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ABSTRACT Automatic extraction of buildings from remote sensing imagery plays a significant role in many
applications, such as urban planning and monitoring changes to land cover. Various building segmentation
methods have been proposed for visible remote sensing images, especially state-of-the-art methods based on
convolutional neural networks (CNNs). However, high-accuracy building segmentation from high-resolution
remote sensing imagery is still a challenging task due to the potentially complex texture of buildings in
general and image background. Repeated pooling and striding operations used in CNNs reduce feature
resolution causing a loss of detailed information. To address this issue, we propose a light-weight deep
learning model integrating spatial pyramid pooling with an encoder-decoder structure. The proposed model
takes advantage of a spatial pyramid pooling module to capture and aggregate multi-scale contextual
information and of the ability of encoder-decoder networks to restore losses of information. The proposed
model is evaluated on two publicly available datasets; the Massachusetts roads and buildings dataset and
the INRIA Aerial Image Labeling Dataset. The experimental results on these datasets show qualitative and
quantitative improvement against established image segmentation models, including SegNet, FCN, U-Net,
Tiramisu, and FRRN. For instance, compared to the standard U-Net, the overall accuracy gain is 1.0%
(0.913 vs. 0.904) and 3.6% (0.909 vs. 0.877) with a maximal increase of 3.6% in model-training time on
these two datasets. These results demonstrate that the proposed model has the potential to deliver automatic
building segmentation from high-resolution remote sensing images at an accuracy that makes it a useful tool
for practical application scenarios.

INDEX TERMS Deep learning, high-resolution remote sensing imagery, building extraction, fully
convolutional networks, encoder-decoder.

I. INTRODUCTION

Automatic extraction of buildings from remote sensing
imagery is of great significance for many applications,
including urban planning, navigation, and disaster man-
agement [1]–[6]. Recent years have witnessed a massive

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Shorif Uddin.

improvement in the capabilities of remote sensing tech-
niques, which has led to a dramatic increase in the avail-
ability and accessibility of high-resolution remote sensing
images [7]–[9]. The availability of high-quality data for spa-
tially large areas, it is possible to perform accurate image
segmentation targeting the extraction of buildings. However,
the diverse characteristics of buildings including color, shape,
material, size; and the interference of building shadows
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and vegetation; mean that the development of accurate and
reliable building extraction methods is still a challenging
task [10].
Over the past few decades, various approaches for feature

extraction from images have been developed. Spatial and
textural features of an image are extracted through mathe-
matical descriptors, such as Haar spaces [11], Scale-invariant
Feature Transform (SIFT) [12], Local Binary Patterns (LBP)
[13], Grey Level Co-occurrence Matrix (GLCM) [14], and
Histogram of Oriented Gradients (HOG) [15]. More recently
pixel-by-pixel predictions were introduced on the basis of
extracted features through classifiers such as Support Vector
Machines (SVM) [16], Adaptive Boosting (AdaBoost) [17],
Random Forests [18], K-Means [19], and Conditional Ran-
dom Fields (CRF) [20]. However, these methods rely heavily
on manual feature design and implementations, which gen-
erally change with the application area. As a consequence,
they can easily introduce bias and poor generalization and are
time-consuming and labor-intensive.
In recent years, alongside advancements in computational

capabilities and the availability of large volumes of data,
the use of deep learning technology [21], especially convolu-
tional neural networks (CNNs), has emerged as a powerful
tool in many domains, particularly computer vision [22].
The extraction of buildings from images is a problem of
semantic segmentation for which CNNs are particularly
suitable as they automatically learn semantical informa-
tion from input images and derive classifications through
sequential convolutional and fully connected layers. In the
early stages, patch-based CNN approaches, including Visual
Geometry Group (VGG) [23], Deep Residual Network
(ResNet) [24], and DenseNet [25], have outperformed tra-
ditional machine learning methods on classification tasks.
Mnih [26] and Mnih and Hinton [27] proposed an automatic
CNN method for extracting roads and buildings. As part of
their investigation, the authors established a corresponding
large-scale dataset, namely the Massachusetts roads and
buildings dataset as reference for further developments.
Saito et al. [28], [29] proposed a CNN framework to extract
roads and buildings without pre-processing steps. However,
because of the inefficiency of the sliding window used in
their approach, the frame of the patch-based CNN is not
optimal for addressing the building segmentation task [30].
Fully convolutional networks (FCNs) overcome this short-
coming substantially by replacing fully connected layers
with up-sampling layers so that the output preserves spatial
information of contextual features [31]. Many networks such
as SegNet [32], and DeconvNet [22] have extended this
approach.
Classification accuracy of FCN-based methods is improv-

ing. The challenge for semantic segmentation is to obtain
more precise boundaries of objects and to address misclas-
sification of small objects. Two aspects need to be addressed:
Firstly, pooling layers or convolution striding used between
convolution layers can augment the receptive field, and at the
same time down-sample resolution of feature maps causing

a loss of spatial information. Secondly, objects of the same
category can exist at multiple shape spatial scales, and conse-
quently, small objects are difficult to classify correctly [33].
Therefore, simply employing up-sampling operations such
as deconvolution or bilinear interpolation after the feature
extractor parts of a network cannot guarantee reliable results
at high accuracy on high-resolution remote sensing data.
Many network structures have been proposed to handle
these problems; among them, the pyramid pooling module
(PSPNet) [33] and the encoder-decoder structure (U-Net)
[34] which are well established and have been shown to
perform well.

The spatial pyramid pooling structure of the PSPNet model
and the atrous spatial pyramid pooling structure, an improved
version as part of Deeplab [35], aim to handle the problem of
segmenting objects at different spatial scales. The approach
is well-known for achieving robust and efficient performance
for dense semantic labeling. The network structure consists of
several branches of dilated convolution operations to enlarge
the receptive field. Spatial pyramid pooling shows better per-
formance at pixel-level prediction tasks such as scene parsing
and semantic segmentation. However, the PSPNetmodel only
utilizes FCN based on ResNet as the backbone and lacks
up-sampling capabilities [10].

The encoder-decoder structure proposed by U-Net is
widely used in the field of semantic segmentation. It intro-
duces a bottom-up/top-down architecture with skip connec-
tions that combine both lower and higher layers to generate
the final result. Although it achieves better performance,
U-Net has no extraction of multi-scale contextual features
capability [6].

Another way to improve the performance of bui-
lding extraction is post-processing. For example,
Shrestha and Vanneschi [36] proposed a building extraction
method using conditional random fields (CRFs) and expo-
nential linear units. Alshehhi et al. [37] used a patch-based
CNN architecture and proposed a post-processing method
integrating low-level features of adjacent regions. However,
post-processing methods are only able to improve results
within a specific range, and the quality of results strongly
depends on the accuracy of the initial segmentation [38].

Motivated by the analysis above, we propose a novel
deep CNN to specifically improve the classification accuracy
for building segmentation in high-resolution remote sensing
images. To this end, a U-shape structure of an encoder
and decoder path is applied as the backbone. In addition,
the spatial pyramid pooling module is integrated as a bridge
between the encoding and the decoding path. We refer to
the proposed model as the USPP model. This approach
enables extraction of features at multiple spatial scales and
at the same time up-samples the feature maps to learn global
contextual information. The main contributions of this study
are summarized as follows:

(1) By combining the U-shape encoder-decoder struc-
ture and the spatial pyramid pooling module, the proposed
USPP model can capture multi-scale features and effectively
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FIGURE 1. Typical convolutional neural network structures in semantic segmentation. (a) The FCN-32s, (b) The FCN-8s (with skip connection),
(c) Encoder-Decoder, (d) Spatial Pyramid Pooling Module, and (e) USPP.

restore detailed context information of buildings at all scales
of the footprint.
(2) The qualitative and quantitative experiments for

two public building labeling datasets, the Massachusetts
Dataset [26] and the INRIA Aerial Image Labeling
Dataset [39], demonstrate the excellent performance of the
USPP model. Compared with established models such as
SegNet, FCNs, U-Net, Tiramisu [40], and FRRN [41], higher
accuracies and F1 scores are achieved for the problem of
building extraction at small extra training costs.
The subsequent sections in this paper are organized as

follows: The details of the USPP model are proposed in
Section 2. In Section 3, datasets and experimental settings
are described. Section 4 provides the experimental results of
the USPPmodel and quantitative and qualitative comparisons
with established models. A discussion and some conclusions
are presented in Sections 5 and 6, respectively.

II. METHODOLOGY

In this paper, a dense semantic labeling system for auto-
matic building segmentation from high-resolution remote
sensing imagery is proposed. It combines a U-shaped

encoder-decoder structure with spatial pyramid pooling.
In the following this approach, which we call USPP model,
is explained in more details.

A. U-SHAPE STRUCTURE

U-Net is a typical fully convolutional network which was
originally designed for biomedical image segmentation [34].
The main structure of U-Net is similar to the letter U. It has
an encoder that extracts spatial features from the training
data, and a decoder that constructs the segmentation map
from the encoded features. It also uses skip-connections to
preserve features. Furthermore, to enable a more efficient
operation of the network structure, fully connected layers are
deprecated in the network, significantly reducing the number
of parameters that need to be trained. Due to its excellent
performance, U-Net has been one of the most popular archi-
tecture for semantic segmentation. However, it suffers from
loss of global contextual information during the encoder
phase reducing spatial resolution of the resulting feature
maps. Moreover, this information cannot be recovered in the
decoder phase. Figure 1 (a)-(c) illustrates details of typical
FCN structures for semantic segmentation.
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TABLE 1. Configurations of the encoder block in USPP (symbols h and w represent the height and width of the input layer, respectively).

B. SPATIAL PYRAMID POOLING MODULE

The spatial pyramid pooling module draws from
PSPNet [33]. Pyramid pooling aims to overcome the lim-
itation of the fixed-size requirement for the CNN input
image. It is applied to extract features in multiple scales
and synthesize global information [42]. Details of spatial
pyramid pooling module structure are illustrated in Figure 2.
Its integration into FCN-8s is shown in Figure 1 (d). The pyra-
mid pooling module comprises four steps; pyramid pooling,
convolution, up-sampling, and concatenation operations, see
Zhao et al. [33] for details. Through pyramid pooling, spatial
features on four different spatial scales can be identified.
In order to enhance the nonlinear learning ability of the
multiscale features, 1 × 1 convolution is added to main-
tain the size of features and to reduce the number of each
features channels by an N-th of the number of channels of
the input feature map; N is the number of pyramid pooling
scales, typically chosen to be four following the works by
Zhao et al. [33] and Yu et al. [43]. The convoluted feature
maps are further interpolated using bilinear filtering to match
the size of the input feature map. The input feature map is
finally concatenated with four up-sampled feature maps so
that global context features can be maintained with multi-
scale features. For the pooling operation, we adopt adaptive
average pooling as illustrated in Figure 2. Four levels with bin
sizes of 1 × 1, 2 × 2, 3 × 3, and 6 × 6 are used in the spatial
pyramid pooling module. Note that the number and size of
pyramid levels can be modified. They are related to the size
of the feature map fed into the pyramid pooling layer [33].

C. THE USPP MODEL

Inspired by VGG [23], U-Net [34], and PSP-Net [33], an end-
to-end symmetric training structure is proposed to predict
pixel-level results and generate final segmentation maps.
Figure 3 and Figure 1 (e) present the detailed structure of
the proposed USPP model. It contains four encoder blocks,
one spatial pyramid poolingmodule, and four decoder blocks.
For the encoder phase, the VGG-11 architecture is used as
the backbone. As presented in Table 1, each encoder block
contains two successive 3 × 3 convolutional layers followed
by a 2 × 2 MaxPooling layer [44] to down-sample the input
images. Each convolutional layer is then followed by a Batch-
Normalization (BN) layer [45] and a nonlinear activation

FIGURE 2. An illustration of the spatial pyramid pooling module structure
with four pooling scales in semantic segmentation.

function of the rectified linear unit (ReLU) [46]. Batch-
Normalization is introduced to ease training and enable con-
catenation of feature maps from different layers. ReLU is a
widely-applied activation function in CNNs and is defined
in Equation (1) for input z.

ReLU (z) = max(0, z) (1)

The ReLU function helps to reduce the number of calcula-
tions and avoid overfitting during the training phase. The four
encoder blocks use 64, 128, 256, and 512 kernels.

One crucial modification of USPP in comparison to the
encoder-decoder structure is that the bottom layer in the
encoder phase is replaced with the spatial pyramid pool-
ing module as a connector between the encoding and the
decoding path. This enables extraction of features at multiple
scales and up-sampling of feature maps and learning of global
context information.

Table 2 shows details of the decoder block. The decoder
block uses a transposed convolutional layer instead of the
pooling layer. Additionally, each up-sampled map is concate-
nated with the corresponding feature map from the encoding
path through skip connections. Finally, there is an output
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FIGURE 3. The architecture of USPP with the fusion of spatial pyramid pooling and encoder-decoder structure.

TABLE 2. Configurations of the decoder block in USPP (symbols h, w, and d represent the height, width, and depth of the input layer, respectively).

layer after the encoder path which performs a pixel-wise
classification. This output layer is a 1×1 convolutional layer
with a sigmoid activation function.

D. MODEL TRAINING AND TESTING

The following training and testing procedure is applied: First,
the images, including samples and labels, are separated into
training and testing datasets. Data augmentation, such as
flipping and random cropping, are employed to increase the
complexity within the data set and to reduce over-fitting
during training [47]. Then, the USPP model is trained using
the training data set; the training procedure is based on
the gradient descent algorithm [48] that utilizes updated
parameters calculated by the loss function and backprop-
agation to improve the performance of the network [49].
Instead of the simple mean square error (MSE), binary cross-
entropy [50] is chosen to calculate the loss between every
prediction and relative ground truth. Finally, testing data are
fed into the trained model with the optimal model param-
eters, and the results are evaluated and compared on some

evaluation metrics. An overview of the proposed building
extraction system is illustrated in Figure 4.

III. EXPERIMENTAL DATASETS AND EVALUATION

To verify the effectiveness of USPP as a tool for building
segmentation from high-resolution remote sensing imagery,
extensive experiments have been conducted on two classi-
cal datasets; the Massachusetts and INRIA datasets. Fur-
thermore, the performance of USPP is compared to similar
architecture with alternative sub-components and with other
CNN architectures. All experiments were evaluated based on
five major metrics, including Overall Accuracy, Precision,
Recall, F1-score, and Mean IoU.

A. DATASETS

The first dataset investigated is the Massachusetts build-
ings dataset assembled by Mnih [26]. The dataset consists
of 137 training, 4 validation, and 10 testing images, covering a
surface of 2.25 square kilometers of urban and suburban areas
of Boston (MA) in the United States. The size of each image
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FIGURE 4. The schematic workflow of this study.

FIGURE 5. Image and label example from the Massachusetts Dataset. (a)
Aerial image; (b) Label image; red for buildings and black for the
background.

is 1500 × 1500 pixels with the spatial resolution of 1 meter
per pixel and is composed of red, green, and blue (RGB)
channels. An example of an input image and its building
labeling are shown in Figure 5.
The second dataset is the INRIA Aerial Image Labeling

Dataset [39], comprising of 360 ortho-rectified aerial RGB
images. This dataset covers different cities including Austin,
Chicago, Kitsap,Western/Eastern Tyrol, Vienna, Bellingham,
and San Francisco. Figure 6 presents an example image and
its building labeling. The spatial resolution of images is 0.3 m
with an image size of 5000×5000 pixels and spatial coverage
of 1500 × 1500 m2. The images comprise an overall area
of 810 square kilometers. Only two semantic classes - build-
ings and non-buildings - were considered as the ground truth.

FIGURE 6. Image and label example from the INRIA Dataset. (a) Aerial
image; (b) Label image; red for buildings and black for the background.

Following previous researches [39, 51], we choose the first
five images of each city from the training set for validation.

B. DATA AUGMENTATION

Deep convolutional neural networks require large amounts
of training data, which are not always available during the
learning phase. Data augmentation is essential to teach the
network the desired invariance and robustness properties and
to avoid overfitting when only a few training samples are
available [34]. The training patch was processed by a sliding
window of 256 × 256 pixels to generate data for model
training and cross-validation. Horizontal or vertical flipping
was applied randomly with a probability of 0.5. In addition,
windows were rotated by 90, 180, and 270 degrees. The pixel
values of each image were scaled to the interval [0, 1] by
dividing by 255. No application-specific post-processing was
performed. Since the final layer was activated by a Sigmoid
function, it generated outputs in the range [0, 1]. The final
segmentation map of the input images was produced by
applying a threshold of 0.5.

C. EXPERIMENTAL SETTINGS

The implementation of USPP is based on the deep learning
library PyTorch [52]. All experiments were carried out on
computer servers with an Intel R©Xeon R©CPU E5-2630 v4
(2.20GHz), 64GB of memory (RAM) and two NVIDIA
GeForce GTX 1080 Ti (11GB). Parallelization [53] was
implemented at the PyTorch level to make use of the available
GPU performance and to accelerate calculations. During the
training phase, the Adam stochastic optimizer [54] with an
initial learning rate of 0.0001 was used. All models were
trained for 300 epochs with a mini-batch size of 16. Each
batch contained cropped images that were randomly selected
from the training patches. The changing accuracies and losses
of the Massachusetts and INRIA datasets with increasing
epochs are shown in Figure 7. It is evident that the error
gradually decreases while the accuracy increases and stays
at a high and stable level.

D. EVALUATION METRICS

To evaluate the quantitative performance of different
CNN methods, the ‘Overall Accuracy’ (OA), ‘Precision’,
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FIGURE 7. The accuracy and loss of the proposed model for training the datasets. Left: Massachusetts dataset. Right: INRIA dataset.

TABLE 3. Quantitative result of different methods including SegNet, FCN, U-Net, Tiramisu, FRRN, and USPP on the Massachusetts testing dataset. The
highest values for the different metrics are highlighted in bold.

‘Recall’, ‘F1-score’, and mean of Intersection-over-Union
(‘MeanIoU’) are used as quality metrics. ‘Overall Accuracy’
is defined as the number of correctly classified pixels divided
by the total number of test pixels. ‘Precision’ is the per-
centage of correctly classified positive pixels amongst all
pixels predicted as positive. ‘Recall’ is the percentage of
correctly classified positive pixels among all true positive
pixels. ‘F1-score’ is a combination of precision and recall.
‘MeanIoU’ is applied to characterize the accuracy at the
segment level [55]. The values of these metrics are in the
range of 0 to 1, and higher values indicate better classifi-
cation performance. The five metrics can be calculated as
follows:

OverallAccuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1 − score =
2 × Precision× Recall

Precision+ Recall
(5)

Mean IoU =
TP

TP+ FP+ FN
(6)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives.

IV. RESULTS

A. COMPARISON ON THE MASSACHUSETTS DATASET

USPP is compared to the established networks SegNet, FCN,
U-Net, Tiramisu, and FRRN for semantic segmentation.
Figure 8 shows the qualitative segmentation results of the
CNN models on the Massachusetts dataset. SegNet and
FRRN return more false positives and false negatives than the
other methods. U-Net returns slightly more false positives but
less false negatives compared to FCN. By contrast, the pro-
posed USPP model shows significantly less false positives
and false negatives than the other methods, while maintaining
high completeness in building segmentation.

The quantitative comparison of the different networks on
the whole testing dataset is presented in Table 3. It demon-
strates that the proposed USPP delivers improvements on
all performance indicators over the other models except for
‘Precision’. In the testing case, the USPP model is the best
among all models on Overall Accuracy score with a gain
of 1.0% (0.913 vs. 0.904) over the next best model U-Net.
As for Precision, the FRRN model holds the highest values
and gains 2.2% over USPP (0.928 vs. 0.908). USPP still
performs better than U-Net by 1.0% (0.908 vs. 0.899) over
the entire testing dataset. For Recall, the U-Net, FCN, and
USPP method shows significantly better performance over
the other three methods while USPP achieves the best value
being 2.6% ahead of the U-Net method (0.892 vs. 0.869).
USPP achieves the best F1-score where U-Net is again the
best model amongst the others. For Mean IoU, USPP (0.818)
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FIGURE 8. Segmentation results of different methods on the Massachusetts dataset. (a) Original input image. (b) Target map (ground
truth). (c) The output of SegNet. (d) The output of FCN. (e) The output of U-Net. (f) The output of Tiramisu. (g) The output of FRRN. (h) The
output of USPP. The green, red, blue, and black pixels of the maps represent the predictions of true positive, false positive, false negative
and true negative, respectively.

has made the highest score 1.9% ahead of U-Net (0.803), and
9.2% ahead of FRNN (0.749) respectively.

B. COMPARISON ON THE INRIA DATASET

Building extraction results from the different models on a
sample in the INRIA dataset are presented in Figure 9 for
a qualitative comparison. It is clear that SegNet returns more
false negatives while U-Net returns more false positives in
comparison to the other methods. Overall U-Net and USPP
predict building outlines reasonably well.

We further conducted a quantitative comparison with dif-
ferent models on the INRIA dataset. The results of the quan-
titative comparison are summarized in Table 4. In contrast to
the Massachusetts dataset where U-Net performed the best,
FCN shows the best performance amongst the established
methods. However, the proposed USPP model performs best
except for the Precision score, where FCN obtains the highest
value 1.7% ahead of USPP (0.918 vs. 0.903). For Over-
all Accuracy, USPP holds the highest values with a gain
of 3.6% compared to U-Net (0.909 vs. 0.877). For Recall,
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TABLE 4. Quantitative result of different methods including SegNet, FCN, U-Net, Tiramisu, FRRN, and USPP on the INRIA testing dataset. The highest
values for the different metrics are highlighted in bold.

USPP achieves an improvement of 5.4% over U-Net (0.882
vs. 0.837). As for F1-score and Mean IoU, USPP obtains
the highest value over the other models and outperforms
Tiramisu and FRRN which are considered to be state-of-
the-art networks for segmentation. Compared to the classic
U-Net, USPP yields a higher F1-score by 3.8% (0.893 vs.
0.860) and a higher Mean IoU by 6.8% (0.806 vs. 0.755).

C. COMPARISON ON THE INDEPENDENT BUILDINGS

For a more detailed analysis of the segmentation results, sev-
eral independent buildings were randomly selected from the
two datasets. Figure 10 presents the results of these samples
generated by the SegNet (without skip connection), U-Net
(without spatial pyramid pooling), and the proposed USPP.
In general, USPP performs better than the other two models.
For the SegNet model shown in the second row, major parts
of buildings are not accurately extracted (see columns a, c, d,
e, and f). As depicted in the third row, U-Net is able to present
contours of buildings more accurately (in columns c, g, and
h), but it still produces large numbers of false negatives (blue
in columns a, e, and f). In the fourth row, USPP shows the
best performance in building extraction and noise reduction
compared with the other two methods. However, all methods
failed to segment the entire outline of buildings which are
partially obscured, for instance by trees (see column a).

D. COMPUTATIONAL EFFICIENCY

Computational cost is also a significant efficiency indicator
in deep learning. It represents the complexity of the in-depth
learning model [6] where the costs for training and testing
quantify the differences in complexity between CNNmodels.
Considering the relatively close performance, a quantita-
tive comparison of the computing times for the differ-
ent deep-learning methods was conducted and is presented
in Tables 5 and 6.
For the model-training time, SegNet, FCN, U-Net, and

USPP require about 750 min on the Massachusetts dataset
while Tiramisu and FRRN require about 30% more time
(∼1050 min). For the INRIA dataset, the training times are
higher, and again Tiramisu and FRRN require significantly
higher training time (18% more, ∼900 vs. ∼1000 min). This
can be attributed to the fact that both have a more complex
structure and include additional layers. For both datasets,

TABLE 5. Comparison of model-training time in minutes of SegNet, FCN,
U-Net, Tiramisu, FRRN, and USPP on the two datasets for 300 epochs. For
each dataset, the minimum is highlighted in bold.

TABLE 6. Comparison of model-testing time in seconds of SegNet, FCN,
U-Net, Tiramisu, FRRN, and USPP for each image on the two datasets. For
each dataset, the minimum value is highlighted in bold.

FCN and SegNet model take the least training time, but USPP
requires only a slightly higher training time; e.g., relative to
the U-Net model, there is an increase of only 3.6% and 1.0%
on the Massachusetts dataset and INRIA dataset respectively.

For the model-testing process, the SegNet, FCN, U-Net,
Tiramisu, FRRN, and USPP require 7 sec, 20 sec, 9 sec,
14 sec, 15 sec, and 10 sec for the Massachusetts dataset,
and 9 sec, 22 sec, 8 sec, 12 sec, 12 sec, and 9 sec for the
INRIA dataset, respectively. The FCN model is the most
time-consuming and two to three times slower than the fastest
models SegNet. By contrast, SegNet, U-Net, and USPP are
quite similar in time consumption during the testing proce-
dure.

These findings demonstrate that USPP delivers building
segmentation with consistently better performance scores
except for Precision at computational costs that are compa-
rable to established CNN methods.

V. DISCUSSION

A. ABOUT THE PROPOSED USPP MODEL

In recent years, deep learning, especially convolutional neu-
ral networks, have been widely applied in computer vision
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FIGURE 9. Segmentation results of different methods on the INRIA dataset. (a) Original input image. (b) Target map (ground truth).
(c) The output of SegNet. (d) The output of FCN. (e) The output of U-Net. (f) The output of Tiramisu. (g) The output of FRRN. (h) The output
of USPP. The green, red, blue, and black pixels of the maps represent the predictions of true positive, false positive, false negative and
true negative, respectively.

and semantic segmentation. However, automatic building
extraction from high-resolution remote sensing imagery is
still a challenging task due to a large variety of appear-
ing patterns and its spatial scale. As demonstrated in
Liu et al. [38] and in Zhang andWang [56], accurate building
extraction depends on the acquisition of the unique mor-
phological characteristics of the building. They also pointed
out that a well-performing network for building segmenta-
tion requires large receptive fields and needs to consider the

multi-scale context. To address these issues and to achieve
an effective performance to extract buildings from remote
sensing images, we proposed the novel USPP model. This
model follows the basic structure of U-Net, with the sig-
nificant improvement of an additional spatial pyramid pool-
ing module included at the bottom of the encoder-decoder
structure. The latter aggregates the spatial context informa-
tion from the low convolutional layers to alleviate the prob-
lem of spatial information loss. USPP achieves satisfactory
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FIGURE 10. Segmentation results of randomly selected buildings from the two datasets using the SegNet, U-Net, and USPP model.
The green, red, blue, and black pixels of the maps represent the predictions of true positive, false positive, false negative and true
negative, respectively.

results with an Overall Accuracy of 91.3% and 90.9%, and
an F1-score of 0.900 and 0.893 for the Massachusetts and
INRIA dataset respectively. These scores are improvements
over established methods in particular U-Net. It demonstrates
that the USPP approach of expanding respective fields and
consideringmulti-scale contexts are successful at a very small
additional computational cost.
The accuracy and loss during the training phase reported

in Section 3.3 and the experimental results reported in
Section 4 show that the proposed approach achieved
slightly higher accuracy and stability on the Massachusetts
dataset than on the INRIA dataset. In fact, as discussed
in Ji et al. [57], there are more wrong labels, high build-
ings, and shadows in the INRIA dataset that may substan-
tially influence the discriminative ability of the deep learning
model. Therefore, the differences in experimental results on
the two datasets are acceptable and reasonable.
The USPPmodel proposed in this paper is light-weight and

takes full advantages of the encoder-decoder structure and
spatial pyramid pooling module. The qualitative and quan-
titative experimental results have proved that USPP achieved
better performance than established models without a signif-
icant increase in training time. These findings demonstrated
the applicability and efficiency of the USPP as a model
in building extraction from high-resolution remote sensing
images.

B. LIMITATIONS

Despite the performance improvements achieved by the pro-
posed USPP, some issues remain to be considered. With the
advancement of remote sensing technology, it has become
much easier to collect high-resolution aerial images with
abundant features and spectral information. This poses a
major challenge for computer vision and image process-
ing. The USPP model proposed in this research is able to
improve the building segmentation, which demonstrates that

enlargement of fields helps to improve the accuracy of seman-
tic segmentation. However, the datasets used in this research
do light-weight not cover images from different sensors, such
as hyperspectral images and SAR images. These data provide
information complementary to the data in the visual spec-
trum, and therefore there is the potential that training models
with these additional data may lead to better segmentation
results. In future studies, we will try to expand the training
dataset and further optimize the network architecture to be
applicable to multi-spectral and point cloud data.

VI. CONCLUSION

Accurate and automatic building segmentation from remote
sensing imagery is essential for application areas such as
urban planning and disaster management. In this paper,
we proposed a CNN framework, named USPP, to perform
building segmentation on high-resolution remote sensing
images. The significant contribution of this work is the anal-
ysis of the advantages of existing FCN-based models and
the development of a novel model demonstrating that the
encoder-decoder and spatial pyramid pooling module are two
powerful tools that need to be merged to take effect for
building segmentation.

Experiments were conducted on two public building
datasets: the Massachusetts and INRIA Aerial Image Label-
ing datasets. The results show that the proposed USPP model
achieves high accuracy on these two datasets. Buildings
were extracted successfully by USPP with fewer classifica-
tion errors and with sharper boundaries. The qualitative and
quantitative comparison with the established models SegNet,
FCN, U-Net, Tiramisu, and FRRN have demonstrated that
USPP outperforms these models. Compared with the stan-
dard U-Net, USPP gains 1.0% (0.913 vs. 0.904) and 3.6%
(0.909 vs. 0.877) improvements in Overall Accuracy with
the small increase of 3.6% and 1.0% in model-training time
on the Massachusetts and the INRIA dataset respectively.
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These findings showed the robustness of USPP and its abil-
ity to perform effective building segmentation from high-
resolution remotely sensed images.
To further improve the extraction of building outlines,

future work will combine the segmentation model with other
image processing methods taking into consideration building
edges and shapes. In addition, various data fusion strategies
for the multi-scale remote sensing data (e.g., low-, medium-,
high-resolution, and LiDAR) will be included, and some
more heavy modeling structures will also be investigated.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and
associate editor for their constructive comments and sugges-
tions. Also, we want to thank Volodymyr Mnih and l’institut
national de recherche dédié aux sciences du numérique
(INRIA) for their kind open-sourcing of the data. In addition,
the first author wants to express his great acknowledgment to
the China Scholarship Council (CSC) for providing financial
support to study at The University of Queensland, Australia.

REFERENCES

[1] T. Panboonyuen, K. Jitkajornwanich, S. Lawawirojwong, P. Srestasathiern,
and P. Vateekul, ‘‘Semantic segmentation on remotely sensed images using
an enhanced global convolutional network with channel attention and
domain specific transfer learning,’’ Remote Sens., vol. 11, no. 1, p. 83,
2019.

[2] Y. Wang, B. Liang, M. Ding, and J. Li, ‘‘Dense semantic labeling with
atrous spatial pyramid pooling and decoder for high-resolution remote
sensing imagery,’’ Remote Sens., vol. 11, no. 1, p. 20, 2019.

[3] H. He, D. Yang, S. Wang, S. Wang, and Y. Li, ‘‘Road extraction by
using atrous spatial pyramid pooling integrated encoder-decoder network
and structural similarity loss,’’ Remote Sens., vol. 11, no. 9, p. 1015,
2019.

[4] X. Li, Z. Li, J. Yang, Y. Liu, B. Fu, W. Qi, and X. Fan, ‘‘Spatiotemporal
characteristics of earthquake disaster losses in China from 1993 to 2016,’’
Natural Hazards, vol. 94, no. 2, pp. 843–865, 2018.

[5] Y. Liu, Z. Li, B. Wei, X. Li, and B. Fu, ‘‘Seismic vulnerability assessment
at urban scale using data mining and GIScience technology: Application
to Urumqi (China),’’ Geomatics, Natural Hazards Risk, vol. 10, no. 1,
pp. 958–985, 2019.

[6] G.Wu,X. Shao, Z. Guo, Q. Chen,W.Yuan, X. Shi, Y. Xu, andR. Shibasaki,
‘‘Automatic building segmentation of aerial imagery usingmulti-constraint
fully convolutional networks,’’ Remote Sens., vol. 10, no. 3, p. 407,
2018.

[7] J. Hui,M.Du, X. Ye, Q. Qin, and J. Sui, ‘‘Effective building extraction from
high-resolution remote sensing images with multitask driven deep neural
network,’’ IEEE Geosci. Remote Sens. Lett., vol. 16, no. 5, pp. 786–790,
May 2018.

[8] Z. Huang, G. Cheng, H. Wang, H. Li, L. Shi, and C. Pan, ‘‘Building
extraction from multi-source remote sensing images via deep deconvo-
lution neural networks,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp.

(IGARSS), Jul. 2016, pp. 1835–1838.

[9] Z. Guo, X. Shao, Y. Xu, H. Miyazaki, W. Ohira, and R. Shibasaki,
‘‘Identification of village building via Google Earth images and super-
vised machine learning methods,’’ Remote Sens., vol. 8, no. 4, p. 271,
2016.

[10] W. Li, C. He, J. Fang, J. Zheng, H. Fu, and L. Yu, ‘‘Semantic segmentation-
based building footprint extraction using very high-resolution satellite
images and multi-source GIS data,’’ Remote Sens., vol. 11, no. 4, p. 403,
2019.

[11] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. CVPR, vol. 1, Dec. 2001, pp. 511–518.

[12] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[13] T. Ojala, M. Pietikäinen, and T. Mäenpää, ‘‘Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[14] D. A. Clausi, ‘‘An analysis of co-occurrence texture statistics as a function
of grey level quantization,’’ Can. J. Remote Sens., vol. 28, no. 1, pp. 45–62,
2002.

[15] N.Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-
tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.

(CVPR), vol. 1, Jun. 2005, pp. 886–893.
[16] J. Inglada, ‘‘Automatic recognition of man-made objects in high resolu-

tion optical remote sensing images by SVM classification of geometric
image features,’’ ISPRS J. Photogramm. Remote Sens., vol. 62, no. 3,
pp. 236–248, 2007.

[17] Ö. Aytekin, U. Zöngür, and U. Halici, ‘‘Texture-based airport run-
way detection,’’ IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3,
pp. 471–475, May 2013.

[18] Y. Dong, B. Du, and L. Zhang, ‘‘Target detection based on random forest
metric learning,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 8, no. 4, pp. 1830–1838, Apr. 2015.

[19] T. Celik, ‘‘Unsupervised change detection in satellite images using prin-
cipal component analysis and k-means clustering,’’ IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.

[20] E. Li, J. Femiani, S. Xu, X. Zhang, and P. Wonka, ‘‘Robust rooftop
extraction from visible band images using higher order CRF,’’ IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 8, pp. 4483–4495, Aug. 2015.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[22] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 1520–1528.

[23] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jul. 2017, pp. 4700–4708.
[26] V. Mnih, Machine Learning for Aerial Image Labeling. Toronto,

ON, Canada: Univ. Toronto, 2013.
[27] V. Mnih and G. E. Hinton, ‘‘Learning to detect roads in high-resolution

aerial images,’’ in Proc. Eur. Conf. Comput. Vis. Berlin, Germany:
Springer, 2010, pp. 210–223.

[28] S. Saito, T. Yamashita, and Y. Aoki, ‘‘Multiple object extraction from
aerial imagery with convolutional neural networks,’’ J. Imag. Sci. Technol.,
vol. 60, no. 1, pp. 1–9, 2016.

[29] S. Saito and Y. Aoki, ‘‘Building and road detection from large
aerial imagery,’’ Proc. SPIE, vol. 9405, pp. 94050K-1–94050K-12,
Feb. 2015.

[30] X. Wei, K. Fu, X. Gao, M. Yan, X. Sun, K. Chen, and H. Sun, ‘‘Seman-
tic pixel labelling in remote sensing images using a deep convolutional
encoder-decoder model,’’ Remote Sens. Lett., vol. 9, no. 3, pp. 199–208,
2018.

[31] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2015, pp. 3431–3440.
[32] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep con-

volutional encoder-decoder architecture for image segmentation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[33] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ‘‘Pyramid scene parsing
network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 2881–2890.

[34] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

VOLUME 7, 2019 128785



Y. Liu et al.: Automatic Building Extraction on High-Resolution Remote Sensing Imagery

[36] S. Shrestha and L. Vanneschi, ‘‘Improved fully convolutional network with
conditional random fields for building extraction,’’ Remote Sens., vol. 10,
no. 7, p. 1135, 2018.

[37] R. Alshehhi, P. R. Marpu, W. L.Woon, andM. Dalla Mura, ‘‘Simultaneous
extraction of roads and buildings in remote sensing imagery with convo-
lutional neural networks,’’ ISPRS J. Photogramm. Remote Sens., vol. 130,
pp. 139–149, Aug. 2017.

[38] P. Liu, X. Liu, M. Liu, Q. Shi, J. Yang, X. Xu, and Y. Zhang, ‘‘Building
footprint extraction from high-resolution images via spatial residual incep-
tion convolutional neural network,’’ Remote Sens., vol. 11, no. 7, p. 830,
2019.

[39] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, ‘‘Can semantic
labeling methods generalize to any city? The Inria aerial image labeling
benchmark,’’ in Proc. IEEE Int. Symp. Geosci. Remote Sens. (IGARSS),
Jul. 2017, pp. 3226–3229.

[40] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio,
‘‘The one hundred layers tiramisu: Fully convolutional DenseNets for
semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. Workshops, Jul. 2017, pp. 11–19.

[41] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, ‘‘Full-resolution
residual networks for semantic segmentation in street scenes,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 4151–4160.

[42] Q. Liu, R. Hang, H. Song, and Z. Li, ‘‘Learningmultiscale deep features for
high-resolution satellite image scene classification,’’ IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 1, pp. 117–126, Jan. 2017.

[43] B. Yu, L. Yang, and F. Chen, ‘‘Semantic segmentation for high
spatial resolution remote sensing images based on convolution neu-
ral network and pyramid pooling module,’’ IEEE J. Sel. Topics

Appl. Earth Observat. Remote Sens., vol. 11, no. 9, pp. 3252–3261,
Sep. 2018.

[44] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti,
F. Nagi, Jürgen Schmidhuber, and L. M. Gambardella, ‘‘Max-pooling
convolutional neural networks for vision-based hand gesture recognition,’’
in Proc. IEEE Int. Conf. Signal Image Process. Appl. (ICSIPA), Nov. 2011,
pp. 342–347.

[45] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

[46] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[47] D. M. Hawkins, ‘‘The problem of overfitting,’’ J. Chem. Inf. Comput. Sci.,
vol. 44, no. 1, pp. 1–12, 2004.

[48] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. COMPSTAT. Springer, 2010, pp. 177–186.

[49] Y. LeCun, ‘‘Handwritten digit recognition with a back-propagation
network,’’ in Proc. Adv. Neural Inf. Process. Syst., 1990,
pp. 396–404.

[50] J. Shore and R. Johnson, ‘‘Properties of cross-entropy minimiza-
tion,’’ IEEE Trans. Inf. Theory, vol. 27, no. 4, pp. 472–482,
Jul. 1981.

[51] B. Bischke, P. Helber, J. Folz, D. Borth, and A. Dengel, ‘‘Multi-task
learning for segmentation of building footprints with deep neural net-
works,’’ 2017, arXiv:1709.05932. [Online]. Available: https://arxiv.org/
abs/1709.05932

[52] A. Paszke, ‘‘Automatic differentiation in PyTorch,’’ Tech. Rep., 2017.
[53] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ‘‘Dryad: Distributed

data-parallel programs from sequential building blocks,’’ ACM SIGOPS

Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, 2007.
[54] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-

mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[55] M. Polak, H. Zhang, and M. Pi, ‘‘An evaluation metric for image seg-
mentation of multiple objects,’’ Image Vis. Comput., vol. 27, no. 8,
pp. 1223–1227, 2009.

[56] Z. Zhang and Y. Wang, ‘‘JointNet: A common neural network for
road and building extraction,’’ Remote Sens., vol. 11, no. 6, p. 696,
2019.

[57] S. Ji, S. Wei, and M. Lu, ‘‘Fully convolutional networks for multi-
source building extraction from an open aerial and satellite imagery data
set,’’ IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586,
Jan. 2019.

YAOHUI LIU was born in Yichun, Heilongjiang,
China, in 1991. He received the B.S. degree in sur-
veying and mapping from the Heilongjiang Insti-
tute of Technology, in 2013, and the M.S. degree
in geographic information science from Yunnan
Normal University, in 2016. He is currently pur-
suing the joint Ph.D. degree with the Institute of
Geology, China Earthquake Administration and
with The University of Queensland, Australia. His
research interests include computer vision, image

segmentation, deep learning, and risk management.

LUTZ GROSS received the M.Sc. degree in math-
ematics from the University of Hannover, Ger-
many, and the Ph.D. degree in mathematics from
The University of Karlsruhe, Germany, in 1996.
He is currently an Associate Professor with The
University of Queensland, Brisbane, Australia. His
research interests include geophysical data pro-
cessing and inversion, large-scale numerical mod-
eling, and high-performance computing.

ZHIQIANG LI received the Ph.D. degree in geo-
dynamics and tectonophysics from the Institute of
Geology, China Earthquake Administration, Bei-
jing, China, in 1997. He is currently a Profes-
sor with the China Earthquake Networks Center,
Beijing. His research interests include earthquake
emergency response and management, earthquake
emergency basal database technology, earthquake
disaster risk assessment techniques and applica-
tion of GPS, GIS, and RS to earthquake emergency
and earthquake resistance, and disaster relief.

XIAOLI LI received the master’s degree in struc-
tural geology from the Institute of Geology,
China Earthquake Administration, Beijing, China,
in 2008. She is currently a Senior Engineer with
the China Earthquake Networks Center, Beijing.
Her research interests include earthquake emer-
gency response and management, earthquake dis-
aster risk assessment techniques, and application
of GPS, GIS, and RS to earthquake emergency and
earthquake resistance, and disaster relief.

XIWEI FAN received the Ph.D. degree in cartog-
raphy and geographical information system from
the Institute of Geographic Sciences and Nat-
ural Resources Research, Chinese Academy of
Sciences, Beijing, in 2015. He is currently an
Associate Research Fellow with the Institute of
Geology, China Earthquake Administration. His
research interests include the retrieval and vali-
dation of land surface temperature/emissivity and
earthquake damage estimation.

WENHUA QI received the bachelor’s degree in
hydrology and water resources engineering from
the School of Water Resources and Environment,
China University of Geosciences, Beijing, China,
in 2008, and the master’s degree in Tectonics
from the Institute of Geology, China Earthquake
Administration, Beijing, in 2011. His research
interests include remote sensing, and citizen sci-
ence for natural disaster risk assessment and
governance.

128786 VOLUME 7, 2019


	INTRODUCTION
	METHODOLOGY
	U-SHAPE STRUCTURE
	SPATIAL PYRAMID POOLING MODULE
	THE USPP MODEL
	MODEL TRAINING AND TESTING

	EXPERIMENTAL DATASETS AND EVALUATION
	DATASETS
	DATA AUGMENTATION
	EXPERIMENTAL SETTINGS
	EVALUATION METRICS

	RESULTS
	COMPARISON ON THE MASSACHUSETTS DATASET
	COMPARISON ON THE INRIA DATASET
	COMPARISON ON THE INDEPENDENT BUILDINGS
	COMPUTATIONAL EFFICIENCY

	DISCUSSION
	ABOUT THE PROPOSED USPP MODEL
	LIMITATIONS

	CONCLUSION
	REFERENCES
	Biographies
	YAOHUI LIU
	LUTZ GROSS
	ZHIQIANG LI
	XIAOLI LI
	XIWEI FAN
	WENHUA QI


