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Automatic segmentation of brain tumors from medical images is important for clinical

assessment and treatment planning of brain tumors. Recent years have seen an

increasing use of convolutional neural networks (CNNs) for this task, but most of

them use either 2D networks with relatively low memory requirement while ignoring 3D

context, or 3D networks exploiting 3D features while with large memory consumption.

In addition, existing methods rarely provide uncertainty information associated with

the segmentation result. We propose a cascade of CNNs to segment brain tumors

with hierarchical subregions from multi-modal Magnetic Resonance images (MRI), and

introduce a 2.5D network that is a trade-off between memory consumption, model

complexity and receptive field. In addition, we employ test-time augmentation to achieve

improved segmentation accuracy, which also provides voxel-wise and structure-wise

uncertainty information of the segmentation result. Experiments with BraTS 2017 dataset

showed that our cascaded framework with 2.5D CNNs was one of the top performing

methods (second-rank) for the BraTS challenge. We also validated our method with

BraTS 2018 dataset and found that test-time augmentation improves brain tumor

segmentation accuracy and that the resulting uncertainty information can indicate

potential mis-segmentations and help to improve segmentation accuracy.

Keywords: brain tumor segmentation, deep learning, uncertainty, data augmentation, convolutional neural

network

1. INTRODUCTION

In adults, gliomas are the most common primary brain tumors. They begin in the brain’s glial
cells and are typically categorized into different grades: High-Grade Gliomas (HGG) grow rapidly
and are more malignant, while Low-Grade Gliomas (LGG) are slower growing tumors with a better
patient prognosis (Louis et al., 2016).Magnetic Resonance Imaging (MRI) of brain tumors is critical
for progression evaluation, treatment planning and assessment of this disease. Different sequences
of MRI can be used for brain tumor imaging, such as T1-weighted, T2-weighted, contrast enhanced
T1-weighted (T1ce), and Fluid Attenuation Inversion Recovery (FLAIR) images. T2 and FLAIR
images mostly highlight the whole tumor region (including infiltrative edema), and T1 and T1ce
images give a better contrast for the tumor core region (not including infiltrative edema) (Menze
et al., 2015). Therefore, these different sequences providing complementary information can be
combined for the analysis of different subregions of brain tumors.
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Segmenting brain tumors and subregions automatically from
multi-modal MRI is important for reproducible and accurate
measurement of the tumors, and this can assist better diagnosis,
treatment planning and evaluation (Menze et al., 2015; Bakas
et al., 2017b). However, it remains difficult for automatic
methods to accurately segment brain tumors from multi-modal
MRI. This is due to the fact that the images often have
ambiguous boundaries between normal tissues and brain tumors.
In addition, though prior information of shape and position
has been used for segmentation of anatomical structures such
as the liver (Wang et al., 2015) and the heart (Grosgeorge
et al., 2013), the shape, size and position of brain tumors
have considerable variations across different patients. This
makes it difficult to use a prior shape and position for robust
segmentation of brain tumors. Recently, deep learning methods
with Convolutional Neural Networks (CNNs) have become the
state-of-the-art approaches for brain tumor segmentation (Bakas
et al., 2018). Compared with traditional supervised learning
methods such as decision trees (Zikic et al., 2012) and support
vector machines (Lee et al., 2005), CNNs can learn the most
useful features automatically, without the need for manual design
and selection of features.

A key problem for CNN-based segmentation is to design a
suitable network structure and training strategy. Using a 2D
CNN in a slice-by-slice manner has a relatively low memory
requirement (Havaei et al., 2016), but the network ignores
3D information, which will ultimately limit the performance
of the segmentation. Using 3D CNNs can better exploit 3D
features, but requires a large amount of memory, which may
limit the input patch size, depth or feature numbers of the
CNNs (Kamnitsas et al., 2017b). As a trade-off, 2.5D CNNs
can take advantage of inter-slice features compared with 2D
CNNs and have a lower memory requirement than their
3D counterparts. In addition, whole tumor, tumor core and
enhancing tumor core follow a hierarchical structure. Using
the segmentation of whole tumor (tumor core) to guide the
segmentation of tumor core (enhancing tumor core) can help
to reduce false positives. Therefore, in this work, we propose a
framework consisting of a cascade of 2.5D networks for brain
tumor segmentation from multi-modal 3D MRI that achieves a
trade-off between memory consumption, model complexity and
receptive field.

For medical images, uncertainty information of segmentation
results is important for clinical decisions as it can help to
understand the reliability of the segmentations (Shi et al.,
2011) and identify challenging cases necessitating expert
review (Jungo et al., 2018). For example, for brain tumor
images, the low contrast between surrounding tissues and the
segmentation target leads voxels around the boundary to be
labeled with less confidence. The uncertainty information of
these voxels can indicate regions that have potentially been mis-
segmented, and therefore can be employed to guide interactions
of human to refine the segmentation results (Wang et al.,
2018b). In addition, compared with datasets for natural image
recognition (Russakovsky et al., 2015), datasets for CNN-
based medical image segmentation methods are relatively small,
which tends to result in more uncertain predictions in the

segmentation outputs, and can lead to structure-wise uncertainty
for downstream tasks, such as measuring the volume of tumor
regions. Therefore, this work also aims at providing voxel-
wise and structure-wise uncertainty information for CNN-
based brain tumor segmentation. Unlikemodel-based (epistemic)
uncertainty obtained by test-time dropout (Gal and Ghahramani,
2016; Jungo et al., 2017, 2018), we investigate image-based
(aleatoric) uncertainty obtained by test-time augmentation that
has previously been mainly used for improving segmentation
accuracy (Matsunaga et al., 2017; Radosavovic et al., 2018).

This paper is a combination and an extension of our
previous works on brain tumor segmentation (Wang et al.,
2017, 2018a), where we proposed a cascade of CNNs for
sequential segmentation of brain tumor and the subregions
from multi-modal MRI, which decomposes the complex
task of multi-class segmentation into three simpler binary
segmentation tasks. We also proposed 2.5D network structures
with anisotropic convolution for the segmentation task as
a result of trade-off between memory consumption, model
complexity and receptive field. In this paper, we extend
them in two aspects. First, we use test-time augmentation
to obtain uncertainty estimation of the segmentation results,
and additionally propose an uncertainty-aware conditional
random field (CRF) for post-processing. The results show that
uncertainty estimation not only helps to identify potential mis-
segmentations but also can be used to improve segmentation
performance. Both voxel-level and structure-level uncertainty
are analyzed in this paper. Second, we implement more
ablation studies to demonstrate the effectiveness of our
segmentation pipeline.

2. RELATED WORKS

2.1. Brain Tumor Segmentation From MRI
Existing brain tumor segmentation methods include generative
and discriminative approaches. By incorporating domain-
specific prior knowledge, generative approaches usually
have good generalization to unseen images, as they directly
model probabilistic distributions of anatomical structures and
textural appearances of healthy tissues and the tumor (Menze
et al., 2010). However, it is challenging to precisely model
probabilistic distributions of brain tumors. In contrast,
discriminative approaches extract features from images and
associate the features with the tissue classes using discriminative
classifiers. They often require a supervised learning set-
up where images and voxel-wise class labels are needed
for training. Classical methods of this category include
decision trees (Zikic et al., 2012) and support vector machines
(Lee et al., 2005).

Recently, CNNs as a type of discriminative approach
have achieved promising results on multi-modal brain tumor
segmentation tasks. Havaei et al. (2016) combined local and
global 2D features extracted by a CNN for brain tumor
segmentation. Although it outperformed the conventional
discriminative methods, the 2D CNN only uses 2D features
without considering the volumetric context. To incorporate 3D
features, applying the 2D networks in axial, sagittal and coronal
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views and fusing their results has been proposed (McKinley et al.,
2016; Li and Shen, 2017; Hu et al., 2018). However, the features
employed by such a method are from cross-planes rather than
entire 3D space.

DeepMedic (Kamnitsas et al., 2017b) used a 3D CNN to
exploit multi-scale volumetric features and further encoded
spatial information with a fully connected Conditional Random
Field (CRF). It achieved better segmentation performance than
using 2D CNNs but has a relatively low inference efficiency
due to the multi-scale image patch-based analysis. Isensee
et al. (2018) applied 3D U-Net to brain tumor segmentation
with a carefully designed training process. Myronenko (2018)
used an encoder-decoder architecture for 3D brain tumor
segmentation and the network contained an additional branch
of variational auto-encoder to reconstruct the input image
for regularization. To obtain robust brain tumor segmentation
resutls, Kamnitsas et al. (2017a) proposed an ensemble of
multiple CNNs including 3D Fully Convolutional Networks
(FCN) (Long et al., 2015), DeepMedic (Kamnitsas et al., 2017b),
and 3D U-Net (Ronneberger et al., 2015; Abdulkadir et al., 2016).
The ensemble model is relatively robust to the choice of hyper-
parameters of each individual CNN and reduces the risk of
overfitting. However, it is computationally intensive to run a set
of models for both training and inference (Malmi et al., 2015;
Pereira et al., 2017; Xu et al., 2018).

2.2. Uncertainty Estimation for CNNs
Uncertainty information can come from either the CNN
models or the input images. For model-based (epistemic)
uncertainty, exact Bayesian modeling is mathematically
grounded but often computationally expensive and hard to
implement. Alternatively, Gal and Ghahramani (2016) cast
test-time dropout as a Bayesian approximation to estimate a
CNN’s model uncertainty. Zhu and Zabaras (2018) estimated
uncertainty of a CNN’s parameters using approximated
Bayesian inference via stochastic variational gradient descent.
Other approximation methods include Monte Carlo batch
normalization (Teye et al., 2018), Markov chain Monte
Carlo (Neal, 2012) and variational Bayesian (Louizos and
Welling, 2016). Lakshminarayanan et al. (2017) proposed
a simple and scalable method using ensembles of models
for uncertainty estimation. For test image-based (aleatoric)
uncertainty, Ayhan and Berens (2018) found that test-time
augmentation was an effective and efficient method for
exploring the locality of a test sample in aleatoric uncertainty
estimation, but its application to medical image segmentation
has not been investigated. Kendall and Gal (2017) proposed
a unified Bayesian framework that combines aleatoric and
epistemic uncertainty estimations for deep learning models.
In the context of brain tumor segmentation, Eaton-Rosen
et al. (2018) and Jungo et al. (2018) used test-time dropout
to estimate the uncertainty. Wang et al. (2019a) analyzed
a combination of epistemic and aleatoric uncertainties for
whole tumor segmentation, but the uncertainty information of
other structures (tumor core and enhancing tumor core) was
not investigated.

3. METHODS

3.1. Segmentation Pipeline and Network
Structure
3.1.1. Triple Cascaded Framework
Malmi et al. (2015) and Pereira et al. (2017) used a cascade
of two stages to segment brain tumors where the whole tumor
was segmented in the first stage and then all substructures
were segmented in the second stage. To better take advantage
of the hierarchical property of brain tumor structures, in our
preliminary study (Wang et al., 2017), we proposed a cascade of
three CNNs to hierarchically and sequentially segment the whole
brain tumor, tumor core and enhancing tumor core, which is
followed by some more recent works (Ma and Yang, 2018; Xu
et al., 2018). As shown in Figure 1, we use three networks (WNet,
TNet, and ENet) to segment these structures, respectively. First,
the whole tumor is segmented by WNet. Then the input multi-
modal image is cropped according to the bounding box of the
segmented whole tumor. Second, TNet segments the tumor core
from the cropped image region, and the input image is further
cropped based on the bounding box of the segmented tumor core.
Finally, the enhancing tumor core is segmented by ENet from the
second cropped region. We use the segmentation result of whole
tumor (tumor core) as a crisp mask for the result of tumor core
(enhancing tumor core), which leads to anatomical constraints
for the final segmentation.

3.1.2. Anisotropic Convolutional Neural Networks
To achieve a trade-off between memory consumption, model
complexity and receptive field for 3D brain tumor segmentation,
we propose anisotropic 2.5D CNNs with a large intra-slice
receptive field and a relatively small inter-slice receptive field.
These CNNs take a stack of slices as input. The receptive field
of WNet and TNet is 217 × 217 × 9, and that of ENet is 113
× 113 × 9. Figure 2 shows structures of these proposed CNNs.
Note that in previous works (McKinley et al., 2016; Li and Shen,
2017), fusing 2D networks in three orthogonal views was referred
to as a 2.5D network, where each of the single-view networks
only captures 2D features. In our method, we also use multi-
view fusion, but the network in each view is a 2.5D network that
captures anisotropic 3D features.

The anisotropic receptive field of our CNNs is achieved by
decomposing a typical 3D 3 × 3 × 3 convolution kernel into
an intra-slice convolution kernel and an inter-slice convolution
kernel, with kernel size of 3 × 3 × 1 and 1 × 1 × 3,
respectively. We use four inter-slice convolution layers and 20
intra-slice convolution layers in the backbone of our CNNs,
and set the output channel number of these convolution layers
to a fixed number C0. To facilitate the training process, batch
normalization is used after each convolution, as shown in
green and blue blocks in Figure 2. He et al. (2015) found
that Parametric Rectified Linear Units (PReLU) outperforms
traditional rectified units, therefore we use PReLU as our
activation function. Two 2D downsampling layers are used to
reduce the resolution of feature maps of WNet and TNet while
avoiding large loss of segmentation details. ENet shares the same
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FIGURE 1 | Our proposed framework with triple cascaded CNNs for multi-modal brain tumor segmentation. We use three CNNs to hierarchically and sequentially

segment whole tumor, tumor core and enhancing tumor core, and the CNNs are referred to as WNet, TNet, and ENet, respectively.

FIGURE 2 | The proposed anisotropic CNNs with residual connection, dilated convolution, and multi-scale prediction. Only one downsampling layer is used in ENet

as its input size is smaller.

structure with WNet and TNet except that it uses only one
downsampling layer, as the input size of ENet is smaller.

As shown in Figure 2, intra-slice convolution layers are
grouped into 10 blocks, and each block includes two intra-
slice convolution layers. To speed the convergence of training,
we use residual connections (He et al., 2016) by adding the
output of each block directly to its input. We also employ
dilated convolution to increase the intra-slice receptive field. The
dilation parameter is shown on the top of each residual block in
Figure 2. In addition, each CNN uses multi-scale prediction for
deep supervision. To get multiple intermediate predictions, three
prediction layers with 3×3×1 convolution are used at different
depths of the CNNs, as depicted by red boxes in Figure 2. These
intermediate predictions are upsampled to the resolution of the
input and concatenated. An additional prediction layer with

3×3×1 convolution is used to obtain the final score map from
the concatenated intermediate predictions. The output channel
number of these prediction layers is denoted as Cl, and is set to 2
in this paper.

3.1.3. Multi-view Fusion
The above anisotropic CNNs have a small through-plane
receptive field, and therefore have a limited ability to make use
of 3D contextual information. To overcome this problem, we use
multi-view fusion where all WNet, TNet, and ENet are trained in
three orthogonal (axial, sagittal, and coronal) views, respectively.
At test time, for each network structure, we use the corresponding
versions of trained models to obtain the segmentation results in
these three views, respectively, and average their softmax outputs
to obtain a single fused result.
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3.2. Augmentation for Training and Testing
Considering the image acquisition process, one underlying
anatomy can be observed with different conditions, such as
various spatial transformations and intensity noise. Therefore,
an acquired image can be seen as only one of many possible
observations of the target. Directly applying CNNs to the single
observed image may lead the result to be biased toward the
specific transformation and noise in the given observation. To
address this problem, we predict the segmentation result by
considering different spatial transformations and intensity noise
for a test image.

Let β denote spatial transformation parameters and e
represent intensity noise, respectively. Though all images in the
BraTS datasets are aligned to a standard orientation, we use
rotation, flipping and scaling to augment the variation of local
features. Therefore, we represent β as a composition of r, fl and s,
where r denotes the rotation angle along each spatial axis in 3D, fl
is a random binary value representing flipping along each 3D axis
or not, and s denotes a scaling factor. We consider some prior
distributions of these parameters: r ∼ U(0, 2π), fl ∼ Bern(0.5),
and s ∼ U(0.8, 1.2). In addition, we assume that the intensity
noise follows a prior distribution of e ∼ N(0, 0.05) according
to Wang et al. (2019a).

To obtain augmented images, we use Monte Carlo simulation
to randomly sample β and e from the above prior distributions
N times, and each time we use the sampled parameters to
generate a transformed image. The augmentation process is used
at both training and testing stage for a given network. For
test-time augmentation, the Monte Carlo simulation leads to
N transformed versions of the same input image, and they are
fed into the CNN for inference. We combine the N predicted
results via majority voting to obtain the final prediction of
each structure.

3.3. Uncertainty Estimation of
Segmentation Results
3.3.1. Voxel-Wise Uncertainty
In our method, the use of test-time augmentation provides
multiple prediction results of the same input image with
different spatial transformations and intensity changes. The
disagreement between these predictions naturally gives an
uncertainty estimation of the segmentation. Therefore, we use
test-time augmentation to obtain not only segmentation results
but also the associated image-based (aleatoric) uncertainty.
Differently from Wang et al. (2019a), we provide uncertainty
estimation not only for the whole tumor, but also for the
substructures (tumor core and enhancing tumor core).

To obtain voxel-wise uncertainty estimation, we measure the
diversity of the N different predictions for a given voxel in the
test image. Let X and Y represent the input image and the output
segmentation, respectively, and let Y i represent the i-th voxel’s
predicted label. Typically, the uncertainty of Y i can be estimated
by the entropy and variance of the distribution of Y i, rather
than averaged probability map resulting from N Monte Carlo
samples that cannot reflect the diversity information. For multi-
class segmentation of BraTS, the variance of discrete class label

for a voxel is not sufficiently representative. Therefore, we use
entropy of Y i to estimate the voxel-wise uncertainty, which is
desired for image segmentation tasks. Assume a set of N discrete
values (i.e., labels) for Y i is denoted as Y i = {yi1, y

i
2, . . . , y

i
N}, then

we can approximate the entropy of the distribution of Y i by:

H(Y i|X) ≈ −

M∑

m=1

p̂imln(p̂
i
m) (1)

where p̂im is the frequency of the m-th unique value in Y i.
When Y i is obtained by test-time augmentation with Monte
Carlo simulation described in section 3.2, Equation (1) represents
voxel-wise aleatoric uncertainty.

3.3.2. Structure-Wise Uncertainty
The above Monte Carlo simulation obtains N segmentation
results for a given structure in a test image. For the i-th
simulation, let vi denote the volume of the segmented structure,
then the set of volumes of the N segmentations is denoted
as V = {v1, v2, . . . , vN}. Assume that the mean value and
standard deviation of V is µV and σV , respectively. Then the
structure-wise uncertainty is estimated as the volume variation
coefficient (VVC):

VVC =
σV

µV

(2)

In this paper, V is obtained by test-time augmentation, leading
Equation (2) to represent structure-wise aleatoric uncertainty.

4. EXPERIMENTS AND RESULTS

4.1. Data and Implementation Details
We validated our methods with the BraTS 20171 and BraTS
20182 (Menze et al., 2015; Bakas et al., 2017a,b) datasets. The
two datasets share the same set of training images from 285
patients, including 75 cases of LGG and 210 cases of HGG. The
validation sets of BraTS 2017 and BraTS 2018 contain images
from 46 and 66 patients with brain tumors respectively. The
testing sets of BraTS 2017 and BraTS 2018 contain images from
146 and 191 patients with brain tumors, respectively. The grades
of brain tumors in the validation and testing sets are unknown.
Each patient was scanned with FLAIR, T1ce, T1, and T2. The
original images were acquired across different views and the
resolution was anisotropic. All the images had been re-sampled
to an isotropic 1.0 mm× 1.0 mm× 1.0 mm resolution and skull-
striped by the organizers. In addition, the four modalities of the
same patient had been co-registered. As the BraTS organizers
provided ground truth only for the training set, we randomly
selected 20% from the training set as our local validation set
during training.

Our 2.5D CNNs were implemented in Tensorflow3 (Abadi
et al., 2016) using NiftyNet45 (Gibson et al., 2018). We used

1http://www.med.upenn.edu/sbia/brats2017.html
2http://www.med.upenn.edu/sbia/brats2018.html
3https://www.tensorflow.org
4http://niftynet.io
5https://github.com/NifTK/NiftyNet/tree/dev/demos/BRATS17
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an NVIDIA TITAN X GPU with 12 GB memory, Adaptive
Moment Estimation (Adam) (Kingma and Ba, 2014) and Dice
loss function (Milletari et al., 2016; Fidon et al., 2017a) for
training, with batch size 5, weight decay 10−7, initial learning
rate 10−3, and iteration number 30k. The training patch size
was 144 × 144 × 19 for WNet, and 96 × 96 × 19 and 64
× 64 × 19 for TNet and ENet, respectively. We normalized
each image by the intensity mean and standard deviation, and
set the channel number Co of intermediate convolution layers
to 32 and class number Cl to 2. We trained all WNet, TNet
and ENet for axial, sagittal and coronal views separately as our
networks had a relatively small number of parameters. Therefore,
each network had three different sets of parameters. At test time,
the predictions in these three views were averaged. We applied
training-time and test-time augmentation to BraTS 2018 dataset
according to 3.2, and the Monte Carlo simulation number N was
set to 20. We uploaded our segmentation results of the validation
and testing datasets to the publicly available evaluation server of
BraTS 2017 and BraTS 2018, and the server gave quantitative
evaluation results in terms of Dice score and Hausdorff distance.

4.1.1. Results of BraTS 2017 Dataset

4.1.1.1. Qualitative results
We first validated our proposed segmentation framework with
BraTS 2017 dataset, and test-time augmentation was not used
for this experiment. We compared our proposed cascade of
anisotropic networks with multi-view fusion with two variants:
(1) cascade of 3D isotropic networks that captures 3D features
directly, where we remove all 1×1×3 convolutions in WNet,
TNet and ENet, and replace 3×3×1 convolutions and 2D
down-sampling (up-sampling) with 3×3×3 convolutions and
3D donw-sampling (up-sampling), respectively, and this variant
is referred to as isotropic 3D networks; (2) cascade of our
anisotropic networks but without multi-view fusion, where the
networks are only implemented in axial view, and this variant is
referred to as anisotropic 2.5D networks.

Figure 3 shows two examples for HGG and LGG
segmentation from our local validation set that is a subset
of BraTS 2017/2018 training set. We only show the FLAIR
images in the inputs of CNNs for simplicity of visualization.
Edema, non-enhancing tumor core and enhancing tumor core
are visualized in green, red and yellow, respectively. The results
of isotropic 3D networks and anisotropic 2.5D networks are
shown in the second and third rows, respectively. In the case of
HGG shown in Figure 3A, isotropic 3D networks obtain some
mis-segmentations of the edema, and anisotropic 2.5D networks
result in some noise in the edema and enhancing tumor core
regions. In contrast, the proposed method leads to more accurate
segmentation results. Figure 3B shows a case of LGG that does
not contain enhancing tumor core. The segmentation results
of whole tumor are similar for the three methods. However,
the proposed method outperforms isotropic 3D networks and
anisotropic 2.5D networks in the tumor core region.

4.1.1.2. Quantitative evaluation
Quantitative evaluation results with the BraTS 2017 validation
set are shown in Table 1. The average Dice scores achieved by

our method for enhancing tumor core, whole tumor and tumor
core are 0.786, 0.905 and 0.838, respectively, which outperforms
isotropic 3D networks and anisotropic 2.5D networks. We also
compared our method with Kamnitsas et al. (2017a) that uses an
ensemble of multiple CNNs for segmentation, and Isensee et al.
(2017) that combines 3D U-Net with residual connection and
deep supervision. Table 1 shows that our method outperforms
the others on the BraTS 2017 validation set. The quantitative
evaluation results of our method on BraTS 2017 testing set are
shown in Table 2. According to the BraTS 2017 organizers6, our
method won the second place of the BraTS 2017 segmentation
task, while Kamnitsas et al. (2017a) and Isensee et al. (2017)
ranked in the first and third place, respectively.

4.1.2. Results of BraTS 2018 Dataset
We then applied our proposed segmentation framework
to BraTS 2018 dataset. To validate the effect of test-time
augmentation (TTA), we compared three network configurations
as underpinning CNNs: (1) 3D UNet (Abdulkadir et al., 2016)
reimplemented by NiftyNet, (2) our cascaded networks where
the whole tumor, tumor core and enhancing tumor core were
segmented by WNet, TNet, and ENet, respectively, and (3)
adapting WNet for multi-class segmentation without using a
cascade of binary predictions, where we changed the output
channel number for prediction layers to 4.We refer to this variant
as multi-class WNet and also use multi-view fusion for it. The 3D
U-Net and multi-class WNet were trained in the same way as our
cascaded networks.

4.1.2.1. Qualitative results
Figure 4 shows two examples from the BraTS 2018 validation set.
In each subfigure, the input images (FLAIR, T1, T1ce, and T2) are
shown in the first row and the segmentation results of different
networks with and without TTA are presented in the second
row. In Figure 4A, the result of 3D UNet without TTA contains
some false positives in the edema and non-enhancing tumor core
regions. In contrast, the result of 3DUNet + TTA ismore spatially
consistent. The result obtained by multi-class WNet without
TTA also contains some noise for the segmented non-enhancing
tumor core, and multi-class WNet + TTA obtains a smoother
segmentation. It can also be observed that our cascaded CNNs
+ TTA performs better on the tumor core than the counterpart
without TTA. In Figure 4B, 3D UNet seems to obtain an under-
segmentation in the central part of the tumor core, and 3D
UNet + TTA overcomes this under-segmentation. Multi-class
WNet without TTA seems to have an over segmentation for
the non-enhancing tumor core region, and the counterpart with
TTA achieves a higher accuracy in contrast. For our cascaded
CNNs, TTA also helps to improve the spatial consistency of the
segmentation result in this case.

4.1.2.2. Quantitative evaluation
Table 3 shows the quantitative evaluation results of different
approaches on the validation set of BraTS 2018. Dice scores
achieved by 3D UNet without TTA for enhancing tumor core,

6https://www.med.upenn.edu/sbia/brats2017/rankings.html
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FIGURE 3 | Segmentation results of an HGG brain tumor (A) and an LGG brain tumor (B) from our local validation set, which is part of BraTS 2017/2018 training set.

Edema, non-enhancing tumor core and enhancing tumor core are visualized in green, red, and yellow, respectively. White arrows highlight some mis-segmentations.

TABLE 1 | Dice and Hausdorff distance of our method on validation set of BraTS 2017 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

Isotropic 3D networks 0.772 ± 0.268 0.885 ± 0.105 0.805 ± 0.196 3.78 ± 5.32 6.73 ± 9.19 7.75 ± 9.98

Anisotropic 2.5D networks 0.741 ± 0.264 0.890 ± 0.076 0.826 ± 0.157 5.32 ± 7.20 12.46 ± 21.47 9.66 ± 14.21

Our method 0.786 ± 0.233 0.905 ± 0.066 0.838 ± 0.158 3.28 ± 3.88 3.89 ± 2.79 6.48 ± 8.26

Kamnitsas et al., 2017a 0.738 0.901 0.797 4.50 4.23 6.56

Isensee et al., 2017 0.732 0.896 0.797 4.55 6.97 9.48

MVF, multi-view fusion; ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Our method: cascaded framework with anisotropic 2.5D CNNs and MVF. Bold value shows the

best performance.

whole tumor and tumor core are 0.734, 0.864 and 0.766,
respectively. Combining TTA with 3D UNet achieved a better
performance, leading to Dice scores of 0.754, 0.873, and 0.783 for
these structures, respectively. Applying test-time augmentation

to multi-class WNet and the cascaded networks also leads to
an improvement of segmentation accuracy. We also compared
our method with Myronenko (2018) and Isensee et al. (2018)
that ranked the first and second of BraTS 2018 segmentation
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TABLE 2 | Dice and Hausdorff distance of our method on testing set of BraTS 2017 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

Our method 0.783 ± 0.222 0.874 ± 0.132 0.775 ± 0.270 15.90 ± 67.86 6.55 ± 10.69 27.05 ± 84.43

Kamnitsas et al., 2017a 0.729 0.886 0.785 36.0 5.01 23.10

Isensee et al., 2017 0.647 ± 0.326 0.858 ± 0.161 0.775 ± 0.269 – – –

ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Bold value shows the best performance.

FIGURE 4 | Examples of test-time augmentation (TTA) combined with different CNNs for brain tumor segmentation. The images are from BraTS 2018 validation set,

of which ground truth are not provided by the organizer. In each subfigure, the first row shows the input image of the same patient in four modalities, and the second

row shows segmentation results. Edema, non-enhancing tumor core and enhancing tumor core are visualized in green, red, and yellow, respectively. (A,B) Show

images of two different patients.

challenge, respectively7. Myronenko (2018) used an ensemble
of 10 models, and we list the result of a single model and

7https://www.med.upenn.edu/sbia/brats2018/rankings.html

that of model ensemble reported by Myronenko (2018). Isensee

et al. (2018) trained a 3D U-Net with additional datasets for the

segmentation task. It can be observed that our method performs

closely to these two compared methods on BraTS 2018 validation
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TABLE 3 | Dice and Hausdorff distance of different methods on validation set of BraTS 2018 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

3D UNet 0.734 ± 0.284 0.864 ± 0.146 0.766 ± 0.230 9.37 ± 22.95 12.00 ± 21.22 10.37 ± 13.47

3D UNet + TTA 0.754 ± 0.263 0.873 ± 0.125 0.783 ± 0.168 4.53 ± 9.60 5.90 ± 6.80 8.03 ± 10.31

Multi-class WNet 0.757 ± 0.257 0.890 ± 0.089 0.725 ± 0.245 4.24 ± 7.97 4.99 ± 6.53 12.13 ± 13.41

Multi-class WNet + TTA 0.771 ± 0.242 0.896 ± 0.071 0.730 ± 0.255 4.44 ± 8.20 4.92 ± 6.42 11.13 ± 13.46

Cascaded networks 0.792 ± 0.233 0.903 ± 0.057 0.854 ± 0.142 3.34 ± 4.15 5.38 ± 9.31 6.61 ± 8.55

Cascaded networks + TTA 0.797 ± 0.229 0.902 ± 0.056 0.858 ± 0.139 3.13 ± 3.78 6.18 ± 9.53 6.37 ± 8.19

Cascaded networks + TTA + CRF0 0.803 ± 0.228 0.905 ± 0.056 0.862 ± 0.136 3.09 ± 3.75 5.97 ± 8.22 6.25 ± 7.87

Cascaded networks + TTA + CRF1 0.807 ± 0.225 0.908 ± 0.054 0.869 ± 0.126 3.01 ± 3.69 5.86 ± 8.16 6.09 ± 7.74

Myronenko, 2018 (single model) 0.815 0.904 0.860 3.80 4.48 8.28

Myronenko, 2018 (ensemble) 0.823 0.910 0.867 3.93 4.52 6.85

Isensee et al., 2018 0.810 0.908 0.854 2.54 4.97 7.04

ET, enhancing tumor core; WT, whole tumor; TC, tumor core; TTA, test-time augmentation. CRF0: naive conditional random field for post-processing. CRF1: our uncertainty-aware

conditional random field. Bold value shows the best performance.

TABLE 4 | Dice and Hausdorff evaluation of our cascaded CNNs with test-time augmentation (TTA) on testing set of BraTS 2018 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

Cascaded networks + TTA 0.747 ± 0.259 0.878 ± 0.119 0.796 ± 0.250 4.16 ± 7.07 5.97 ± 8.56 6.71 ± 10.27

Myronenko, 2018 0.766 ± 0.256 0.884 ± 0.118 0.815 ± 0.250 3.77 ± 8.61 5.90 ± 10.01 4.81 ± 7.52

Isensee et al., 2018 0.779 ± 0.239 0.878 ± 0.129 0.806 ± 0.250 2.90 ± 3.85 6.03 ± 9.98 5.08 ± 8.09

ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Myronenko (2018) used an ensemble of 10 models for the segmentation.

set. Quantitative evaluation results of our cascaded CNNs with

TTA on BraTS 2018 testing set is presented inTable 4. The results
are compared with those of Myronenko (2018) and Isensee et al.
(2018). Note that Myronenko (2018) requires a large amount
of GPU memory (32 GB) for training, and Isensee et al. (2018)
trained themodel with additional datasets.Table 4 shows that the
segmentation accuracy of our proposed framework is comparable
with that of the other two counterparts.

4.1.2.3. Uncertainty estimation
Figure 5 presents a case from our local validation set of
BraTS 2018, where Figures 5C,D show the results of our
cascaded CNNs and the corresponding voxel-wise uncertainty
obtained by TTA, respectively. It can be observed that most
uncertain results concentrate on the border of the tumor’s
substructures and some regions that are potentially mis-
segmented. The white arrow in Figure 5C highlights a region
that has been mis-segmented by CNNs, and the corresponding
region has high uncertainty values in Figure 5D. To investigate
the usefulness of the uncertainty information for improving
segmentation accuracy, we reset the foreground and background
probability of voxels with uncertainty higher than a threshold
value (i.e., 0.2) to 0.5, and then use a conditional random
field (CRF) for post-processing. This method is referred to
as uncertainty-aware CRF, and it is compared with a naive

CRF that is applied to the probability output of CNNs
directly. Figures 5E,F show that the uncertainty-aware CRF
outperforms the naive CRF for post-processing. Table 3 shows a
quantitative comparison between these post-processing methods
using and not using uncertainty information on validation set of
BraTS 2018.

We also measured structure-wise uncertainty based on VVC
defined in Equation (2) for BraTS 2018 validation set. Figure 6
shows the relationship between structure-wise segmentation
error in terms of 1-Dice and uncertainty in terms of VVC.
The figure shows that for all the three structures of enhancing
tumor core, whole tumor and tumor core, a higher VVC
value tends to be linked with a higher segmentation error.
This demonstrates that the structure-wise uncertainty based on
our test-time augmentation is informative and it can indicate
potential mis-segmentations.

5. DISCUSSION AND CONCLUSION

The proposed cascaded system is well-suited for hierarchical
tumor region segmentation. Compared with using a single
network for multi-class segmentation, its main advantages are:
(1) The use of three binary segmentation networks decomposes
the complex task of multi-class segmentation and allows for
a simpler network for each sub-task. They reduce the risk
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FIGURE 5 | An example of brain tumor segmentation result and the associated voxel-wise uncertainty estimation based on our cascaded CNNs with test-time

augmentation (TTA). Taking the uncertainty information for post-processing by conditional random field (CRF) helps to correct the mis-segmented region, as shown in

(F). (A) FLAIR, (B) T1ce, (C) Initial segmentation, (D) Voxel-wise uncertainty, (E) Post-process with CRF, (F) Post-process with uncertainty-aware CRF, and

(G) Ground truth.

FIGURE 6 | Relationship between segmentation error (1-Dice) and structure-wise uncertainty in terms of volume variation coefficient (VVC) for BraTS 2018 validation

set. (A) Enhancing core, (B) Whole tumor, and (C) Tumor core.

of over-fitting and are easier to train. (2) The cascade can
effectively reduce the number of false positives because a
subsequent network (e.g., TNet) only works on the image
region selected by its precedent network (e.g., WNet). (3) The
decomposition of the segmentation task also imposes strong
spatial constraints which follows the anatomical structures of
the brain tumor. It is also possible to model the hierarchical

nature of the labels by adopting task-specific loss functions
(e.g., Fidon et al., 2017a). However, Fidon et al. (2017a)
did not use the hierarchical structural information as spatial
constraints. Unlike most works that optimize the segmentation
based on mutually exclusive edema, necrotic, and enhancing
tumor core, our method optimizes the hierarchical whole tumor,
tumor core and enhancing tumor core. This leads to the idea
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of training networks on such loss criteria to simultaneously
obtain these hierarchical structures in a single forward pass, as
demonstrated by Myronenko (2018). For some clinical cases
where the tumor does not have edema component, i.e., the
region of whole tumor is the same as that of tumor core, our
model may encounter some difficulties (e.g., false positives of
edema) as all the training data in our experiments include
edema region. However, as our WNet segments the edema
region and tumor core region as a whole, the tumor core
region in such cases will not be missed in the output of WNet.
It is of interest to validate the proposed method on such
cases in the future. In addition, in our cascaded segmentation
framework, segmentation of whole tumor (tumor core) was
used as a crisp mask for tumor core (enhancing tumor core),
this may lead mis-segmentations in an early stage to cause
mis-segmentations in a later stage. It would be of interest to
investigate a better solution to combine the results obtained in
different stages.

Compared with the single multi-class network approach using
similar network structures, the training and inference of our
proposed cascade require a longer time. In practice, we found that
it is not a critical issue for automatic brain tumor segmentation.
In fact, the inference of our method is more efficient than many
competitive approaches such as DeepMedic (Kamnitsas et al.,
2017b) and ScaleNet (Fidon et al., 2017b).

The multi-view fusion is an important component of the
proposed system (as demonstrated in Figure 3). It is designed
to combine the outputs from the lightweight and anisotropic
networks applied in different views so that the 3D contextual
information is fully utilized. To further incorporate different
imaging resolutions in the multi-view fusion, it might be helpful
to consider a weighted combination of the orthogonal views
rather than a simple arithmetic mean (Mortazi et al., 2017).

From Table 3 we find that the improvement obtained by
TTA varies for different networks. For 3D UNet (Abdulkadir
et al., 2016), the performance improvement is considerable,
especially for the Hausdorff distance. For our cascaded networks,
the improvement is relatively smaller but TTA is also effective
to reduce the distance errors for enhancing tumor and tumor
core. Table 3 also shows that TTA reduces the standard
deviation (improves the robustness) of the networks in most
cases, especially for 3D UNet. For our cascaded networks,
the standard deviations for enhancing tumor and tumor core
are also smaller when TTA is used. Therefore, TTA can be
seen as a robustness booster. In the proposed system, data
augmentation only includes adding random intensity noise and
spatial transformations such as rotation, flipping and scaling. It
is also possible to adopt more complex transformations such as
elastic deformations (Abdulkadir et al., 2016).

We have investigated the test image-based (aleatoric)
uncertainty for brain tumor segmentation using test-time
augmentation. We additionally show that the uncertainty
information can be leveraged to improve the segmentation
accuracy, as demonstrated in Table 3 and Figure 5. The obtained
uncertainty could be useful for downstream analysis such as
uncertainty-aware volume measurement (Eaton-Rosen et al.,
2018) and guiding user interactions (Wang et al., 2018b).

Combining epistemic uncertainty based on test-time dropout
or CNN ensembles (Kamnitsas et al., 2017a; Myronenko, 2018)
and aleatoric uncertainty based on test-time augmentation
is also an interesting future direction. It should be noticed
that current methods for BraTS challenge heavily rely
on voxel-wise annotations, which is difficult and time-
consuming to collect for large datasets. In the future, it
is of interest to learn from weakly or partially annotated
brain tumor images in a larger dataset and improve
generalizability of the CNNs. Some of the automatically
segmented results can also be interactively refined to
improve the robustness of brain tumor segmentation for
clinic use (Wang et al., 2019b).

In conclusion, we have developed a novel system consisting
of a cascade of 2.5D CNNs for brain tumor segmentation
from multi-modal MRI, which decomposes the multi-class
segmentation task into three sequential binary segmentation
tasks. The 2.5D CNNs consider the balance between memory
consumption, model complexity and recpetive field, and are
combined with multi-view fusion for robust segmentation. We
also studied the effect of combining test-time augmentatiofn with
CNNs in the segmentation task and investigated the resulting
aleatoric uncertainty estimation for the segmentation results.
Experimental results based on BraTS 2017 dataset showed
that our method was one of the top-performing methods.
Experiments also showed that test-time augmentation led to
an improvement of segmentation accuracy for different CNN
structures and effectively obtained voxel-wise and structure-wise
uncertainty estimation of the segmentation results that helps to
improve segmentation accuracy.
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