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Abstract. Graphics Processing Units (GPUs) offer tremendous computational
power. CUDA (Compute Unified Device Architecture) provides a multi-threaded
parallel programming model, facilitating high performance implementations of
general-purpose computations. However, the explicitly managed memory hierar-
chy and multi-level parallel view make manual development of high-performance
CUDA code rather complicated. Hence the automatic transformation of sequen-
tial input programs into efficient parallel CUDA programs is of considerable in-
terest.

This paper describes an automatic code transformation system that gener-
ates parallel CUDA code from input sequential C code, for regular (affine) pro-
grams. Using and adapting publicly available tools that have made polyhedral
compiler optimization practically effective, we develop a C-to-CUDA transfor-
mation system that generates two-level parallel CUDA code that is optimized
for efficient data access. The performance of automatically generated code is
compared with manually optimized CUDA code for a number of benchmarks.
The performance of the automatically generated CUDA code is quite close to
hand-optimized CUDA code and considerably better than the benchmarks’ per-
formance on a multicore CPU.

1 Introduction

Graphics Processing Units (GPUs) represent the most powerful multi-core systems cur-
rently in use. For example, the NVIDIA GeForce 8800 GTX GPU chip has a peak
performance of over 350 GFLOPS and the NVIDIA GeForce GTX 280 chip has a
peak performance of over 900 GFLOPS. There has been considerable recent interest in
using GPUs for general purpose computing [8,13,12]. Until recently, general-purpose
computations on GPUs were performed by transforming matrix operations into special-
ized graphics processing, such as texture operations. The introduction of the CUDA
(Compute Unified Device Architecture) programming model by NVIDIA provided a
general-purpose multi-threaded model for implementation of general-purpose compu-
tations on GPUs. Although more convenient than previous graphics programming APIs
for developing GPGPU codes, the manual development of high-performance codes with
the CUDA model is still much more complicated than the use of parallel program-
ming models such as OpenMP for general-purpose multi-core systems. It is therefore
of great interest, for enhanced programmer productivity and for software quality, to
develop compiler support to facilitate the automatic transformation of sequential input
programs into efficient parallel CUDA programs.
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There has been significant progress over the last two decades in the development
of powerful compiler frameworks for dependence analysis and transformation of loop
computations with affine bounds and array access functions [1,5,6,24,18,14,9,25,23,4].
For such regular programs, compile-time optimization approaches have been devel-
oped using affine scheduling functions with a polyhedral abstraction of programs and
data dependencies. CLooG [4,7] is a powerful open-source state-of-the-art code gen-
erator that transforms a polyhedral representation of a program and affine scheduling
constraints into concrete loop code. The Pluto source-to-source optimizer [5,6,22] en-
ables end-to-end automatic parallelization and locality optimization of affine programs
for general-purpose multi-core targets. The effectiveness of the transformation system
has been demonstrated on a number of non-trivial application kernels for multi-core
processors, and the system implementation is publicly available [22].

In this paper we describe an end-to-end automatic C-to-CUDA code generator using
a polyhedral compiler transformation framework. We evaluate the quality of the gen-
erated code using several benchmarks, by comparing the performance of automatically
generated CUDA code with hand-tuned CUDA code where available and also with op-
timized code generated by the Intel icc compiler for a general-purpose multi-core CPU.

The rest of the paper is organized as follows. Section 2 provides an overview of the
polyhedral model for representing programs, dependences, and transformations. Sec-
tion 3 provides an overview of the NVIDIA GPU architecture and the CUDA program-
ming model. The design and implementation of the C-to-CUDA transformer is pre-
sented in Section 4. Experimental results are provided in Section 5. We discuss related
work in Section 6 and conclude with a summary in Section 7.

2 Background

This section provides background information on the polyhedral model. A hyperplane
in n dimensions is an n− 1 dimensional affine subspace of the n-dimensional space
and can be represented by an affine equality. A halfspace consists of all points of an
n-dimensional space that lie on one side of a hyperplane (including the hyperplane); it
can be represented by an affine inequality. A polyhedron is the intersection of finitely
many halfspaces. A polytope is a bounded polyhedron.

In the polyhedral model, a statement s surrounded by m loops is represented by an
m-dimensional polytope, referred to as an iteration space polytope. The coordinates of
a point in the polytope (referred to as the iteration vector is) correspond to the values of
the loop indices of the surrounding loops, starting from the outermost. In this work we
focus on programs where loop bounds are affine functions of outer loop indices and
global parameters (e.g., problem sizes). Similarly, array access functions are also affine
functions of loop indices and global parameters. Hence the iteration space polytope
Ds of a statement s can be defined by a system of affine inequalities derived from the
bounds of the loops surrounding s. Each point of the polytope corresponds to an instance
of statement s in program execution. Using matrix representation to express systems of

affine inequalities, the iteration space polytope is defined by Ds

⎛
⎝

is
n
1

⎞
⎠≥ 0, where Ds is

a matrix representing loop bound constraints and n is a vector of global parameters.
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Affine array access functions can also be represented using matrices. Let a[Fras(is)]
be the rth reference to an array a in statement s whose corresponding iteration vector

is is. Then Fras(is) = Fras

⎛
⎝

is
n
1

⎞
⎠, where Fras is a matrix representing an affine mapping

from the iteration space of statement s to the data space of array a. Row i in the matrix
Fras (often referred to as the access matrix) defines a mapping corresponding to the ith
dimension of the data space. When the rank of the access matrix of an array reference is
less than the iteration space dimensionality of the statement in which it is accessed, the
array is said to have an order of magnitude (or higher-order) reuse due to that reference.

Given an iteration space polytope D and a set of array access functions F1,F2, . . . ,Fk
of k references to an array in the iteration space, the set of array elements accessed in
the iteration space or the accessed data space is given by DS =

⋃k
j=1 F jD, where F jD

is the image of the iteration space polytope D formed by the affine access function F j
and it gives the set of elements accessed by the reference F j in D.

Dependences. There has been a significant body of work on dependence analysis in
the polyhedral model [9,24,29]. An instance of statement s, corresponding to iteration
vector is within iteration domain Ds, depends on an instance of statement t (with it-
eration vector it in domain Dt ), if (1) is and it are valid points in the corresponding
iteration space polytopes, (2) they access the same memory location, and (3) is is exe-
cuted before it . Since array accesses are assumed to be affine functions of loop indices
and global parameters, the constraint that defines conflicting accesses of memory lo-
cations can be represented by an affine equality (obtained by equating the array access
functions in source and target statement instances). Hence all constraints to capture a
data dependence can be represented as a system of affine inequalities/equalities with a
corresponding polytope (referred to as a dependence polytope).

Affine Transforms. The polyhedral model has been effectively used to find good affine
program transformations that are aimed at either improvement of sequential programs
(source-to-source transformation) or automatic parallelization of programs or both
[10,18,14,11,14,23,6].

A one-dimensional affine transformation of a statement s is represented in the poly-

hedral model as φs(is) = Cs.

⎛
⎝

is
n
1

⎞
⎠, where Cs is a row vector and the affine mapping

φs represents an affine hyperplane that maps each instance of statement s to a point in
a dimension of the transformed iteration space. An affine transformation is valid only
if it preserves the dependences in the original program. An m-dimensional affine map-
ping can be represented using a matrix with m rows, where each row represents a one-
dimensional mapping. A set of linearly independent one-dimensional affine functions
(φ1

s ,φ2
s , . . . ,φk

s ) maps each instance of statement s into a point in the multi-dimensional
transformed space. The transformation matrix captures a composition of transforma-
tions like fusion, skewing, reversal and shifting.

It has been shown (in automatic transformation systems like Pluto) that key compiler
transformations like tiling can be effectively performed using the polyhedral model.
When tiling is performed, in the tiled iteration space, statement instances are repre-
sented by higher dimensional statement polytopes involving supernode or inter-tile
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for ( i=0;i<N;i++) {
P: x[ i ]=0;
for ( j=0;j<N;j++)

Q: x[ i]+=a[j ][ i ]∗y[ j ];
}

(a) Original code

Dorig
Q .

⎛
⎜⎜⎝

i
j

N
1

⎞
⎟⎟⎠≥ 0 Dtiled

Q .

⎛
⎜⎜⎜⎜⎜⎝

it
jt
i
j

N
1

⎞
⎟⎟⎟⎟⎟⎠
≥ 0

(c) Original and tiled iteration space

for ( it =0; it <=floord(N−1,32);it++) {
for ( jt =0; jt <=floord(N−1,32);jt++) {

if ( jt == 0) {
for ( i=max(32∗it ,0);

i<=min(32∗it+31,N−1); i++) {
P: x[ i ]=0;
Q: x[ i]=x[ i]+a [0][ i ]∗y [0];

}
}
for ( i=max(32∗it ,0);
i<=min(32∗it+31,N−1); i++) {
for ( j=max(32∗jt ,1);
j<=min(32∗jt+31,N−1);j++) {
Q: x[ i]=x[ i]+a[ j ][ i ]∗y[ j ];
}
}
}
}

(b) Tiled code

Fig. 1. Example to illustrate Tiling: Transpose matrix vector multiply (tmv) kernel

iterators and intra-tile iterators. The code in Figure 1(b) represents the tiled version
of the code in Figure 1(a). The original iteration space and the transformed iteration
space are illustrated in Figure 1(c).

3 GPU Architecture and the CUDA Programming Model

In this Section, we provide an overview of the GPU parallel computing architecture, the
CUDA programming interface, and the GPU execution model.

3.1 GPU Computing Architecture

NVIDIA GPUs comprises of a set of multiprocessor units called streaming multiproces-
sors (SMs), each one containing a set of processor cores (called streaming processors
(SPs)). The NVIDIA GeForce 8800 GTX has 16 SMs, each consisting of 8 SPs. The
NVIDIA GeForce GTX280 has 30 SMs with 8 SPs in each SM. The SPs within an
SM communicate through a fast explicitly managed on-chip local store, also called the
shared memory, while the different SMs communicate through slower off-chip DRAM,
also called the global memory. Each SM unit also has a fixed number of registers.

Different types of memory in the GPUs are addressable in CUDA programming
model. The memories are organized in a hybrid cache and local-store hierarchy. The
memories are as follows: (1) off-chip global memory (768MB on the 8800 GTX), (2)
off-chip local memory, (3) on-chip shared memory (16KB per multiprocessor in 8800
GTX), (4) off-chip constant memory with on-chip cache (64KB in 8800 GTX), and (5)
off-chip texture memory with on-chip cache.

The off-chip DRAM in the GPU device (i.e., the global memory) has a very high la-
tency (about 100−200 cycles). Hence reducing the latency in accessing data from global
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memory is critical for good performance. The global memory accesses in NVIDIA GPU
chips are characterized by a hardware optimization – global memory access coalescing.
Accesses from adjacent threads in a half-warp to adjacent locations (that are aligned to 4,
8, or 16 bytes) in global memory are coalesced into a single contiguous aligned memory
access. Interleaved access to global memory by threads in a thread block is essential to
exploit this architectural feature and is therefore an important optimization for a C-to-
CUDA compiler.

The shared memory in each SM is organized into banks. When multiple addresses
belonging to the same bank are accessed at the same time, bank conflict occur. Each
SM has a set of registers. The constant and texture memories are read-only regions in
the global memory space and they have on-chip read-only caches. Accessing constant
cache is faster, but it has only a single port and hence it is beneficial when multiple pro-
cessor cores load the same value from the cache. Texture cache has higher latency than
constant cache, but it does not suffer greatly when memory read accesses are irregular
and it is also beneficial for accessing data with 2D spatial locality. It is extremely im-
portant to reduce the number of accesses to off-chip memory and maximize utilization
of the on-chip memories.

3.2 CUDA Programming Model

Programming GPUs for general-purpose applications is enabled through a C/C++ lan-
guage interface exposed by the NVIDIA Compute Unified Device Architecture (CUDA)
technology [20]. The CUDA programming model provides an abstraction of the GPU
parallel architecture using a minimal set of programming constructs such as hierarchy
of threads, hierarchy of memories, and synchronization primitives. A CUDA program
comprises of a host program which is run on the CPU or host and a set of CUDA ker-
nels that are launched from the host program on the GPU device. The CUDA kernel is a
parallel kernel that is executed on a set of threads. The threads are organized into groups
called thread blocks. The threads within a thread block synchronize among themselves
through barrier synchronization primitives in CUDA and they communicate through
shared memory. A kernel comprises of a grid of one or more thread blocks. Each thread
in a thread block is uniquely identified by its thread id (threadIdx) within its block and
each thread block is uniquely identified by its block id (blockIdx). The dimensions of
the thread and thread block are specified at the time of launching the kernel, through
the identifiers blockDim and gridDim, respectively.

Each CUDA thread has access to the different memories at different levels in the hi-
erarchy. The threads have a private local memory space and register space. The threads
in a thread block share a shared memory space. The GPU DRAM is accessible by all
threads in a kernel.

3.3 GPU Execution Model

NVIDIA GPUs use a Single Instruction Multiple Threads (SIMT) model of execution.
The threads in a kernel are executed in groups called warps, where a warp is a unit of
execution. The scalar SPs within an SM share a single instruction unit and the threads of
a warp are executed on the SPs. All the threads of a warp execute the same instruction
and each warp has its own program counter. The SM hardware employs zero-overhead
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Fig. 2. The C-to-CUDA Code Generation Framework

warp scheduling through the CUDA runtime scheduler. Any warps whose next instruc-
tion has ready operands is eligible for execution. Eligible warps are selected for execu-
tion by a prioritized scheduling policy. The warp scheduling is completely transparent
to the CUDA programmer.

The computational resources on a multiprocessor unit, i.e., the shared memory and
the register bank, are shared among the active thread blocks on that unit. For exam-
ple, an application abstracted as a grid of 64 thread blocks can have 4 thread blocks
mapped on each of the 16 multiprocessors of the NVIDIA GeForce 8800 GTX. The
GeForce 8800 GTX GPU has a 16 KB shared memory space and 8192 registers. If
the shared memory usage per thread block is 8 KB and the register usage is 4096, at
most 2 thread blocks can be concurrently active on a multiprocessor; when one of the
two thread blocks completes execution, another thread block can become active on the
multiprocessor.

4 Design of C-to-CUDA Generator

In this section, we describe the C-to-CUDA code generator. Before providing details on
the various transformation aspects, we first outline the general steps involved in source-
to-source code generation using a polyhedral compiler framework.

1. The input program is run through a scanner and parser that constructs an abstract
syntax tree (AST) for the input program. From the AST, iteration space polytopes
and array access functions are extracted.

2. Data dependences are analyzed and dependence polytopes (described in Section 2)
are generated.

3. After analyzing the dependences, affine statement-wise transforms are determined.
The affine transforms provide the new lexicographic ordering of the statements in
the transformed program.

4. When tiling has to be performed, the affine statement-wise transforms are used as
tiling hyperplanes to generate higher-dimensional statements domains (involving
supernode iterators and intra-tile iterators).

5. The transformed statement polytopes along with the affine transformations are pro-
vided to a polyhedral code generator such as CLooG to generate transformed code.

As described in Section 3, the GPU architecture represents a multi-level parallel ar-
chitecture. It has various memory units (with different access properties) that are at
different proximity with respect to the chip (on-chip and off-chip) and have very dif-
ferent access latencies. We now discuss the various issues that are addressed by our
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code generation system for generating effective CUDA code along the lines of the code
generation process described above. There are several publicly available polyhedral
transformation frameworks and tools. We used the Pluto [22] polyhedral parallel tiling
infrastructure and CLooG [4,7], a state-of-the-art polyhedral code generator. The se-
quence of steps in the implemented system is shown in Fig. 2.

1. One of the key optimizations is to generate efficient access pattern for global (off-
chip) memory access. Pluto finds affine transforms that are (1) communication-
optimized, and (2) locality-optimized. At Step 3 of the code generation process
(outlined above), our framework finds affine transforms that enable global memory
coalescing in addition to being communication-optimized and locality-optimized.
(detailed in [2]).

2. Two levels of parallelism must be extracted to exploit parallelism at the thread
block level and the thread level for GPUs. At Step 4, we use the affine transforms
determined at Step 3 to find multi-level tiled statement domains and identify and
extract parallelism.

3. A critical optimization for GPUs is the utilization of on-chip memories. It is ben-
eficial to move repeatedly reused data from off-chip memory to on-chip memory
before the first use and move it back after the last use. At Step 4, our framework
generates iteration space polytopes of data movement statements using polyhedral
techniques, in addition to generating the transformed statement domains. (detailed
in [3]).

4. At Step 5, we use the CLooG polyhedral code generator to generate the target code
structure. Suitable input, in the form of a description of all statements (computation
and data movement), together with their iteration spaces (as polytopes) as well as
the transformations (as scheduling functions) specifying the new execution order
for each statement instance, is input to the CLooG code generator. The union of
all input iteration space polytopes is scanned by CLooG according to the specified
scheduling functions, in order to generate loop nests in the target program that
execute the statement instances in this new execution order.

5. After Step 5, the AST of the generated parallel tiled code is post processed to gen-
erate compilable CUDA code. The post processing is primarily (1) to introduce
thread-centricity in the parallel code, i.e., to add thread identifier and thread block
identifier, and (2) add inter-thread and inter-thread-block synchronizations at ap-
propriate execution points.

In the rest of this section, we provide details on the following three aspects of the C-to-
CUDA generator:

1. generation of multi-level tiled parallel code,
2. generation and placement of code to move data between on-chip and off-chip mem-

ories, and
3. generation of thread-centric parallel code.

4.1 Multi-level Parallel Tiled Code Generation

Tiling Hyperplanes and Tiling Legality Condition. In order to generate tiled code,
Pluto finds affine transforms that satisfy the following tiling legality condition [6] in a
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multi-statement imperfectly nested program and use them as tiling hyperplanes which
constitute the loops in the transformed program:
A set of one-dimensional affine transformation functions (one corresponding to each
statement in a imperfectly nested multi-statement program), {φs1 ,φs2 , . . . ,φsn}, repre-
sents a valid tiling hyperplane if for each pair of dependent statement instances (isp , isq)
φsq(isq)−φsp(isp)≥ 0. This condition guarantees that any inter- or intra-statement affine
dependence is carried in the forward direction along the tiling hyperplane. Hence if a
program is transformed using the affine transforms satisfying the above condition, then
rectangular tiling is legal in the transformed program.

Affine transformations for CUDA. With CUDA, execution of a program involves dis-
tributing the computation across thread blocks and across threads within a thread block.
For tiling at the outer level (at the level of thread blocks), our framework uses the affine
transforms generated by Pluto. For finding tiling hyperplanes to generate tiled code at
the inner level (at the level of threads), we modify Pluto to generate program transfor-
mations that enable interleaved access to global memory by threads in a thread block
- this is necessary to facilitate coalesced global memory accesses that improve global
memory access bandwidth. An approach to achieve this was developed in [2]. We incor-
porated that approach in our system by framing additional constraints to feed to Pluto
while finding affine statement-wise transforms. The additional constraints are:

– If two statement instances access adjacent elements of an array (based on the actual
array layout), then the statement instances are scheduled to execute at the same
time; (and)

– If two statement instances access adjacent elements of an array (based on the actual
array layout), then the statement instances are scheduled to execute on adjacent
processors.

Extracting Parallel Loops. The affine transformations may or may not result in
synchronization-free parallel tile loops (doall loops). If doall loops exist in the tile
space, they are used as parallel loops. However when no synchronization-free paral-
lelism exists, parallel code generation needs additional processing. There may be one
or more loops that carry dependences (doacross loops). Since the tiling legality condi-
tion assures that the dependences are always carried in the forward direction, pipelined
parallelism with synchronization can be exploited in such cases.

If {φ1,φ2, . . . ,φn} represent the doacross loops in the tile space, then the sum φ1 +
φ2 + · · ·+φn carries all dependences that are carried by each φi,1≤ i≤ n, and represents
a legal wavefront of tiles such that all tiles in the wavefront are parallel [15]. In other
words, the set of loops are transformed (using a unimodular skewing transformation) as
follows: ⎛

⎜⎜⎜⎜⎜⎝

φ′1

φ′2

φ′3
...

φ′n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

...
φn

⎞
⎟⎟⎟⎟⎟⎠

.

This ensures that φ′1 is sequential and φ′2,φ′3, . . . ,φ′n represent the parallel loops. This is
the approach we employ to extract parallel loops at one level. A synchronization call to
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synchronize across the parallel units has to be placed at each iteration of the sequential
loop. Handling the placement of synchronization calls is discussed later in the Section.

Pluto generates parallel code for general purpose multi-core architectures; it gener-
ates multi-level tiled code with parallelism only at the outer level. However for multi-
level parallel architectures like GPGPUs, parallelism has to be extracted at multiple
levels (two levels for CUDA - thread block level and thread level). Algorithm 1 pro-
vides details on the approach to generate multi-level tiled transformed statement do-
mains (which are later fed to CLooG for code generation) along with the identification
of parallel loops at thread block level and thread level.

Using CLooG for Multi-level Tiled Code Generation. As described earlier, CLooG
scans a union of statement (iteration space) polyhedra using an optionally provided
global lexicographic ordering specified through statement-wise scheduling functions or
scattering functions, and generates loop nests in the target program that execute the
statement instances in the new lexicographic order. CLooG does not include any data
dependence information and hence the legality of scanning the statement polyhedra
should be guaranteed by the user specifying the scattering functions. In our framework,
the statement-wise affine transforms provided as scattering functions to CLooG ensure
effective and correct execution of the transformed program. Tiled code is generated
using CLooG by specifying a modified higher dimensional statement domain for each
statement and also specifying the scheduling or scattering functions (using the affine
statement-wise transforms) to generate the correct ordering of inter-tile and intra-tile
loops.

Algorithm 1. Multi-level Parallel Tiled Code Generation
Input Set of statements - S, Iteration Space Polytopes of all statements Ds,s∈ S, Statement-wise

affine transforms for each level k: φk1
s ,φk2

s , . . . ,φkn
s ,s∈ S, Tile sizes t1,t2, . . . ,tn for each level

1. for each level do
2. for each statement s ∈ S do
3. for each transform φs = Cs(is) do
4. Increase the statement domain’s dimensionality so that the domain includes the su-

pernode iterators
5. Add constraints involving supernode iterators (φTs) and tile sizes that represent a

statement instance in a supernode t×φTs ≤Cs(is)≤ t×φTs + t−1
6. end for
7. Add scattering functions corresponding to supernodes. (The scattering functions are

identity functions involving the supernode iterators)
8. if level to be parallelized then
9. if there exists doall loops then

10. Mark them as parallel
11. else
12. Transform the first non-sequential loop φi as follows: φi← φi +φi+1 + · · ·+φn

13. Mark φi as sequential and remaining subsequent loops in the band as parallel
14. end if
15. end if
16. end for
17. end for
Output Transformed computation statement domains and scattering functions
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4.2 Data Movement between Off-Chip and On-Chip Memories

As discussed in Section 3, it is very important to reduce the accesses to off-chip memory
and utilize the on-chip memories. Array references that have sufficient data reuse are
good candidates to be copied to shared memory since the repeated accesses would be
made in low-latency on-chip memory instead of off-chip memory. Array references, for
which there exists no suitable affine scheduling that supports coalesced memory access,
are also treated as candidates to be copied to shared memory. This is because of the fact
that non-coalesced accesses incur very high memory access cost.

Given a program block or tile (having one or more statements), the data spaces ac-
cessed by array references within the block are determined using the iteration space of
each statement and the array access function of each reference in each statement (as
mentioned in Section 2). The data spaces accessed by the read and write references of
each array are represented as separate polytopes and are then used to determine the size
of storage buffer needed to host the required data. The code for data movement is then
generated by scanning the data space polytopes using CLooG. The loop structure of the
data movement code (copy code) is a perfect nest of n loops, where n is the dimension-
ality of the accessed data space. By using a cyclic distribution of the innermost loop
across threads of a warp, we enable interleaved access of global memory by threads.
The data movement statements are of two types: (1) those that move data in to shared
memory (further referred to as copy-in statements) and (2) those that move data out of
shared memory (further referred to as copy-out statements).

The target code should encompass the data movement statements and computation
statements in proper order so that the parallel code results in correct program execution.
At the level of thread blocks, the data movement statements are placed such that they
respect the following order: copy-in, computation, copy-out. We utilize the scattering
functions in CLooG to achieve the proper placement of data movement and computation
statements. The scattering functions provide a multi-level multi-dimensional schedule.
The basic idea is to introduce an additional ‘constant’ dimension in the original sched-
ule at the level of thread blocks to define the order of statements. Suppose that in the
transformed program, the computation and data movement statements are defined at
the outer level by a schedule using the iterators (c1,c2, . . . ,cn). We modify the schedule
of the copy-in, computation, copy-out statements as (c1,c2, . . . ,cn,0), (c1,c2, . . . ,cn,1),
and (c1,c2, . . . ,cn,2), respectively, to achieve the required order.

The algorithm to generate data movement statement domains and scattering func-
tions to properly place data movement code in the target CUDA code structure is out-
lined in Algorithm 2.

Exploiting constant memory and registers. In addition to handling data movement
to the on-chip shared memory, we handle on-chip constant memory and registers. Con-
stant memory has an on-chip portion in the form of cache which can be effectively
utilized to reduce global memory access. Access to constant memory is useful when a
small portion of data is accessed by threads in such a fashion that all threads in a warp
access the same value simultaneously. If threads in a warp access different values in
constant memory, the requests get serialized. We determine arrays that are read-only
and whose access function does not vary with respect to the loop iterators correspond-
ing to the parallel loops used for distributing computation across threads. Such arrays
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Algorithm 2. Generation and Placement of Data Movement Code
Input Set of statements - S , Transformed Statement Domains of all statements Ds,s ∈ S from

Algorithm 1, Affine array access functions
1. for each array A do
2. for all references of the array do
3. Find the data space accessed by the references
4. end for
5. Partition the set of all data spaces into maximal disjoint sets such that each partition has

a subset of data spaces each of which is non-overlapping with any data space in other
partitions

6. For each partition, find the convex union of its data spaces and the bounding box of the
convex union gives the storage buffer needed for the partition

7. for each statement s ∈ S do
8. for all read references of the array do
9. Find the data space accessed by the references and use them as domains of copy-in

statements
10. Use “identity” scattering functions
11. end for
12. for all write references of the array do
13. Find the data space accessed by the references and use them as domains of copy-out

statements
14. Use “identity” scattering functions
15. end for
16. end for
17. end for
18. Let the number of copy-in and copy-out statements be c and d, respectively
19. Add a new dimension in all scattering functions (those of copy-in, computation, and copy-out

statements) with just a constant value; the constant being 0 to c−1 for copy-in statements, c
for computation statements, c+1 to c+d for copy-out statements

Output Data movement statement domains and updated scattering functions

are candidates for storing in constant memory. Similarly, arrays whose access func-
tions vary only with respect to the loop iterators corresponding to the parallel loops are
considered as candidates for storing in registers in each thread.

4.3 Syntactic Post-processing

The transformed multi-level tiled computation statement domains and data movement
statement domains along with the scattering functions (generated by Algorithms 1
and 2) are fed to CLooG to generate multi-level tiled code. Syntactic post processing of
the multi-level tiled code generated by CLooG is needed to generate a final compilable
CUDA code. The primary tasks of the post processing are (1) to generate thread-centric
code and (2) to place synchronization calls for correct parallel execution.

An important aspect of CUDA code generation is thread-centric code generation,
i.e. generation of code where the computation is distributed across the threads in the
system. A thread in the system is uniquely identified by a combination of its “thread
block identifier” and “thread identifier” within the thread block. We take a syntactic
approach to introduce thread-centricity in the parallel code generated using the above
technique. The CLooG tool has its own AST representation called the CLAST. The



Automatic C-to-CUDA Code Generation for Affine Programs 255

CLAST generated for the parallel tiled code is parsed to introduce “thread block and
thread identifiers” in the parallel loops (identified in Algorithm 1) such that the parallel
tiles at the outer level are cyclically distributed across the thread blocks and that at the
inner level are cyclically distributed across the threads. The data movement code is also
parsed to place “thread identifier” in the data movement loops.

CUDA offers a synchronization primitive to synchronize across threads within a
thread block, but no built-in synchronization primitives to synchronize across thread
blocks. We introduce a primitive through a code segment that uses a “single-writer
multiple-reader” technique to achieve synchronization across thread blocks using the
global memory space. It is necessary to place barrier synchronizations at each iteration
of a sequential loop (if any) that precedes parallel loops, and at the end of data move-
ment loops. It is done syntactically by modifying the CLAST. Algorithm 3 summarizes
the CUDA code generation steps after applying Algorithms 1 and 2.

It should be noted that the tile sizes used for tiling are fixed at compile time and
provided by the user. The code generated by our framework represents the number of
threads and thread blocks as symbolic constants, which the user sets before the actual
execution. Our framework also syntactically inserts an “unroll” pragma - #pragma un-
roll unroll f actor - which enables the CUDA compiler to perform inner loop unrolling.

Algorithm 3. Parallel CUDA Code Generation
Input Computation statement domains, Data movement statement domains, Scattering functions
1. Feed the computation and data movement statement domains and scattering functions to

CLooG to generate CLAST
2. Parse CLAST to change the lower bounds and loop increments of (outer and inner level)

parallel loops to make them thread-centric
3. Parse CLAST to change the lower bounds and loop increments of data movement loops to

make them thread-centric
4. Place barrier synchronization at each iteration of sequential loop (if any) that precedes paral-

lel loops, and at the end of data movement loops
5. Print the modified CLAST to generate CUDA code

Output Multi-level parallel tiled CUDA code with data movement

5 Experimental Results

In this section, we present experimental results to assess the effectiveness of the CUDA
code generated by the implemented C-to-CUDA transformation system. We present
results on seven benchmarks. Where available, we compare the performance of the
automatically generated CUDA code with hand-tuned CUDA code. We also compare
the performance of the generated CUDA code on the GPU with the performance of
input C code (optimized by the Intel icc compiler), on a multi-core CPU.

The GPU device used in our experiments was an NVIDIA GeForce 8800 GTX GPU.
The device has 768 MB of DRAM and has 16 multiprocessors (MIMD units) clocked at
675 MHz. Each multiprocessor has 8 processor cores (SIMD units) running at twice the
clock frequency of the multiprocessor and has 16 KB of shared memory. The CUDA
code was compiled using the NVIDIA CUDA Compiler (NVCC) to generate the device
code that is launched from the CPU (host). The CPU was a 2.13 GHz Intel Core2 Duo
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for (t1=0; t1<VOLY; t1++) {
for (t2=0; t2<VOLX; t2++) {

for (t3=0;t3<NATOMS;t3++) {
energy[zDim*VOLX*VOLY + t1*VOLX + t2] =
atoms[3+4*t3]/ ... atoms[2+4*t3] ...
atoms[1+4*t3] ... atoms[4*t3];

}
}

}

Fig. 3. Original code structure for Coulombic Potential (cp) benchmark

processor with 2 MB L2 cache. The GPU device was connected to the CPU through a
16-x PCI Express bus. We used CUDA version 2.1 for our experiments.

The multi-core system used for our experiments was a quad-core Intel Core 2 Quad
Q6600 CPU clocked at 2.4 GHz (1066 MHz FSB) with a 32 KB L1 D cache, 8MB of
L2 cache (4MB shared per core pair), and 2 GB of DDR2-667 RAM, running Linux
kernel version 2.6.22 (x86-64). ICC 10.x was the primary compiler used to compile
the code on the multi-core system; it was run with -fast -funroll-loops (-openmp for
parallelized code); the -fast option turns on -O3, -ipo, -static, -no-prec-div on x86-64
processors; these options also enable auto-vectorization in icc.

5.1 Coulombic Potential (cp)

This benchmark is used for the computation of electric potential in a volume containing
point charges. It is one of the codes in the parboil benchmark suite from UIUC [21].
Fig. 4 presents the performance data - performance of the generated CUDA code with
different optimizations is compared with the hand-tuned code from the parboil bench-
mark suite and icc optimized C code. The CUDA code generated by our framework
performs better than the optimized version on general-purpose multi-core system. The
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performance of the code generated by turning on all optimizations is very close to that
of the hand-tuned code. In addition to extracting “doall’ parallelism across threads and
thread blocks, the code has optimized off-chip access in one of the two ways - (1) uti-
lizing shared memory or (2) utilizing constant memory. Fig. 4 shows the performance
measurements for both the cases and it can be seen that the performance when constant
memory is used is significantly higher than that when shared memory is used. This is
because the use of constant memory significantly reduces global memory traffic in com-
parison to accessing data after moving from global memory to shared memory. Inner
loop unrolling was performed using NVIDIA’s #pragma unroll option.

Figures 3 and 9 illustrate the CUDA code generation. Fig. 3 shows the structure of
sequential code (along with the array accesses) for Coulombic Potential (cp) bench-
mark. Fig. 9 shows the structure of two-level tiled parallel code that is thread-centric
where the parallelism is across thread blocks at the outer level and across threads at
the inner level (Note the modified lower bounds and loop increments of parallel loops).
Fig. 9 also shows the proper placement of data movement and computation statements.

5.2 N-Body Simulation (nbody)

N-body simulation is an important computation that arises in many computational sci-
ence applications. It approximates the evolution of a system of bodies in which each
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Table 1. Performance of nbody benchmark (in GFLOPS)

N Auto-CUDA Hand-tuned icc

2048 129.67 157.34 1.00
4096 187.41 182.31 1.10
8192 191.81 188.78 1.42
16384 192.45 198.43 1.47
32768 192.91 200.35 1.50
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body continuously interacts with every other body. The CUDA code generated by our
framework performs much better than the optimized version on general-purpose multi-
core system and performs very comparably to the hand-tuned CUDA code, as illustrated
in Table 1. The code generated by our framework exploited “doall” parallelism across
threads and thread blocks. It effectively moved data from arrays that exhibited data
reuse from global memory to shared memory, thereby enabling coalesced global mem-
ory access and also reduction in off-chip memory access latency, by exploiting data
reuse in on-chip shared memory. Further, inner loop unrolling was performed using
NVIDIA’s #pragma unroll option. Fig. 5 depicts incremental performance improvement
when different optimizations are applied. The importance of shared memory utilization
and inner loop unrolling (to reduce loop overhead and dynamic loop instruction count)
are illustrated by this benchmark.

Table 2. Performance of MRI-Q (in GFLOPS)

N Auto CUDA (2) Auto CUDA (1) Hand icc
no unroll unroll no unroll unroll tuned

32768 87.11 122.19 137.1 176.50 178.98 0.91
65536 88.27 121.87 141.7 179.32 179.12 1.14
131072 88.53 123.11 142.3 181.23 179.32 1.14
262144 89.16 122.12 142.6 183.32 180.91 1.15

Table 3. Performance of MRI-FHD (in GFLOPS)

N Auto CUDA (2) Auto CUDA (1) Hand icc
no unroll unroll no unroll unroll tuned

32768 57.91 90.91 112.52 142.52 143.11 1.37
65536 61.27 91.2 116.12 143.15 142.27 1.68
131072 62.13 91.6 116.22 144.21 144.39 2.19
262144 62.67 91.52 116.67 142.61 144.43 2.21
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The hand-tuned version was taken from the NVIDIA CUDA SDK, the code being
based on the article in [16]. The code generated by our framework represents the number
of threads and thread blocks as symbolic constants, which the user sets before the actual
execution.

5.3 MRI Kernels

We employed our framework to generate code for two kernels used in Magnetic
Resonance Imaging, MRI-Q and MRI-FHD [21]. Both the kernels involve two com-
putational blocks such that data computed in the first computation block is used as
“read-only” data in the second computational block. The hand-tuned code from parboil
optimizes the two computational blocks independently and executes them as separate
GPU kernels. We used our framework to generate two versions of code for each of the
two MRI kernels - version (1) in which CUDA code is generated independently for the
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two computational blocks (first block pre-computes data for second block) and version
(2) in which unified CUDA code is generated for both blocks.

Tables 2 and 3 summarize the performance measures of the code versions of MRI-
Q and MRI-FHD, respectively. The code version (1) generated as two separate GPU
kernels outperforms the code version (2) generated as single GPU kernel because of the
fact that in version (1) the data precomputed in the first GPU kernel is stored in constant
memory and accessed in the second kernel. However both the versions identified various
data arrays as candidates for constant memory and thereby optimized off-chip memory

int by = blockIdx.y;
int bx = blockIdx.x;
int ty = threadIdx.y;
int tx = threadIdx.x;

int t1,t2,t3,t4,t5,t6;
// Parallel loops distributed across thread blocks
// Loops modified syntactically for thread block identifiers
for (t1=by; t1<=floord(VOLY-1,16); t1+=NBLKSY) {
for (t2=bx; t2<=floord(VOLX-1,16); t2+=NBLKSX) {
for (t3=0;t3<=NATOMS-1;t3+=256) {
// Data movement code
__shared__ float atomsS[1024];
for (t6=4*t3+THREADY*NTHRDSX+THREADX;

t6<=min(4*NATOMS-1,4*t3+1023);
t6+=NTHRDSX*NTHRDSY)

atomsS[t6-4*t3] = atoms[t6];
__syncthreads();
// Parallel loops distributed across threads
// Loops modified syntactically for thread identifiers
for (t4=max(0,16*t1)+ty;

t4<=min(VOLY-1,16*t1+15);t4+=NTHRDSY) {
for (t5=max(0,16*t2)+tx;

t5<=min(VOLX-1,16*t2+15);t5+=NTHRDSX) {
...

// Computation code
for (t6=t3; t6<=min(NATOMS-1,t3+255);

t6++) {
energy[zDim*VOLX*VOLY + t4*VOLX + t5] =
atomsS[3+4*t6-4*t3]/ ... atomsS[2+4*t6-4*t3] ...
atomsS[1+4*t6-4*t3] ... atomsS[4*t6-4*t3];

}
}

}
}

}
}

Fig. 9. Parallel tiled code structure (with data movement) for cp benchmark
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access. The code version (1) generated by our framework performs as well as the hand-
tuned version.

5.4 Stencil Computation Kernels

We used two stencil computation kernels, 2D Jacobi and 2D Finite Difference Time
Domain (FDTD). The code generated using our framework performs better than the
optimized version on the Intel multi-core system, as illustrated in Figures 6 and 7. For
these two kernels, we were unable to find any hand-tuned CUDA code to compare
against. The code generated by our framework exploits parallelism across threads and
thread blocks and effectively utilizes shared memory and exploits data reuse. The par-
allel execution of stencil computations is characterized by synchronization overhead
at every time step across the processors. This overhead is particularly costly in GPUs
where the thread blocks have to synchronize using the slow off-chip memory. This is
the reason for the lower absolute performance of these kernels on GPUs, relative to the
previous benchmarks. The performance of the stencil kernels is very low for smaller
problem sizes for the same reason.

5.5 Gauss Seidel Successive over Relaxation

The Gauss Seidel benchmark illustrates the effect of exploiting wavefront or pipelined
parallelism on GPUs. We achieve better performance than the optimized version on
multi-core system, as illustrated in Fig. 8. However, the absolute performance is rather
low because of (1) low processor utilization during the starting and draining of pipeline
and (2) synchronization overhead across thread blocks at every time step.

6 Related Work

In this Section, we review prior work on optimizations and code generation for GPUs.
Ryoo et al. [27,26] presented experimental studies of program performance on NVIDIA

GPUs using CUDA; they do not use or develop a compiler framework for optimizing
applications, but rather perform the optimizations manually. Ryoo et al. [28] presented
performance metrics such as efficiency and utilization to prune the optimization search
space on a pareto-optimality basis. However, they manually generate the performance
metrics data for each application they have studied. The end-to-end system described in
this paper builds on our prior work [2,3] that developed some of the compiler optimiza-
tions - optimizing global memory and shared memory access, and utilizing and manag-
ing on-chip shared memory. Recently, Lee et al. [17] developed a compiler framework
for automatic translation from OpenMP to CUDA. The system handles both regular and
irregular programs parallelized using OpenMP primitives. Work sharing constructs in
OpenMP are translated into distribution of work across threads in CUDA. However the
system does not optimize data access costs for access in global memory and also does not
make use on-chip shared memory. Thus the optimizations implemented in our system
can complement and enhance the effectiveness of their system.

Recently, Liu et al. [19] developed a GPU adaptive optimization framework (G-
ADAPT) for automatic prediction of near-optimal configuration of parameters that af-
fect GPU performance. They take unoptimized CUDA code as input and traverse an
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optimization space search to determine optimal parameters to transform the unopti-
mized input CUDA code into an optimized CUDA code. Using our framework, a user
can automatically generate CUDA code for any arbitrary input affine C code, hand-
parallelization of which is very cumbersome in many cases. The user may then use
G-ADAPT to further tune the CUDA code generated from our system.

7 Conclusions

In this paper, we have described an automatic source-to-source transformation frame-
work that can take an arbitrarily nested affine input C program and generate an efficient
CUDA program. Experimental results demonstrated the performance improvements
achieved using the framework. We are in the process of creating a publicly available
release of the C-to-CUDA transformation software.
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