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Abstract. Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized 

processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. 

Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. 

However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image 

features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In 

the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a 

predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes 

were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level 

run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, 

a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential 

forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The 

selected optimal features were further incorporated into a back propagation neural network to establish a predictable 

parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the 

proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral 

filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering 

process, our approach not only produced better denoised results but also saved significant processing time.
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1. Introduction

Magnetic resonance imaging (MRI) is one powerful apparatus used to investigate the structure and 

function of the brain in both health and disease. It has been one of the most frequently used 

neuroimaging modalities due to its high contrast among different soft tissues, high spatial resolution 

across the entire field of view, and multi-spectral characteristics. However, random noise inevitably

appears during the acquisition process that includes eddy-current distortions, physiological motion and 
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instabilities of the MRI scanning hardware. The noise not only affects the medical diagnostic tasks but

also degrades many computerized image processing and analysis procedures such as tissue 

classification, visualization, super-resolution, segmentation, and registration. Consequently, noise 

removal or reduction is important and essential to maintain the quality of brain MR images for a wide 

variety of subsequent applications [1].

For the past decades, Gaussian filters have been widely used in many MR image processing 

applications for its simplicity [2]. This filter computes a weighted average of pixel values in the 

neighborhood in such a way that the weight decreases with distance from the kernel center. Although 

the Gaussian filter smoothes noise quite efficiently, edges are blurred significantly. To preserve the 

sharpness, a nonlinear method called the anisotropic diffusion filter [3] has been proposed. In their 

approach, pixel values are averaged from neighborhoods, whose size and shape depend on local image 

variation that is measured at every point [4]. Alternatively, one promising technique that attempted to 

improve the Gaussian filter is the bilateral filter [5]. It has been shown that the bilateral filter 

performed effectively in MR image noise suppression and it has been the subject of many further 

studies [6-8].

Nevertheless, most denoising algorithms require laborious tuning of parameters that are often 

sensitive to specific image features and textures. Automation of these parameters through artificial 

intelligence techniques will be highly beneficial [8, 9]. This paper proposes to automate the denoising 

process using an artificial neural network based on image texture feature analysis. For its effectiveness 

and simplicity, the bilateral filter will be adopted as the key denoising algorithm in the automation 

framework.

2. Methods

The proposed system consists of two major phases: training and testing, as illustrated in Figure 1.

The intention is to establish a predictable parameter model for the values of the parameters: N, ��, and �� in the bilateral filter, which is explained in Section 2.3. In both phases, the image texture feature 

computation plays an important role in the automation process as described subsequently.

2.1. Texture feature extraction

Texture in an image refers to the appearance, structure and arrangement of an object within the 

image that describes the spatial variations of different pixels. It has long been recognized that texture 
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Fig. 1. Flowchart of the proposed automatically denoising scheme.
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Fig. 2. Image texture feature categories: (a) basic statistics, (b) GLCM, (c) GLRLM and (d) Tamura features.

features play an important role in a wide variety of computer vision, image analysis and pattern 

recognition applications. In particular, texture features have been extensively used in medical images 

to quantify image properties such as homogeneity, contrast, and regularity [10-12].

In our approach, a total of 83 image features are obtained based on four different feature extraction 

categories as shown in Figure 2. In each individual image, there are four basic statistical features 

computed directly from the image intensity, 32 features in the gray-level co-occurrence matrix 

(GLCM) [13-15] class including eight basic features multiplied by four directions, 44 features in the 

gray-level run-length matrix (GLRLM) [14, 16, 17] class including 11 basic features multiplied by 

four directions, and three complex features in the Tamura texture feature class[18-20].

2.2. Feature selection

2.2.1. Paired-samples t-test

To facilitate the feature selection process and to obtain the ranking of discrimination among the 

texture features, a paired-samples t-test [21, 22] is then applied to each individual image feature to 

evaluate the discrimination ability in two categories: noise level and slice position. The evaluation is 

based on the distinguishing ability between noise levels, intensity distributions, and anatomical 

geometries in two images according to the average p-value. Those features with an average p < 0.05

are selected as candidates for the subsequent process [23].

2.2.2. Sequential forward selection (SFS)

If a large amount of features are selected, the computation of the neural network training will be 

very time-consuming. Moreover, redundant inputs may lead to degraded performance. Consequently, 

it is essential to select the most relevant attributes that are beneficial to the proposed automatically

denoising scheme while removing the redundant attributes. To speed up the computation of the neural 

network, a sequential forward selection (SFS) method [24] is used to obtain the minimal subset of the 

image texture features based on the ranking of discrimination from the paired-samples t-test results.

The selection procedure starts by initializing an empty set �� that is considered as the best subset of 

the features. The feature �� that gives the lowest average p-value has the highest priority to be added

into �	 at each step k. The selected features are then used in the neural network to obtain the prediction 

accuracy A based on a ten-fold cross validation method [25]. The overall procedure of the sequential 

selection algorithm is described as follows:

� Start with the empty set �� =  {
}
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� Add in the next best feature �� = arg ��
�����[�(�)]
� If �(�	 + ��) > �(�	)

3.1 Update �	�� = �	 + ��; � = � + 1
3.2 Go to step 2

� End

2.3. Best parameter computation of bilateral filtering

The essence of the bilateral filter [5] is to combine both geometric closeness in the spatial domain

and gray value similarity in the range domain as a nonlinear filter for image denoising. More 

specifically, let ���, ��� be the location of the pixel centered at a (2N+1) × (2N+1) neighborhood and ���,�! is the pixels in the neighborhood of ���, ��� defined as

"��,�! = #�$� , $��: �$� , $�� % &�� ' *, �� + *- × &�� ' *, �� + *-.             (1)

The weighting functions for the spatial component and the radiometric component are defined 

respectively in Eqs. (2) and (3) as

/��,�!� ($� , $�) = exp 0' |�2�,2!)3(��,�!�|4
5674 8                                                   (2)

/��,�!� ($� , $�) = exp 0' |9(2�,2!)39(��,�!�|4
56<4 8                                              (3)

where ?(@,@) is the intensity value at the given position (@,@), �� and �� are the controlling parameters 

used to adjust /� and /�, respectively. The ensemble weight in the bilateral filter is then the product 

of /� and /� as given in Eq. (4).

/��,�!�$� , $�� = /��,�!� ($� , $�)/��,�!� ($� , $�)                            (4)

In practice, each pixel is filtered using normalized weights to obtain the final filtered image using

?A���, ��� = B CD�,D!�2�,2!�9(2�,2!)(E�,E!)%F
B CD�,D!(2�,2!)(E�,E!)%F                                               (5)

In the best parameter computation procedure as shown in Figure 1, the intention is to obtain the 

optimal values of N, ��, and �� in the bilateral filter for the subsequent training process through a

brute-force method based on the peak signal-to-noise ratio (PSNR), which is defined as

PSNR = 10 @ log�� H IJIK9LM�4
B B |9O(Q,T)39(Q,T)|4UKKVWUJJVW

X                           (6)

where I represents the original YQ × YT image, ?Z represents the restored image, and Imax equals to 255 

for 8-bit grayscale cases. The higher the PSNR values the better the restoration results. These optimal 
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values of the three parameters are then used in the learning stage to train the neural network system as 

well as for the evaluation of the automatic noise removal scheme.

2.4. Back propagation network (BPN)

The back propagation network (BPN) [26-28] with multilayer feedforward and error back 

propagation is adopted in both phases of the proposed noise removal scheme associated with the 

selected texture features. The famous Levenberg-Marquardt (LM) learning algorithm [29, 30] is used 

in the automation system for the training purpose.

3. Experimental results

T1-weighted MR image volumes obtained from the BrainWeb [31] dataset with normal and 

multiple sclerosis (MS) were used for the experiments. For each type, there are five different slice 

thicknesses, six noise levels and three intensity non-uniformities. The prediction accuracy is measured 

using the mean absolute percentage error (MAPE) as

MAPE = �
` b | �(	)3�O(	�

�(	) |`
	c� × 100%                                (7)

where f(�) represents the expected value, fZ(�) represents the predicted (output) value, and h is the 

number of data being tested. The smaller the value of MAPE, the better the prediction accuracy is. A

total of 2250 1mm normal MR slices were used for the training procedure.

Tables 1 and 2 present the order of significance based on the average p-value of the t-test results 

among all image texture features in noise level and slice position, respectively. After the SFS 

procedure, nine optimal features: SRLGE ������	 
��
� ������	 
��
� �����	 
��
� �������	 ���

������	��� �������	��� �����	��� ������	and COR �����	were obtained, which were further used in 

the BPN training procedure. The MAPE score of the proposed parameter prediction system based on 

the ten-fold cross validation was 22.62%. Figure 3 presents the restored image using the proposed 

automati cally denoising method on the 1mm MS case. A high and consistent PSNR score of 30.56 

Table 1 

Paired-samples t-test results based on the p-value: noise level

p-value Feature

[0.01, 0.02) SRLGE(45 ,90 )

[0.02, 0.03) SRLGE(0 ,135 ),  RLN(90 )

[0.03, 0.04) RLN(0 ), GLN(0 ), CON, RP(0 , 90 ), GLN(45 ,90 ), LGRE(0 ), RLN(135 )

[0.04, 0.05) GLN(135 ), RLN(45 ), RP(45 , 135 ), LGRE(45 , 90 )

[0.05, 0.07) LRHGE(0 , 45 , 90 , 135 ), LGRE(135 ), HOM(0 , 45 , 90 , 135 ), CON(90 ), DIR, DIS(0 ,

90 )

[0.07, 0.09) DIS(45 , 135 ), LRE(0 , 45 , 90 ), CON(0 , 45 , 135 ), SRE(0 , 45 ), HGRE(0 , 45 , 90 ), 

SD, VAR

[0.09, 0.2) HGRE(135 ), SRE(90 , 135 ), ENT, LRE(135 ), LRLGE(0 , 45 , 90 , 135 ), SRHGE(0 , 45 ,

90 , 135 ), ENT(0 , 45 , 90 , 135 ), SD(x, 0 , 45 , 90 , 135 ), SD(y, 0 , 45 , 90 , 135 )

[0.2, 0.4) ASM(0 , 45 , 90 , 135 )

� 0.4 COR(0 , 45 , 90 , 135 ), COA, Mean
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Table 2

Paired-samples t-test results based on the p-value: slice position

p-value Feature

[0.02, 0.03) COR(0 , 45 , 90 , 135 )

[0.03, 0.04) Mean, COA

[0.05, 0.1) ASM(0 , 45 , 90 , 135 )

[0.1, 0.2) SD(x, 0 , 45 , 90 , 135 ), SD(y, 0 , 45 , 90 , 135 ), ENT(0 , 45 , 90 , 135 ), LRLGE(90 ), 

VAR, SD, CON(45 , 135 )

[0.2, 0.3) LRLGE(0 , 45 , 135 ), DIS(0 , 45 , 90 , 135 ), HOM(0 , 45 , 135 ), SRE(0 , 45 , 90 , 135

), LRE(0 , 45 , 90 , 135 ), CON(0 , 90 ), SRHGE(45 , 135 ), LRHGE(90 )

[0.3, 0.4) HOM(90 ), LRHGE(0 , 45 , 135 ), ENT, HGRE(0 , 45 , 90 , 135 ), SRHGE(0 , 90 )

� 0.4 RP(0 , 45 , 90 , 135 ), LGRE(0 , 45 , 90 , 135 ), GLN(0 , 45 , 90 , 135 ), RLN(0 , 45 ,

90 , 135 ), DIR, LGRE(90 ), SRLGE(0 , 45 , 90 , 135 ), CON

(a) (b) (c) (d)

Fig. 3. Restoration results of the 96 slice in the 1 mm MS image volume: (a) intact image, (b) 5% noisy image, (c) 

restored image of (b) with PSNR = 30.47 by manually tuned bilateral filtering, (d) restored image of (b) with PSNR = 

30.56 using the proposed automatically denoising system.

(a) (b) (c) (d)

Fig. 4. Restoration results of the 12 slice in the 5 mm normal image volume: (a) intact image, (b) 7% noisy image, (c) 

restored image of (b) with PSNR = 29.22 by manually tuned bilateral filtering, (d) restored image of (b) with PSNR = 

29.25 using the proposed automatically denoising system.

with the best computation result was obtained while comparing to the manually tuned bilateral filtered 

result with PSNR = 30.47. Another restoration example on the 5 mm normal image was illustrated in 

Figure 4, where satisfactory results with high PSNR values were obtained.
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Although the PSNR scores by the manually tuned bilateral filter were only slightly lower than the 

proposed automatically denoising framework, the processing time was dramatically longer. For the 

proposed approach, the computation time was approximately 3.5s for each image on a Windows 7 

machine with Intel (R) Core (TM) i5 2.60 GHz CPU and 8 GB RAM. On the other hand, the manually 

tuned bilateral filtered results were obtained by 25 times of parameter adjustments. For each trial, the 

parameter tuning time was roughly 2 s and the computation time was 0.4s. In consequence, the 

ensemble processing time was practically 2.4 25 = 60 s, not to mention the laborious efforts.

4. Conclusion

An artificial neural network based bilateral filter associated with image texture feature analysis has

been proposed to automatically denoise brain MR images. In the texture feature analysis, a total of 83 

image features were extracted in four different texture feature categories. Based on the paired-samples 

t-test and the SFS methods, nine optimal features were selected to constitute the minimal subset for 

training the BPN-based predictable parameter model. A wide variety of MR images with various 

scenarios were adopted to evaluate the performance of the proposed framework. Experimental results 

indicated that this new automation method accurately predicted the bilateral filtering parameters and 

effectively removed the noise in MR images with satisfactory quantity and quality. Comparing to the 

manually tuned filtering process, our approach not only produced better denoised results but also

saved significant processing time. In the future, the proposed framework can be extended to 3D for

volumetric filtering process and potentially with other denoising procedures.
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