is assigned zero for every ci ¼ 0.*

This function expresses how much a signal curve is

concentrated in fewer and narrower peaks: its values

range from lnN (with N the number of elements of the

signal vector) for a flat signal to zero for a signal that is

null everywhere but for one single element. Here, H is

used to find the scale parameter for which the CWT

mostly highlights the peaks of interest over background

fluctuations, such as baseline and random noise. From

the example in Fig. 1b, it can be observed that, as a

increases, the random noise is gradually suppressed,

but the CWT gets broadened in the peak regions and

tends to be more affected by the baseline curvature.

The best compromise is reached at the scale corre-

sponding to a minimum of H(a), denoted as â, see Fig.

1c. As illustrated in Figs. 2a, 2b, and 2c, â decreases

when the peaks in a spectrum are more near each

other; increasing the number of peaks without changing

the distance between the two closest ones (not shown

here) was not observed to have any effect. On the other

hand, higher random noise pushes â to greater values,

see Fig. 2d, and usually plays a larger role than peak

distance. The influence of the baseline is more complex

and less clear, but it can be ignored if the considered

spectra have a sufficiently good signal. In spectra with

several peaks with various width and intensity, there

might be more than one local minimum of the H(a)

function, see Fig. 2e. In this case, â is chosen on the

first local minimum, i.e., the one with lowest a, because

the other minima are likely to derive from the

suppression of the smallest peaks by the CWT at

higher scales.

The Shannon entropy criterion may become less

reliable with very noisy signals. Therefore, if a set of

several spectra with somewhat similar peak shape and

distance between closest peaks is to be analyzed, it is

preferable to select â based on the best spectra of the

set and use an average value for all of them. When the

number of spectra is very large, i.e., of the order of

thousands or more, it is convenient to do this through an

automatic statistical procedure. In this study we em-

ployed the following:

1. A sample of k spectra is randomly picked from the

initial group; k ’ 1/10 of the total.

2. For each of the k picked spectra, an approximate SNR,

denoted as gSNR, is evaluated as:

gSNR ¼ maxðyÞ �minðyÞ
rðdyÞ ð3Þ

where y is the spectrum, r means standard deviation,

and dy is the differential spectrum, i.e., the vector [y2
� y1, y2,. . .,yN � yN�1], with N the length of y.

3. The k/3 spectra with highest gSNR are retained, while

the others are discarded.

4. For the k/3 retained spectra, y is extended by

repeating the first and the last element 400 times to

avoid artifacts caused by border effects. The extended

spectra yþ have the form:

yþ ¼ ½ y1;�; y1

zfflfflfflfflffl}|fflfflfflfflffl{400

; y1; y2;�; yN�1; yN ; yN ;�; yN

zfflfflfflfflfflffl}|fflfflfflfflfflffl{400

� ð4Þ

5. The CWT of yþ, denoted cþa , is computed using

Mexican hat wavelet for several values of a ranging

from 1 toM, with M a scale corresponding to a wavelet

much broader than the peaks (in this instance M¼ 60).

6. The Shannon entropy H is calculated for each cþa
vector, ignoring the first 400 and the last 400 elements

that derive from the artificial spectrum extension.

Before calculating H, it is important to remove any

spike noise, e.g., cosmic ray peaks in Raman spectra.

* Note: this definition for the entropy of a signal is not to be confused

with the one often found in other works, which uses the

probabilities of possible values instead of the values themselves.
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7. For each considered spectrum, the smallest a corre-

sponding to a local minimum of H(a) is selected.

8. The mean among all the selected a is chosen as the

value of â and is used in the next calculations.

Selection of the Threshold on the CWT. Because of

possible deviations caused by random noise, the most

appropriate threshold h to discriminate CWT values

corresponding to regions with or without peaks needs to

be defined for each spectrum. This is done by the

following operations:

1. The yþ and cþ
â
vectors are computed as in steps 4 and

5 of scale selection, using Mexican hat and scale

parameter â.

2. A histogram P of the probability density function of cþ
â

is plotted, ignoring the elements corresponding to the

extended points (i.e., the first and last 400 points).

3. The contributions to the CWT deriving from random

noise are assumed to have a normal distribution

around zero. The portion of P with values d : max(P) �
d . 1/3 max(P), i.e., the central part corresponding to

the smallest elements of cþ
â
, is fitted with a Gaussian

curve. The number of bins in P is initially set as 200,

then corrected by assigning it the value (approximated

to the greater integer) n¼ 8 � R/r̃, with R¼ [max(cþ
â
)�

min(cþ
â
)] and r̃ the standard deviation of the Gaussian

fit. The fit is performed again with the new binning,

and this correction is repeated until the variation of n

between consecutive iterations is less than 5% or it

changes sign (never more than three iterations were

needed for any spectrum processed in this work).

4. The value of h is defined in relation to the Gaussian fit

according to the following function:

h ¼ ~r 0:6þ 10 � ND

NG

� �
ð5Þ

where NG is the area of P under the Gaussian curve,

defined as the portion corresponding to the cþ
â

elements ci :�3r̃ , ci , þ3r̃, and ND is the area

of the remaining histogram. The ND/NG ratio express-

es the weight of the randomly distributed cþ
â

elements compared to the rest of the signal. Here,

h typically takes the value of ’5r̃ for spectra with

high SNR and 0.6r̃ for very noisy spectra, in which

the Gaussian distribution covers the whole range of

P, see Fig. 3.

For every sequence of five spectral points for which

jcþ
â
j , h, the middle point of the sequence is assigned as

baseline. Examining sequences instead of single points

avoids mistaking for baseline all the zero crossings that

frequently occur in CWT.

Iterative Polynomial Fit for the Refinement of
Baseline Correction in Raman Spectra. For the

experimental Raman spectra presented in this paper,

the baseline points identified with CWT-BR were refined

and fitted with an iterative polynomial fitting (IPF)

algorithm, inspired by other methods known in the

literature.13 A fifth-order polynomial was used, which is

known to effectively approximate the baseline in Raman

spectra mainly caused by fluorescence of the analyte.28,2

FIG. 1. Basic scheme of the CWT-BR algorithm: (a) Example spectrum (conventional units); (b) continuous wavelet transform (CWT): lighter shade

corresponds to higher values and the vertical axis indicates the scale parameter a; (c) Shannon entropy of the CWT: the entropy value and the scale

parameter are on the horizontal and vertical axes, respectively; (d) CWT for the chosen scale parameter â, corresponding to the minimum of the

Shannon entropy. A threshold h is defined and is indicated by the horizontal dashed lines; (e) the regions for which jCWTj , h, indicated by the

darker shade, are assigned to the background; (f) Mexican hat mother wavelet.
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If we define B as the set of points selected after applying

CWT-BR, the algorithm is schematized as follows:

1. Fit all the points in B with a fifth-order polynomial.

2. If yb � pb . 1.5 S (where y and p are the spectral

intensity and the polynomial approximation, respec-

tively, point b 2 B, and S is the standard error of

estimate), remove b from B.

3. Fit again the remaining points in B.

4. If yi , pi for i¼ l, lþ1, lþ2, . . . , lþk (i.e., the spectrum

is smaller than the polynomial approximation for a

sequence of k consecutive points, with k � N/100), add

the point [i þ (k/2)] to B.

5. Repeat steps 1–4 until convergence of B.

This procedure removes incorrect assignments, such

as points in congested peaks that are identified as

baseline and overestimations of the baseline that

produce negative portions in the final corrected spec-

trum.

All the algorithms described in this paper were written

in-house using MATLAB version 8.0 R2012b (The Math-

works, Natick, MA). The calculations were performed on

a Fujitsu Esprimo E910 computer enabled with an Intel

Core i5-3470 CPU of 3.20 GHz, 8 GB RAM and running on

Windows Vista operating system. The codes of the

algorithms are available on request.

Experiments. The performance of the CWT-BR algo-

rithm was tested on simulated spectra taken or slightly

modified from another baseline correction paper.18 They

consist of a vector of length 1001 containing seven

Lorentzian peaks convoluted with Gaussian curves;

three peaks are well separated, while the other four

are partially overlapped, see Fig. 4a. These peaks are

added a baseline and normally distributed random

noise. The baseline can be either a sigmoidal, Gaussian,

or exponential curve, with different signal-to-baseline

ratio (SBR), defined as the height of the tallest peak

([signal maximum] � [signal minimum], before adding

baseline or noise) relative to the baseline amplitude

([baseline maximum] � [baseline minimum]). Five

FIG. 2. Examples of spectra and their corresponding plot of the Shannon entropy of the CWT (vertical axis) as a function of the scale parameter

(horizontal axis). The chosen â value is indicated on each plot. For more a detailed explanation, see text.
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spectra have a sigmoidal baseline with SBR ¼ 1 and

signal-to-noise ratio (SNR, defined as the height of the

tallest peak relative to the standard deviation of the

random noise) of 100, 30, 10, 6, and 3, respectively. Six

spectra were generated with the sigmoidal baseline

combining SBR of 0.1 and 0.01 with SNR of 100, 10, and 3,

respectively. Eighteen spectra were generated combin-

ing SBR of 1, 0.1, and 0.01 with SNR of 100, 10, and 3 for

the Gaussian and exponential baseline, respectively.

The total number of simulated spectra is 29.

The CWT-BR combined with IPF was employed to

correct the baseline of a large set of real spectra. In

particular, we applied it to a Raman image of 200 3 200

pixels taken from a sample of Scots pine (Pinus

sylvestris) using an Alpha300 R Confocal Raman

microscope (Witec GmbH, Germany).29 The considered

wavenumber range was 160–3620 cm�1.

RESULTS AND DISCUSSION

Simulated Spectra. Because the number of simulated

data was small, the spectra on which to perform the

entropy-based scale selection were picked manually

instead of automatically. The Shannon entropy of the

CWT vectors for scale parameters ranging from 1 to 60

was calculated for the three spectra with highest SBR

and SNR. The minimum entropy was found for a scale

parameter â ¼ 5, which was used for all simulated

spectra.

As a quantitative measure of the quality of the baseline

recognition, the specificity and sensitivity parameters30

were calculated and are reported in Table I. Specificity is

defined as the percentage of spectral points recognized

as baseline among the ‘‘true’’ baseline points. Similarly,

sensitivity is the percentage of points recognized as

peak (i.e., not recognized as baseline) among the ‘‘true’’
peak points.� In this calculation, peak points were

considered those with intensity greater than 4% of the

maximum of the nearest peak, before adding baseline

and random noise. It must be pointed out that this

definition of peak regions is conventional; therefore,

these quality parameters must be taken as indicative

information rather than absolute measurement. Some

visual examples of the results are shown in Fig. 4. In all

the figures of spectra presented in this paper, the

baseline points are marked by gray vertical lines.

For all spectra with SBR of 1 and 0.1, when the SNR

was equal to 100, the baseline points were recognized

almost perfectly, and their quality parameters are very

close to 100%. A visual example of this outcome is

shown in Fig. 4b. With SNR equal to 30 and 10, a slight

decrease of the parameters was observed, especially for

sensitivity. However, it must be pointed out that most of

this decrease derives from a different recognition of

FIG. 3. Histograms of the probability distribution function of CWT values at scale â for the simulated spectra with sigmoidal baseline SBR¼ 1 and

various SNRs (see text for acronyms). The Gaussian fit of the central part of the histogram is drawn as a gray line. (a) Spectrum with SNR¼ 10. The

shaded rectangles indicate the values that fall within 3 times the standard deviation of the Gaussian fit (NG) and those that are outside this range

(ND). (b)–(f) Spectra for SNR¼ 100, 30, 10, 6, 3, respectively. The vertical dashed lines indicate the threshold (h) on the CWT. Note how h is distanced

from the bell-shaped curve for high SNR and gradually intersects it as noise increases.

� These definitions conceive the problem as a peak recognition

rather than a baseline recognition. Nevertheless, it was here

preferred to leave these names unchanged.
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peak tail points. Because the exact baseline/peak

distinction in these regions is somewhat conventional,

this result cannot really be considered an error. Very few

points unquestionably belonging to the baseline were

identified as peaks. Provided that enough baseline

points are recognized elsewhere, this kind of error is

not detrimental for a subsequent fit. On the other hand,

points at the top of congested peaks could sometimes be

recognized as baseline, as can be seen in Fig. 4c for

point 649 on the abscissa (highlighted by a circle).

Although this assignment is not correct, it can be easily

removed by iterative refinement methods. To provide an

example of this possibility, the baseline points recog-

nized in the spectrum in Fig. 4c (SBR¼ 1, SNR¼ 30) were

fitted with a Whittaker smoother (WS),31 setting a

smoothing parameter k ¼ 106, removing all baseline

points greater than the curve fit by more than three times

the standard error of estimate and fitting again until the

sequence of baseline points did not vary. Point 649 was

removed after one iteration, and the resulting baseline

approximation is plotted in Fig. 4c as a thick dashed line.

It is not in the scope of this paper to carry out an

extensive study on baseline estimation using WS with

CWT-BR; therefore, this calculation was not repeated for

the rest of the data. It is in our future plans, though, to

devise an automated selection of the optimal value of k
for the WS fit, based on the noise level and information

derived from multi-scale CWT.

For the spectra with SBR ¼ 0.01, the baseline

recognition was not always sufficiently correct because

the CWT was sometimes more affected by the curvature

of the baseline than by the tiny peaks. When noise was

low (SNR ¼ 100), the consequently small value of h
caused only the top of the peaks to be recognized as

such, as can be observed in Fig. 4d. In the case of the

exponential baseline, the leftmost side is interpreted as

FIG. 4. Examples of simulated spectra and baseline regions, indicated by the gray shade. The abscissa indicates the vector element number;

spectral intensities are in conventional units. (a) Simulated peaks before the addition of the baseline and random noise. Gray areas indicate the

regions that are considered baseline for the calculation of sensitivity and specificity parameters. (b)–(f) Gray vertical lines indicate the points

selected by the CWT-BR algorithm. Characteristics of the spectra: (b) exponential baseline, SBR¼ 0.1, SNR¼ 100; (c) sigmoidal baseline, SBR¼ 1,

SNR¼30; (d) Gaussian baseline, SBR¼0.01, SNR¼100; (e) exponential baseline, SBR¼0.01, SNR¼10; (f) Gaussian baseline, SBR¼1, SNR¼3. (c)
The dotted circle highlights a point between two congested peaks, which is interpreted as baseline by CWT-BR. The thick dashed line is a fit of the

baseline points by an iteratively corrected Whittaker smoother (see text).

TABLE I. Sensitivity and specificity parameters for the baseline
recognition of simulated spectra.

Baseline curve

type SNRa

SBRb ¼ 1 SBR ¼ 0.1 SBR ¼ 0.01

Sens.c Spec.d Sens. Spec. Sens. Spec.

Sigmoidal 100 99 99 98 99 86 92

30 90 100 – – – –

10 90 89 82 97 82 93

6 82 66 – – – –

3 75 44 80 46 77 39

Gaussian 100 99 99 93 100 25 100

10 84 96 84 98 84 70

3 78 49 90 42 77 50

Exponential 100 99 99 97 99 83 84

10 86 96 84 92 83 74

3 80 48 85 46 81 50

a Signal-to-noise ratio.
b Signal-to-baseline ratio.
c Sensitivity.
d Specificity.
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a peak because of the high CWT generated by the sharp

interception between the steepest part of the curve and

the constant 400 point extension, see Fig. 4e. This issue

could probably be resolved by using another extension

in which the curve reaches a constant value smoothly

rather than instantly. It is worth noting that a mirror-

image extension, which is a more common way to deal

with border effects,32 in this case, would enhance this

artifact even more. It must also be pointed out that these

spectra are intended as a test on the performance of the

CWT-BR algorithm in cases of extremely weak signals.

As expected, for the spectra with SNR¼ 3, in which the

peaks are almost completely swamped into the random

noise fluctuations, the worst baseline recognition was

obtained. Like the aforementioned cases with very low

SBR, these spectra are to be considered another test on

the CWT-BR with a particularly difficult signal. Figure 3f

shows how a high noise level produces a Gaussian

distribution so broad that it almost entirely mixes with

the CWT values originated from the real signal.

Nevertheless, the recognition of the peak points was

rather good, as indicated by the sensitivity value of 75%
or greater. On the other hand, several gaps in the

baseline recognition were observed in the areas where

noise gave rise to a profile similar to a peak, as in Fig. 4f.

It must be stressed that these spots can be easily

mistaken for a peak also by visual inspection. Consid-

ering that the assumptions and criteria used by CWT-BR

are substantially not very different from those of manual

methods, these kinds of errors could reasonably be

expected.

For the reported simulated spectra, the CWT-BR

algorithm was able to provide a satisfactory recognition

of the baseline, except for extremely weak or noisy

signals, in a few seconds and virtually without any

human intervention (the only one being the indication of

which were the best spectra). Although this method often

does not outperform the human eye and is therefore not

the most suitable for treating very tricky baselines, it

appears to be a very good choice for the quick and

reproducible processing of a large number of not

particularly difficult signals. It is also more automatic

than methods that recognize the baseline using CWT and

iterative thresholding,25,17 in which the user must

indicate the scale parameter or at least the presence

of broad peaks. Moreover, these methods need a rather

large difference in curvature between peaks and

baseline, or they may not converge (although the user

may toggle a different recognition strategy in the

presence of broad peaks). The CWT-BR yields results

even when the peak-baseline curvature difference is

small, although a large difference is surely beneficial.

Experimental Raman Spectra. Cosmic ray peaks

were removed from the Raman image of a wood cross

section by the ‘‘Cosmic Ray Removal’’ function of WITec

Project 2.10 (Witec GmbH, Germany). A scale parameter

â¼ 8 was selected by applying the procedure described

in the Methods section. Each spectrum was then

processed by CWT-BR and the iterative polynomial

fitting (IPF) algorithm. Because in this case it is not

possible to objectively know the true position of peaks

and shape of baseline, the quality of the processing can

be evaluated only by visual inspection. Four spectra

were picked from very different areas of the image and

are shown in Fig. 5 as representatives of the overall

results. In particular, the spectra from the first three rows

of Fig. 5 are taken from the middle lamella, secondary

cell wall, and hollow lumen (filled with epoxy resin),

respectively.29 The spectrum in the fourth row is also

from the secondary cell wall, but has a lower SNR as

compared to the one in the second row. The baseline

points and polynomial baseline approximation after

CWT-BR and IPF, respectively, as well as the final

baseline-subtracted curve are depicted for each spec-

trum.

As can be observed in the left-side column of Fig. 5,

after applying only the CWT-BR algorithm all the major

spectral features were recognized. However, several

points were assigned as baseline in congested peak

regions, and broad peaks were recognized only partially.

As a consequence, the polynomial fit (dotted line) of these

recognized points overestimates the spectra in some

areas and, supposedly, the true baseline. These results

show that, although CWT-BR was able to deal with

congested peaks in the simulated spectra of the previous

section, it still needs to be improved to analyze spectra

with a greater variability in peak breadth, probably by

taking more than one CWT scale into consideration.

The middle column of Fig. 5 shows the baseline

approximation and fitting points after using the IPF

algorithm. This operation removed all the spurious

assignments, except for few noisy low-value points,

and the final fit appears substantially correct. The results

can be even more appreciated in the right-side column,

which shows the final corrected spectra after baseline

subtraction. Within the precision allowed by noise, these

spectra are all aligned on the horizontal zero line, and no

negative regions are observed. It can be noticed that the

baseline correction does not perform nor require any

prior treatment, such as smoothing, which could risk

removing or distorting parts of the signal. Although the

use of a fifth-degree polynomial plays a big role in the

final outcome and is not applicable to any type of

spectrum, this approach that combines CWT-BR and IPF

has a potential advantage over methods based only on

iterative fitting13 because it does not depend entirely on

the choice of the interpolating curve.

A simple way to perform a statistical evaluation of the

effect of the performed baseline correction on the whole

image is through principal component analysis (PCA).33

Figure 6 plots the first four principal components

(denoted PC1–4) for the raw Raman image (left column)

and the baseline-corrected one (right column), which

explain 98% and 85% of the total variance, respectively.

Here, PC1 and PC2 of the raw spectra show clear

features of the baseline curvature, whereas the corre-

sponding PCs after baseline correction are predomi-

nantly flat on the zero line except in peak regions. Also,

PC4 shows a slope for both the raw and corrected

spectra, but it is considerably less steep in the latter

case.

The computation of the CWT-BR and IPF on our

platform proceeded at a rate of 4–5 spectra per second,

and the treatment of all the 40 000 spectra in the image

took about 2.5 h. It is difficult to compare this speed with

that of other methods in the literature because most of
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the authors do not report a precise value, if they report

any at all, and very few carry out such large calculations.

However, it is among the fastest methods reported.

Perhaps more importantly, this duration is of the same

order as the duration of the corresponding experimental

measurement. Since in nearly all laboratories there is

enough computing power to carry out a measurement

and some calculations simultaneously, this preprocess-

ing algorithm can be used by researchers without

slowing down their work.

The final results on the presented Raman image show

that the CWT-BR algorithm, despite its current limitations

when used alone, can already have successful practical

applications if combined with iterative refinement meth-

ods. The required background knowledge consisted of

the fitting function and the notion that all the considered

spectra have similar types of signals. These require-

ments are suitable for many typical experimental setups,

in which the approximate characteristics of the peaks are

known in advance, though their exact shape and position

vary.

The overestimation of the baseline after the first step,

i.e., CWT-BR and simple polynomial fit, was not a

significant problem after employing IPF. Nevertheless,

a more accurate recognition is desirable as it would

allow for using CWT-BR with many other fitting methods.

As a future development, we expect to improve the

algorithm by using information from more than one CWT

scale, for example, exploiting several local minima of the

entropy-scale curve, and by making it work with other

types of noise distribution, such as the Poissonian. The

possibility of combining CWT-BR with different fitting

techniques may lead to a very flexible approach, in

which the user could opt for a more general baseline

correction or a more constrained (and supposedly faster)

one, depending on the available background knowledge.

Our ultimate purpose is to devise, with the help of other

mathematical tools, a baseline correction methodology

in which the only information provided by the user is

grouping the data into sets of analogous measurements.

These sets are often defined by the structure of the

instrumental output, e.g., images, time sequences, etc.

FIG. 5. Real Raman spectra taken from an image of Pinus sylvestris and outcome of different preprocessing steps. The abscissa is in wavenumber

units (cm�1), spectral intensities are in arbitrary units. The polynomial fit of baseline points, indicated by gray vertical lines, is drawn as a dotted

curve. Left column: spectra after application of CWT-BR and simple polynomial fit. Middle column: spectra after application of CWT-BR and IPF. Right

column: final corrected spectra after subtraction of the baseline estimation. First row (from top): spectrum from middle lamella. Second row:

spectrum from secondary cell wall. Third row: spectrum from hollow lumen. Fourth row: spectrum from secondary cell wall with lower SNR than the

spectrum in the second row.
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The CWT-BR algorithm, which functions needing only the

definition of the measurement dataset, is a step towards

the realization of such a methodology.

CONCLUSIONS

A new algorithm, denoted as CWT-BR, to recognize

baseline points in spectra was presented in this paper. It

is based on the continuous wavelet transform and uses

the criteria of Shannon entropy and statistical noise

distribution to automatically determine its parameters. It

works under certain assumptions that are frequently

found when analyzing large sets of spectra of the same

type, in which at least a part of them are of good quality.

On the reported simulated spectra, the algorithm was

able to recognize the baseline points correctly, except

for extremely weak or noisy signals. It was shown that

the wrong assignments can be easily corrected in a

subsequent phase by appropriate iterative fitting meth-

ods.

On the spectra of a real Raman microscopy image, the

use of CWT-BR alone did not produce a fully satisfactory

result, but a very good one was obtained after combining

it with an iterative polynomial fitting (IPF) algorithm. The

quality of the baseline correction was evaluated by

observing a few sample spectra and by principle

component analysis. The whole calculation required no

significant human intervention and was carried out in a

time short enough for practical application on sets

containing thousands of spectra.

The presented experiments show that CWT-BR is a

promising tool for baseline correction and can already

be successfully applied in combination with appropriate

fitting algorithms. Its characteristics make it particularly

suitable for a fast, simple, and automatic treatment of

FIG. 6. First four principal components (PCs) of the Raman image of Pinus sylvestris using raw spectra (left column) and baseline corrected spectra

(right column), respectively.
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large series of spectra, such as the ones produced by

high-throughput instruments. Further development of the

methodology is prospected, with the aim of making it

applicable to more general cases.
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