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Abstract

Actuated lidar, where a scanning lidar is combined
with an actuation mechanism to scan a 3D volume
rather than a single line, has been used heavily on a
wide variety of field robotics applications. Common ex-
amples of actuated lidar include spinning/rolling and
nodding/pitching configurations. Due to construction of
actuated lidar, the center of rotation of the lidar mirror
may not coincide with the center of rotation of the actu-
ation mechanism. In order to triangulate a precise point
cloud representation of the environment, the centers of
rotation must be brought into alignment using a suitable
calibration procedure. We refer to this problem as esti-
mating the internal parameters of actuated lidar. In this
work, we focus on spinning/rolling lidar and present a
fully automated algorithm for calibration using generic
scenes without the need for specialized calibration tar-
gets. The algorithm is evaluated on a range of real and
synthetic data and is shown to be robust, accurate and
has a large basin of convergence.

1. Introduction

Lidar1 has proven to be one of the most useful sen-
sors for field robotics. It has found broad application
to tasks including SLAM, obstacle avoidance, object
detection/recognition, and ground surface estimation
among others. This is evident in its early adoption in
robotics research as a primary 3D sensor (Hebert and
Krotkov, 1992; Singh and West, 1991) and its sustained
use to date (Mertz et al., 2013). This is not surprising
due to the accuracy of lidar measurements at long-range

∗Corresponding author http://www.cs.cmu.edu/~halismai
1Also known in the literature as LADAR and single line Laser

Range Finder (LRF).

as well as the ease and flexibility of its construction.

In comparison to other range sensors, lidar’s accuracy
is on the order of a centimeter even at long-range (Wong
et al., 2011). Construction is relatively simple, rely-
ing on a motor, gear train, and an encoder (Wulf and
Wagner, 2003; Hebert and Krotkov, 1992). Moreover,
the approach is flexible and allows for a wide range of
customization for the application at hand. The two
most common actuation schemes are spinning/rolling,
and nodding/pitching, although others such as a two-
axis wobbling lidar are possible. Spinners rotate the
lidar about an axis parallel to the viewing direction
and are most useful for tunnels or corridor-like environ-
ments (Thrun et al., 2003; Fairfield, 2009). Nodders,
on the other hand, rotate the sensor around an axis in
the scanning plane orthogonal to the viewing direction
and are commonly used for general field robotics appli-
cations, where a higher density of points on the ground
plane is desired (Stentz et al., 2007).

The operating principles of actuated lidar are sim-
ple. A single line scanning lidar, such as a SICK or
a Hokuyo, is mounted on an actuation platform. By
actuating the lidar’s scanning plane, we can sweep a
3D volume. Due to the mechanical construction of the
sensor, the center of actuation of the motor may not
coincide with the center of rotation of the lidar spinning
mirror. Hence, in order to obtain precise 3D measure-
ments, the transformation between the two centers of
rotation must be estimated. Once this transformation
has been estimated, a point cloud can be triangulated
from a single effective scanning point. We refer to this
problem as estimating the geometric internal param-
eters of the sensing assembly2 as illustrated in Fig. 1.
Once these parameters have been identified and esti-

2The problem is also known as estimating the parameters of
the sensing assembly kinematic chain.
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mated, the sensing assembly is geometrically calibrated.

This estimation of internal parameters — calibration
in this work — is performed offline as a prerequisite
for many robotic applications (Fairfield, 2009; Kelly
et al., 2011; Stentz et al., 2007). While the calibration
of the sensor is an important step in these applications,
the geometric calibration problem has been largely ne-
glected. Prior work has focused on two main problems
involving lidar. One is sensor performance characteriza-
tion in different operational settings (Kneip et al., 2009;
Okubo et al., 2009; Alwan et al., 2005). The other is es-
timating the calibration with respect to rigidly mounted
sensors on the robot, such as cameras (Unnikrishnan
and Hebert, 2005; Alismail et al., 2012).

In recent years, multi-beam sensors (e.g. Velodyne)
have proven popular in robotics research, especially
in the context of autonomous driving (Urmson et al.,
2008). This is evident with the surge in research work
on calibration methods for multi-beam lidar. Meth-
ods for Velodyne calibration can be categorized based
on whether they require a calibration target (Muham-
mad and Lacroix, 2010; Mirzaei et al., 2012; Levinson
and Thrun, 2014). Targetless calibration methods are
highly desirable as they greatly simplify the calibra-
tion process. Aside from a targetless calibration for
Velodyne (Levinson and Thrun, 2014), Sheehan et al.
(Sheehan et al., 2012) propose a method to calibrate
three rigidly coupled lidar units. The three units are
mounted on a rotating plate to achieve a 360° view
of the environment. The algorithm is based on max-
imizing the quality (or crispness) of the resulting 3D
point cloud via entropy optimization. Entropy-based
methods have been shown to be robust and accurate for
point cloud registration (Tsin, 2003; Jian and Vemuri,
2011), but they are sensitive to the sampling uniformity
of the point clouds. Hence, entropy-based methods may
not be suitable for sensors producing highly nonuniform
sampling such as actuated lidar considered in this work.

Also related to our work is the recently proposed
calibration method for a two-axis scanner by Dong et
al. (Dong et al., 2013). The authors rely on forming an
image of the scene via lidar intensity returns. Having
obtained this image, the authors propose to model the
lidar calibration problem as lens distortion estimation
(under spherical projection) and solve it with Bundle Ad-
justment (Triggs et al., 2000). Other examples of using
intensity images can be found in the work by (Pradeep
et al., 2010), who jointly calibrate a nodding/tilting
Hokuyo to other sensors on the robot.

While the aforementioned sensors require an actua-
tion step to obtain 3D point clouds, their calibration
methods do not apply to actuated lidar sensors dis-
cussed in this work due to the different geometry of the

sensing mechanism. Notwithstanding, actuated lidar
remains an important 3D sensor for robotic applica-
tions. For example, in contrast to a Velodyne, the field
of view of actuated lidar is highly customizable to fit
the application at hand. It is also cheaper and more
compact for deployment on various robotic platforms.

Here, we tackle the problem of calibrating a spin-
ning/rolling actuated lidar. A spinning lidar is con-
structed by rigidly mounting a laser scanner on a con-
tinuously spinning motor. Since it is not physically
possible to mount the laser at the center of rotation
of the motor, some mechanical offsets exist and must
be estimated via a suitable calibration procedure. This
calibration problem is performed offline prior to using
the data for 3D perception purposes. It is normally per-
formed once and may sometimes be repeated if evidence
indicates loss of calibration. The problem amounts to
estimating a (possibly constrained) rigid body transfor-
mation accounting for the offsets between the center of
rotation of the lidar’s spinning mirror, and the center
of rotation of the actuating motor.

In practice, calibration is often performed manually.
Either by measuring the offsets on the sensor using a
tape-measure, relying on CAD models, or a combina-
tion of both (Weingarten, 2006; Scherer et al., 2012).
Assessment of the calibration quality and accuracy is
usually performed by visual verification. Visual, or
manual verification, is an important part of quality con-
trol, but it does not provide the ability to estimate a
confidence measure associated with the estimated pa-
rameters. While a careful manual calibration can be
done with reasonable accuracy, it is time consuming and
error prone. It also does not provide the ability to verify
the calibration by relying on repeatability properties
of an automated algorithm. Hence, an automated algo-
rithm is highly desirable and can have greater benefits
than its manual counterparts.

In this work, we develop an algorithm to estimate
the internal parameters for a spinning actuated lidar
without requiring special calibration targets. Our ap-
proach is accurate and convenient. We make the weak
assumption that the environment consists of (mostly)
locally smooth surfaces at the scale of a local neighbor-
hood of the input lidar point cloud. That is, over some
small subset of neighboring lidar points, the surface can
be well approximated by a plane, as is often implicitly
assumed for point cloud registration (e.g. with point-
plane ICP). The automation of the algorithm makes
calibrating the internal parameters of the actuated lidar
an easy and fast affair. The method presented here is
based on the work of (Fairfield, 2009), where the author
designs an automated algorithm tailored for tunnel-like
environments.
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Figure 1: Overview of the calibration problem. We seek to
find a rigid body transformation AH L between the lidar’s
frame L and the actuator’s frame A. Note that the coordi-
nate system is arbitrary and illustrated here for concreteness.
Our calibration algorithm and implementation are not tied
to a specific coordinate system convention.

This work is an extension of our previous work (Al-
ismail et al., 2012), where we contribute the following
enhancements: (i) increased robustness by filtering cor-
respondences and automatic estimation of the neigh-
borhood size for normal extraction, (ii) a method to
estimate a covariance associated with the estimated
parameters, and (iii) experiments on synthetic and real
data assessing the quality and repeatability of the al-
gorithm under various circumstances. We also address
the applicability of the method for different lidar ac-
tuation mechanisms. Finally, we make the calibration
code available for the research community. To the best
of our knowledge, this is the only work in the litera-
ture that provides a generic, convenient and accurate
method to recover the internal calibration parameters
for a spinning actuated lidar.

In the next section, we describe the basic principles
of actuated lidar for 3D perception to set the stage for
our automated calibration approach.

2. Actuated Lidar for 3D Perception

Laser range finders, discussed in this work, operate
by the time-of-flight principle. A narrow laser beam of
an appropriate wavelength is shot through a spinning
mirror. The spinning mirror transforms the 1D beam
of light into a 2D scanning plane. Laser beams forming
the scanning plane hit objects in the scene and return
to the sensor. Given the time it takes for each beam
to return, combined with the known mirror angle and
the speed of light in the medium, we can obtain range

measurements relative to the center of rotation of the
spinning mirror. Not all beams return to the lidar.
Some never hit a reflective object in the scene, while
others might return multiple times.

Depending on the lidar and the application at hand,
multiple returns could be a useful phenomenon (Renslow
et al., 2000). In other applications, however, multiple
returns could obstruct important information and must
be filtered out (Meng et al., 2010). In this work, mul-
tiple returns are not a cause for concern. We only
work with valid returns (the ones that do return), and
deal with multiple-returns by simply using the first.
Thus, we assume calibration in an environment without
significant dust or precipitation, which we find to be
reasonable in practice. Extending to use robust cost
functions to be able to reject reasonable multi-echo re-
sponses (up to some limit) would be relatively straight
forward but likely is not useful in practice.

A simple solution to obtaining 3D scans is to actu-
ate the lidar about an axis nonparallel to its scanning
mirror such that we sweep the scanning plane across a
volume in space. For this approach to work, we need
to know two pieces of information. One is the pose of
the actuator. This is typically a rotation about some
known axis with a known measured angle, and is readily
available by reading off the encoder value attached to
the motor. The other is the offset between the center
of rotation of the lidar’s mirror and that of the actua-
tion motor. This is what we refer to as the calibration
of internal parameters; the estimation of which is the
subject of this work.

Estimating the internal parameters is often per-
formed manually, either by manual measurements or
using a CAD model for guidance. When carefully per-
formed, manual calibration can provide acceptable re-
sults. Nonetheless, it is laborious, error prone and not
repeatable. This is notably true when the CAD models
for the sensor may not be available or when manufactur-
ing tolerances do not adhere to the required accuracy.
Hence, it is necessary to be able to estimate these
parameters using an accurate, robust and repeatable
algorithm with no user intervention.

2.1. Coordinate Conventions

For concreteness and clarity of presentation, we will
adopt the common camera coordinate system conven-
tions used in Computer Vision. The right-handed co-
ordinate system is shown in Fig. 1, where the Z-axis
points forward along the viewing ray, the X-axis points
to the right, and the Y-axis points downward. Our al-
gorithm and implementation do not require a specific
coordinate system.
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2.2. Calibration Parameters for a Spinning Lidar

Actuated lidar calibration amounts to estimating a
rigid body transform between the instantaneous center
of rotation of the actuator ( AICR) and that of the
lidar’s spinning mirror ( LICR), where A and L denote
the actuator and lidar frame respectively.

Consider a spinning lidar assembly with the coordi-
nate system shown in Fig. 1. A 2D point in the lidar
frame is obtained by converting a range measurement ρ
from polar to Cartesian coordinates using the current
position of the lidar rotating mirror θ. This in-plane
point in homogeneous coordinates is given by

Lx (θi, ρi) =









xi

0
zi

1









=









cos θi

0
sin θi

1









ρi. (1)

In order to obtain a triangulated point in space we
apply the actuator’s rotation associated with the in-
plane point. In our example, this is a rotation about the
Z-axis. However, for the triangulation to be performed
correctly, the in-plane point must be transformed from
the lidar’s frame to the actuator’s frame via a suitable
calibration. Hence, the point in the actuator frame is
given by

Axij = ARZ (φj) AH L
Lx (θi, ρi) , (2)

where F Ra(φ) denotes a rotation matrix with angle φ
about the unit axis a in coordinate frame F ,

·Rz (φ) =









cos φ − sin φ 0 0
sin φ cos φ 0 0

0 0 1 0
0 0 0 1









. (3)

Finally, the calibration transform is the 4× 4 matrix
AH L that maps points from the lidar’s frame L to the
actuator’s frame A. This is the unknown quantity we
seek to estimate.

2.3. Degrees of Freedom (DOF)

In the case of an actuated lidar, the calibration is
not a general 6DOF rigid-body transform due to the
restricted motion pattern of the mechanism. In our
example of a spinning lidar, the model is at most 5DOF
corresponding to three rotational degrees of freedom and
two translations. The translations are along the X-axis
(left-right sliding) and the Y-axis (up-down). Transla-
tion along the rotation-axis, the Z-axis, is unobservable.
We may simplify the calibration model further if the
scanner’s pointing direction is aligned with the motor’s
spinning axis. In this case, a rotation about the Z-axis
is under-constrained. Table 1 summarizes the degrees
of freedom for commonly used actuated lidar sensors.

Figure 2: Hokuyo scanner mounted on a spinning motor.
The motor spins the lidar about the Z-axis (rolling).

3. Algorithm

The algorithm exploits the periodicity of the actu-
ation mechanism to partition a stream of data from a
stationary sensor into spatially overlapping sets. We
assume that a measurement of the same surface patch
in each set is performed with different joint angles (the
actuation angles and the lidar mirror angle). This as-
sumption works for spinning lidars and some two-axis
systems. It will not in general work for nodding systems,
which are unable to measure the same spot from two
different joint angles, and is therefore a limitation to
the approach that is discussed later.

Consider a spinning lidar, where the lidar rotates
about its viewing axis (c.f . Fig. 2). Without loss of
generality, let the first scanned point be at motor posi-
tion 0.0 rad and let a full-scan be the one with motor
position at 2π rad. The periodicity of such actuation
mechanism causes a symmetry for every half-scan. That
is, we can split the full scan into two scans such that
both sample the same surfaces.3 Namely, we have two
point sets as a function of the motor angles

AX (φj) =
{

Axj = ARz (φj) AH L
Lx

∣

∣ φj ≤ π
}

;
(4)

AX ′ (φk) =
{

Ax′
k = ARz (φk) AH L

Lx
∣

∣ φk > π
}

.
(5)

When the sensor is stationary, these two point sets
sample the same surfaces in space but the joint angles
associated with the measurements will be unique for the
same physical spot. Hence, the calibrating transform is
such that both point sets are aligned,

AH ∗
L = argmin

AH L

{

f
(

AX , AX ′; AH L

)}

, (6)

3A video illustration is available online at http://youtu.be/

i1JSPfZs30A.

4

http://youtu.be/i1JSPfZs30A
http://youtu.be/i1JSPfZs30A


Table 1: Overview of common actuated lidar sensors and calibration degrees of freedom (DOF). Quantities in brackets
denote under-constrained parameters.

Mechanism Degrees of Freedom

Spinning rx, ry, [rz], tx, ty

Nodding [rx], ry, rz, ty, tz

Yawing rx, [ry], rz, tx, tz

where f is a function of the dissimilarity between the
two point sets. This transform does not depend on the
specific details of the actuation mechanism, such as the
acceleration rate of the motor, or the type of motion,
provided that we can split the full scan into two halves.

In practice, while the two half-scans sample the same
surfaces, there are no strict point-point correspondences.
This is due to the continuous nature of the actuation
motion and sampling artifacts. Here, we use a point-
plane distance as the dissimilarity function (Chen and
Medioni, 1992). Our optimization objective, therefore,
takes the following form:

f (X ,X ′, H) =
∑

xi∈X

wi‖n
⊤
i

(

xi −Hx′
ϕ(i)

)

‖2, (7)

where ni = (nx
i , ny

i , nz
i , 0)

⊤
is a unit normal at

point xi from the first half-scan, wi ∈ [0, 1] is a
weight indicating our confidence of the estimated nor-
mal/correspondences, x′

ϕ(i) is the corresponding point

to xi from the other half-scan, where ϕ(i) : |X | → |X ′|
is a function that returns the index of the correspond-
ing point to xi from the set X ′. This correspondence
function is based on the closest point as commonly
performed in registration problems (Fitzgibbon, 2003).
To increase efficiency and robustness, we choose to use
bijective correspondences with ties broken based on dis-
tance. In the expression above, we dropped the explicit
specification of the coordinate frame for clarity.

This nonlinear weighted least squares optimization
problem can be solved efficiently with standard methods
given a reasonable starting point. In the following we
discuss the details of our implementation.

3.1. Rotation Parametrization

Rotation estimation and parameterization is a well-
studied problem in Robotics and Estimation theory.
The main complication is the nonlinearity of the config-
uration space, the special orthogonal Lie matrix group
SO(3). An excellent discussion of the various represen-
tations and associated distance metrics on the manifold
can be found in the works of (Kuffner, 2004; Hartley
et al., 2013).

In this work, since rotational offsets are expected to
be small and we would like to constrain the estimated
parameters, we opt to use the representation with the
most intuitive physical explanation, Euler angles. Eu-
ler angles allow us to easily constrain the optimization
in a straightforward manner. They are also relatively
easy for derivative computations (Kelly, 1994). Extend-
ing our approach to other rotation representations is
straightforward.

Euler angles, however, are susceptible to the well-
known singularity: Gimbal lock (when two of the gim-
bals lie on the same plane). Nonetheless, we are almost
guaranteed to avoid this singularity because the ori-
entation offsets are small for this type of calibration
problem. If the orientation misalignment is large, a
rough initialization may be required. Alternatively, one
could use more robust rotational representations.4

3.2. Optimization

The cost function (Eq. (7)) is a nonlinear function
of the parameters. While it is possible to linearize
the rotations explicitly, we choose to directly solve for

4We developed an implementation using quaternions but saw
no empirical benefits and thus do not discussed it further here.
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the parameters using standard nonlinear least squares
methods such as Levenberg-Marquardt (LM) (Leven-
berg, 1944; Marquardt, 1963). For most cases, the
offsets are small and an initialization with the identity
( AH L = I4) is close to the local minima. Hence, the
user is alleviated from any manual measurements to
initialize the optimization.

In addition to obtaining a solution for the estimated
parameters, we would like to estimate the covariance
associated with these parameters. Let the vector of
parameters be θ, then the Jacobian is the matrix of
partial derivatives of the error function ei with respect
to θ and is given by

Ji := −
∂ei(θ)

∂θ
(8)

J :=
(

Ji · · · Jn

)⊤
, (9)

where e(θ) is the error function defined to be the dif-
ference between the measurement vector z and the
predicted parameters f(θ),

e(θ) := z⊖ f(θ), (10)

where ⊖ indicates the difference in vector space. Let
the covariance of each measurement be Σi, and let Σ

be a block-diagonal concatenation of the measurement
covariance matrices,i.e.:

Σ =







Σi

. . .

Σn






. (11)

Then, upon convergence of LM we arrive at the Fisher
information matrix:

F := J⊤Σ−1J. (12)

To obtain a covariance associated with the estimated
parameters, we simply invert the information matrix.
This is the Cramér-Rao lower bound (van de Geer, 2005;
Haralick, 2000).

The estimate of the covariance is rather crude and
may overestimate the true covariance (Censi, 2007).
Nonetheless, it is a useful to assess the accuracy and
the reliability of the solution by analyzing the shape of
the local extrema as will be demonstrated in Section 4.

3.3. Normal Extraction

Our optimization function (Eq. (7)) depends on the
quality of the estimated normals. A common approach
to determining a local tangent plane normal on unorga-
nized point sets is based on the Eigenvalue decompo-
sition of the covariance matrix in a specified neighbor-
hood. Let Σ (x; r) be the (weighted) covariance matrix

estimated in a neighborhood of radius r,

Σ (x; r) =
∑

xi∈N(x;r)

w (x, xi; r) (xi − µ) (xi − µ)
⊤

,

(13)

where N(x; r) denotes the neighborhood of radius r for
the point x, µ is a weighted centroid estimated within
the same neighborhood

µ =
∑

xi∈N(x;r)

w (x, xi; r) xi, (14)

and w : R→ [0, 1] is a monotonically decreasing func-
tion of distance such as the Gaussian, or the squared
exponential:

w(xi, x; r) =
1

ξ
exp

(

−
‖xi − x‖2

r2

)

. (15)

This weighting function is normalized with:

ξ =
∑

xj∈N(x;r)

exp

(

−
‖xj − x‖2

r2

)

. (16)

The tangent plane normal can be then estimated as the
Eigenvector corresponding to the minimum Eigenvalue
of the covariance matrix Σ (x; r). Such method to com-
pute surface normals is common in Computer Graphics
and surface reconstruction (Amenta and Kil, 2004). Fur-
ther, an estimate of the goodness of planarity can be
obtained by analyzing the Eigenvalues (Bosse and Zlot,
2009; Bosse et al., 2012). Let the three Eigenvalues of
Σ (x; r) be λ3 ≥ λ2 ≥ λ1, then

pc =
2 (λ2 − λ1)

trace (Σ (x; r))
∈ [0, 1] (17)

provides a confidence estimate of the degree of pla-
narity, where pc → 1 indicates higher confidence in the
estimated normal.

3.4. Adaptive Neighborhood Size

Quality and accuracy of normal estimation depends
on the extent of the neighborhood used to compute the
covariance (Eq. (13)). Too large a radius increases the
chance of including points that do not belong to the
local plane; consequently smoothing out the estimating
normals. In contrast, too small a radius increases the
likelihood of capturing the noise in the data rather
than surface details; therefore roughening the estimated
normals.

There exists specialized methods for estimating the
scale for normal extraction, or other surface features.
However, such methods might have high computational
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requirements. For example, the algorithm described
in (Unnikrishnan et al., 2010), while producing excellent
results, requires a large amount of memory for the
computation of geodesic distances.

In this work, we choose a simple method for scale
selection. We select the neighborhood size based on the
largest distance to the kth neighbor. The intuition is
that distance to the kth neighbor is an indication of the
sampling density. Normal vectors estimated at points
with higher sampling densities will be given a smaller
neighborhood size. These points are usually close to
the lidar where more details can be detected. At longer
range, or oblique scanning angles, the sampling density
is lower. Hence, a larger radius is assigned, thereby
increasing the robustness of normal estimation.

The implementation of this strategy is straight for-
ward. For every 3D point we need two nearest neigh-
bors computations: the first is to select the scale/search
radius, and the second is to select points within the
radius. Nearest neighbor search is performed via a KD-
tree (Muja and Lowe, 2014)5 to keep the computation
efficient.

This strategy was found to produce normals with
better quality than using a fixed radius or a fixed num-
ber of neighbors in qualitative comparisons outweighing
the cost of an additional KD-tree lookup per point. In
this work, we found k = 50 to be a good value.

3.5. Summary

A summary of the algorithm is shown in Alg. 1. Start-
ing from an initialization H(0), we compute weighted
normals and point correspondences based on the closest
distance. These plane normals and correspondences are
held fixed in the inner loop to produce a calibration
H(k+1). This process continues until convergence. The
process has to be repeated in this fashion because the
shape of the point cloud depends on the value of the
calibration. Each estimate of the calibration will pro-
duce a different point cloud and consequently, different
normals. Convergence is determined if a maximum
number of iterations is reached or when the change in
the estimated parameters is too small.

4. Experiments & Results

4.1. Synthetic Data

We use synthetic data to obtain a quantitative assess-
ment of the algorithm’s accuracy as there is no readily
available and reliable method for obtaining ground truth
on a real sensor. Synthetic data also allows us to vary
the actuation mechanism and noise magnitude. For

5We use nanoflann implementation https://code.google.

com/p/nanoflann/

ease of visualization and analysis, we use a cuboid as
the simulation environment (shown in Fig. 3). The
cube’s side length is 10 meters with the sensor assembly
located at its center.

4.1.1 Synthetic spinner

A spinner is an actuated lidar with a rolling motion
about the pointing direction of the lidar. Fig. 3 shows
the result of our calibration in a simple noise-free sce-
nario, in which case the algorithm estimates error-free
calibration parameters (up to floating point precision).
It is instructive to look at the resulting scanning pattern
of the calibrated sensor (right column of Fig. 3). Note
the gap centered in the middle of the plane. This is
the plane orthogonal to the spinning axis and facing
directly in front of the lidar. As expected, this is the
blind spot of the spinning assembly. The blind spot is
inevitable and is caused by offsets between the center of
rotation of the lidar’s mirror and the center of rotation
of the actuator (this blind spot can also be observed
in real data as shown in Fig. 9d). The extent of this
blind spot is proportional to the mechanical offsets be-
tween the center of rotation of the lidar’s mirror and
the center of rotation of the actuator’s. In contrast,
assuming that the centers of rotation align (left column
of Fig. 3), a blind spot is lacking and the geometry is
clearly incorrect.

We evaluate the algorithm’s accuracy using the syn-
thetic data (shown in Fig. 3) by performing the calibra-
tion 50 times with different noise levels σr. The data is
generated from a full revolution of the lidar with mo-
tor resolution of 1.618° yielding approximately 120 000
points per half-scan. Zero-mean Gaussian noise is added
to the returns where the noise uncertainty is varied as
a function of the angle of incidence on the surface and
the dependence is calibrated from Velodyne data as
in (Browning et al., 2012). We also vary the ground
truth calibration parameters for every run according
to a normal distribution with tx and ty translational
offsets distributed with a mean of 5 cm and a standard
deviation of 1.618 cm. The synthetic calibration values
are large in comparison to real systems. In contrast to
our real sensor, the values are more than five times along
the X-axis (left-right sliding) and more than two times
along the Y-axis (up-down sliding). Results are summa-
rized in Fig. 4. The results show that the algorithm is
accurate and repeatable under various magnitudes of
noise. In fact, the largest translation error across all
experiments is 0.78 mm, while the largest rotation error
is 0.03°.

Fig. 6 shows an example of the input point cloud to
the calibration algorithm to illustrate the magnitude
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Algorithm 1 Overview of the automated calibration algorithm

1: function Calibration(X ,X ′;H(0))
2: repeat

3: {X ,X ′} = ApplyCalibration(X ,X ′,H(k)) ⊲ Shape of point cloud depends on current calibration

4: {ni, wi} = ComputeWeightedNormals(X ; H(k))
5: {xi, x′

i} = FindNeighbors(X ,X ′; H(k))
6: H(k+1) ← argmin

H(k)

{
∑

i wi‖n
⊤
i

(

xi −H(k)x′
i

)

‖2
}

⊲ Optimize for H with fixed normals and neighbors

7: until convergence
8: end function

(a) Isometric view

(b) Front view

Figure 3: Synthetic data with a spinning sensor. The left
column shows the point cloud prior to calibration. Notice the
large distortions , which what otherwise would be straight
planes are now bent. The calibration recovers the exact
parameters (right). The calibration offset used for this
figure is 50 mm along the X- and Y-axes. To accentuate the
geometry, points are rendered with the estimated normals.

of noise. This is shown for two values of σr: 4 mm and
64 mm. Typical noise values for lidar are on the order of
10 mm to 15 mm at most, which is under our maximum
noise test level of 64 mm (note this is the standard
deviation, not the variance). These large values were
included to stress-test the algorithm’s performance. The
algorithm is accurate and can handle a large amount
of Gaussian noise, even with a standard deviation close
to 7 cm. The consistency of the results can be also
viewed in terms of the number of (outer) iterations
needed for convergence. Fig. 5 shows this number as a
function noise. The maximum number of iterations was
capped at 50. For small to moderate levels of noise the
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(b) Rotation errors

Figure 4: Synthetic spinner results on the cube environ-
ment with various levels of noise (shown in millimeters) and
different calibration parameters. The error is shown in log
scale on a standard box plot. The median translation error,
across all levels of noise, is 0.023 mm and the maximum is
0.78 mm. Median rotation error is 6.5 × 10−4 degrees with
a maximum of 0.03°.

algorithm reaches a solution quickly. For small noise
magnitudes, we expect the algorithm to converge in
less than 10 iterations. Otherwise, some error might
have happened and further investigation might be in
order. Yet, an usually large number of iterations is not
necessarily an indication of a bad quality calibration as
shown in Fig. 4. In real scenarios, however, we expect
to observe less variability in the number of iterations
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Figure 5: Number of outer iterations of the algorithm as
a function of noise levels. The number of iterations here
correspond to the results shown in Fig. 3. The maximum
number of iterations allowed was capped to 50. Noise, σr is
show in millimeters.

as noise in real data is less than our simulation.

The number of inner iterations needed for the op-
timizer to reach a minima is consistently less than 10
despite the magnitude of noise. A possible conclusion
of this behavior is that for a given point configuration
and an appropriate calibration scene, the optimization
problem is well constrained with a sharp extrema.

4.1.2 Basin of convergence

We use the simulated cube data to study the basin
of convergence of the algorithm. This is achieved by
a generating a synthetic calibration with the most
common calibration parameters. We simulate trans-
lations along the X- and Y-axes over a grid of values
{(tx, ty)} = {(0.5, 25.0)× (0.5, 25.0)} centimeters and
a resolution of 0.5 cm. All experiments were initialized
with the identity. Results are shown in Fig. 8. The
algorithm is able to recover the correct parameters up
to a translation vector of ≈20 cm on each of the X- and
Y-axes. Beyond 20 cm, the shape of the point cloud be-
comes severely distorted, e.g. see Fig. 22. Nonetheless,
20 cm on both axes is a very large calibration offset in
comparison to values found on real actuated lidar sen-
sors. It is significantly less than typical manufacturing
errors commonly observed in real sensors.

4.2. Real Data: Hokuyo Spinner

For real data from a spinner, we use a Hokuyo UTM-
30LX-EW laser scanner mounted on a spinning motor
(c.f . Fig. 2). The Hokuyo is configured to have 270°
field of view, with angular resolution of 1/4 of a degree,
producing 1081 measurements per scanline.

Calibrating a spinning lidar is challenging as the mo-
tor’s Home position is arbitrary. Every spinning sensor

potentially has a different homing position. Hence, it
is not an easy task to integrate scene constraints into
the optimization. For example, it would be difficult to
include a ground plane constraint such as the one used
by (Underwood et al., 2010) into the calibration frame-
work without incorporating additional information or
assumptions about the scene.

In the following, we perform various experiments for
real-life situations that could impact calibration results
using data from the Hokuyo Spinner.

4.3. Effect of Missing & Sparse Data

Here, we address the question of missing correspon-
dences and show that the distance to tangent plane
metric is not severely affected by lack of precise point
correspondences. In Fig. 9 we show our calibration
results using an indoor office environment. We colorize
the points with reflectance values from the Hokuyo for
better visualization. The automated calibration results
show a big improvement as can be seen by the geometry
(orthogonality of planes constituting corners) and the
sharpness of the visualized reflectance values.

Using the same office data (shown in Fig. 9), we
evaluate the algorithm’s repeatability and robustness
in face of missing point correspondences. We randomly
remove a percentage of points from the original dataset,
run the calibration algorithm and report the variance
of the estimated parameters. For every percentage of
removed points we repeat this process 50 times, each
with a different random subset of points removed. Re-
sults are summarized in Table 2, which indicate very
small variations in estimated parameters due to missing
correspondences.

4.4. Effect of Actuation Speed

Actuation speed of the motor has a major influence
on the sampling density. A lower actuation speed results
in a higher sampling density, and consequently more
accurate normals. Nonetheless, since the calibration
parameters do not depend on the speed of actuation we
desire an algorithm that is independent of the actuation
speed as well. This is convenient as data collection
for calibration purposes need not to have stringent
requirements.

Table 4 summarizes the results for various actuation
speeds for approximately the same number of revo-
lutions. Data is collected from our Hokuyo Spinner.
Results are consistent given enough points can be as-
sociated between the two half scans and normals are
extracted reliably. At 30 RPM, however, the sampling
is sparse, and we do not have enough overlapping seg-
ments. Normal estimation is also inaccurate as many
surfaces are sampled as lines due to high speed of ac-
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Figure 6: Illustration of the magnitude of noise used in the simulation experiments. The left column shows the cube
environment with σr = 4 mm, and on the right with σr = 64 mm. The top row shows a closeup slice of top left corner of the
box for the different noise levels. In Fig. 7 both point sets are overlaid for better visualization. The size of the blind spot
differs between the two views because of the random ground truth calibration.

Table 2: Summary statistics for a 4DOF calibration on the same data with varying percentages of randomly deleted points.
The initial point set size is ≈ 400 000 points. Mean (µ) and standard deviation (σ) of each parameter is reported, rx and ry

are rotation angles about the X- and Y-axes in degrees, tx and ty are the translation parameters in millimeters. Variations
in estimates due to missing point-point correspondences are practically negligible.

Parameter Statistics

%
re

m
ov

ed
p

oi
n
ts

µrx
σrx

µry
σry

µtx
σtx

µty
σty

10% 0.425 0.76× 10−3 0.834 0.78× 10−3 0.519 0.019 -26.07 0.035
20% 0.424 0.001 0.837 0.001 0.505 0.027 -26.14 0.052
30% 0.423 0.001 0.840 0.001 0.452 0.028 -26.15 0.061
40% 0.425 0.002 0.841 0.002 0.431 0.046 -26.21 0.070
50% 0.427 0.003 0.842 0.002 0.435 0.045 -26.27 0.090
60% 0.429 0.003 0.842 0.002 0.432 0.059 -26.37 0.109
70% 0.430 0.004 0.843 0.003 0.442 0.075 -26.42 0.142
80% 0.430 0.006 0.843 0.004 0.453 0.097 -26.38 0.181

Average 0.427 0.003 0.840 0.002 0.459 0.050 -26.248 0.092

tuation. Notably, point-plane optimization combined
with the scene structure is able to recover the rota-
tion estimates consistently across the different sampling
rates. This is because a small number of normals is
enough to constrain the orientation. Nonetheless, for

an accurate estimate of translation we require better
correspondences, which were not possible at high RPM.
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Table 3: Summary statistic for a 4DOF calibration on the same data with varying number of randomly selected points.
Angles are reported in degrees, and translations are reported in millimeters. Results are consistent until the number of points
drops below 12000.

Parameter Statistics
#

p
o
in

ts
×

1
0
0
0

µrx
σrx

µry
σry

µtx
σtx

µty
σty

200 0.434 0.003 0.853 0.002 0.667 0.057 -26.733 0.110
100 0.438 0.006 0.854 0.005 0.688 0.101 -26.789 0.206
50 0.437 0.012 0.855 0.009 0.693 0.216 -26.758 0.374
25 0.434 0.026 0.854 0.019 0.615 0.373 -26.525 0.707
12 0.412 0.044 0.856 0.033 0.582 0.641 -26.524 1.257
6 0.380 0.111 0.847 0.081 0.295 1.426 -26.651 2.482
3 0.267 0.249 0.834 0.172 0.164 2.963 -26.031 4.671
1 0.200 0.548 0.750 0.450 -1.316 8.307 -26.016 12.209

Table 4: Calibration results for the same sensor and the same environment with various actuation speeds. Actuation
speed is measured as revolutions per minute (RPM). Rotations are reported in degrees, and translations are in millimeters.
Estimation of rotation parameters is consistent across various speeds (different data densities). However, estimation of the
translation parameters becomes unstable at the highest speed. This can be explained by the low density cloud leading to
poor point-plane correspondence as show in Fig. 10. The last column shows the determinant of the estimated covariance
matrix associated with the parameters, which indicates a degradation of calibration certainty with reduced sampling rate.

Calibration parameters

RPM rx ry tx ty det (Σθ)

5 0.260 0.786 1.547 −29.941 3.161× 10−17

10 0.253 0.874 1.421 −29.310 3.253× 10−15

15 0.381 0.762 −3.462 −32.601 6.890× 10−14

20 0.442 0.873 5.202 −35.326 8.701× 10−13

25 0.383 0.764 −5.960 −17.527 3.862× 10−12

30 0.445 0.858 1.730 −15.001 1.928× 10−11

4.5. Effect of Field of View (FOV)

The field of view (FOV) of the lidar determines the
how much of the scene the lidar can observe. In some
situations, it is not possible to use the full FOV for the
lidar due to its placement on the sensor. For example,
if the lidar was mounted on the grill of an autonomous
car, then the maximum FOV would be 180°.

Here, we experiment with different FOV from the
Hokuyo sensor. We use the same dataset for calibration,
but with different lidar FOV. The different FOV’s are
obtained by post-processing the data. The data used
in this experiment are shown in Fig. 11.

To asses the effect of the FOV, we let the calibra-
tion estimated with the full FOV of the lidar be the
baseline comparison. For all other FOV’s we report the
calibration signed difference against the baseline,i.e.:

δr = r270° − rf◦ (18)

δt = t270° − tf◦ , (19)

for f ∈ {200, 180, 90, 45}. Differences are computed
individually for each of the five estimated parameters.
Namely, x-axis rotation δrx and translation δtx, and y-
axis rotation and translation δty. Results are reported
in table 5. We observe an acceptable estimate of ro-
tation for all reduced FOV’s. This is due to the small
rotational offsets of the uncalibrated sensing assembly.
Furthermore, we observe an acceptable performance
up to a 180° FOV. For smaller FOV’s, translation es-
timates become unreliable due to lack of structure in
calibration scene as can be observed in Fig. 11.

Degradation of the calibration quality due to limited
FOV can also be seen by examining the uncertainty
estimates obtained from the optimization procedure
(Eq. (12)). Taking the determinant of the covariance
matrix, averaged over multiple trials, as a single num-
ber indication of uncertainty, we can see a significant
increase in uncertainty with reduction of the FOV as
shown in table 6.
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Figure 7: Illustration of the synthetic noise. The figure
shows a cross section of the box geometry around a cor-
ner facing the viewing ray of the sensor. The black/dark
points are generated with noise magnitude of σr = 64 mm,
while the green/light points are generated with σr = 4 mm.
Ground truth would be a sharp 90° composed of two straight
lines, not shown in the figure. Both noise levels are in fact
an exaggeration of expected sensor noise. They are included
to stress-test the algorithm’s performance. The corner of the
box is at approx. 14.14 m from the location of the sensor.

Table 5: Calibration results from a reduced FOV lidar
compared against calibration results from the full FOV.
Angles are reported in degrees and translations are reported
in centimeters.

FOV δrx δry δtx δty

200 0.010 0.003 −0.001 −0.038
180 0.017 0.005 −0.001 −0.070
90 0.102 0.000 −0.052 −0.550
45 0.901 −0.025 −0.626 −9.006

4.6. Effect of the Environment

Structure of the calibration environment plays a role
in the accuracy of the results. A good calibration
algorithm, if possible, should not have stringent re-
quirements on the scene structure. Clearly, one should
identify and avoid degenerate geometries that cannot
constrain the degrees of freedom.

The ability to use the algorithm in various environ-
ments is especially important for robotic applications
where it is not uncommon to require an in-field re-
calibration. Rough terrain, environmental conditions,
and transporting the vehicle to the field might comprise
the integrity of a previous calibration.

Here, we show that the algorithm is repeatable when
used in different environments provided that the geome-
try constrains the calibration parameters. In particular,
we do not require planar man-made environments of
certain dimensions; local planarity is sufficient. Further,

we will show that our algorithm is not strongly affected
by the maximum range returns values used to calibrate.
This is important because for the same sensor we would
like to obtain the same calibration parameters whether
the calibration was performed in a small room, or out
in the open.

Fig. 12 and Table 7 show the calibration results
from the same sensor with data collected from different
indoor scenes with different range variations. Estimates
of the calibration parameters are consistent across dif-
ferent datasets. The exception is the case of the long
narrow corridor. As expected, the structure of the nar-
row corridor does not provide enough constraints on
the calibration parameters. This situation can be de-
tected by examining the covariance of the estimated
parameters.

Finally, we apply the algorithm on data collected
from an outdoor scene. Results on outdoor data are
shown Fig. 14 and verify that the algorithm is suitable
for use with outdoor data.

4.7. Application to 3D SLAM

We demonstrate the quality of the calibration for
a 3D SLAM application. We use the spinning sensor
shown in Fig. 2. The assembly consists of a Hokuyo
range scanner mounted on a spinning platform and
rigidly coupled with a 1 mega-pixel stereo camera. The
sensor assembly performs a full revolution every 4 s (i.e.
point cloud output is 1/4 Hz). The Hokuyo has a field
of view of 270° with angular resolution of 0.25° (i.e.
1081 range measurements per scanline). Stereo visual
odometry (VO) (Alismail et al., 2010) is used to account
for the motion of the vehicle while scanning. This is
possible via another calibration procedure between the
camera and the lidar assembly (Alismail et al., 2012).
We receive pose updates from VO at the rate of 10 Hz.
The poses are interpolated per range measurement to
allow us to reconstruct the point cloud from the moving
sensor. In case of VO dropouts — e.g. due to sudden
changes in lighting or motion blur — we drop the VO
frame and the associated lidar points. VO accumulates
drift over time. To reduce this drift, we apply point-
point ICP (Besl and McKay, 1992) for every 2 s worth
of lidar data. This is shown to reduce local VO drift
without the need for a Bundle Adjustment procedure
that our embedded computing platform cannot perform
in real time. While it is possible to use SLAM methods
designed to capture the continuous nature of the scan-
ning process (Bosse and Zlot, 2009; Alismail et al., 2014;
Tong et al., 2013), we opt for this registration-based
SLAM approach due to its popularity and the impact
of internal calibration on performance.

The sensor is mounted on a small-sized mobile robot
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Figure 8: Basin of convergence. Translation error (left) and rotation error (right) for a grid of translation along the X-
and Y-axes starting from 0.5 cm to 25 cm. The algorithm is able to estimate the correct calibration parameters up to the
boundary of 20 cm. The last row shows a zoomed in view of the error surface for a translation magnitude up to 10 cm, where
the maximum translation error is 0.34 cm and the maximum rotation error is 0.045°.

Table 6: Determinant of the covariance matrix associated with the estimated parameters for the different FOV’s.

FOV 270 200 180 90 45

det (Σ)× 108 0.0054 0.0068 0.0092 0.0527 1.0814

platform (Packbot from iRobot) with the primary ap-
plication for 3D mapping of underground mines. The
system, however, is not restricted to underground envi-
ronments. We show examples of our mapping results to
illustrate the quality of the calibration. As with all com-
plex systems, calibration plays a small, but important,
role in the overall system performance. If our calibration
accuracy was not satisfactory, we expect to see visible
errors in the resulting scene structure. In this case, such

errors are expected to manifest as “double-walls”, or
ghosting artifacts in the resulting scene reconstruction.
We illustrate this effect in Section 4.8.

Fig. 15 shows some examples of our system’s per-
formance in an underground mine. The closeup views
show crisp point clouds and the lack of any visible ar-
tifacts. In all of the results shown here, a loop closure
procedure was not performed as to not hide any cali-
bration errors. A longer run is shown in Fig. 16 where

13



(a) Uncalibrated (b) Calibrated

(c) Uncalibrated – floors (d) Calibrated – floors

(e) Uncalibrated – detail (f) Calibrated – detail

Figure 9: Real data inside an office environment. The figure shows the ceiling and walls of the room. Points are colorized
with the lidar reflectance returns for better visualization. Our algorithm does not make use of reflectance data. Notice the
corrected errors in the corners of the room and better point cloud crispness as indicated by reflectance visualization. The
bottom row shows a closeup view of a chair directly placed in front of the sensor. A sheet of white paper is placed on the
chair to enhance visualization. Prior to calibration (Figs. 9c and 9e) we can see clear ghosting artifacts on the chair as well
as double-floors. These effects are eliminated post calibration (Figs. 9d and 9f).

the longest corridor in the mine is approximately 150 m
without chances for loop closure.

Perhaps a better illustration of the calibration qual-
ity is by inspecting the reconstruction of indoor envi-
ronments where it is easy to verify the correctness of
scanned man-made environments. Fig. 17 shows the

results of our system in an indoor industrial complex
collected at the second floor of our facility. The original
point cloud has more than 40 million points. Fig. 18

shows some detailed views of the mapped building.
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Figure 10: Calibration results from two representative RPM settings. Top row shows data collected with 5 RPM, bottom
row shows 30 RPM. Data was collected in our test facility. The height of the building measured from the ground to top
of the ceiling (left column) is approx. 18 m, while the length (right column) is approx. 48 m. While at a first glance, both
calibration results produce similar point clouds, closer inspection shows some errors using data collected with 30RPM. We
used the same number of neighbors to compute the adaptive neighborhood for each of the datasets.

Table 7: Using different data to calibrate the same sensor. Calibration results shown in Fig. 12 for a 4 DOF model
(ry, rx, tx, ty), with rotations in degrees and translations in millimeters. Results are consistent among the Corner and the
Mailroom data. Nonetheless, we can observe an underestimated translation in the Corridor data due to the under-constrained
geometry of the scene. This can be detected by observing the covariance matrix where the uncertainty of the estimated
translation is orders of magnitude higher for the Corridor data compared to the other datasets.

Parameters

Dataset rx ry tx ty

Corner −0.594 0.666 2.598 −25.420
Mailroom −0.602 0.652 2.597 −25.592
Corridor −0.671 0.625 0.660 −22.012

4.8. Effect of Calibration on 3D SLAM

In this section, we show the effect of calibration on
SLAM results. Fig. 19 shows SLAM results using the
same sensor and SLAM algorithm described in the pre-
vious section. The left panel shows the result without
applying the calibration. While we do not have ground
truth, we can see that SLAM results with our calibra-
tion method are more accurate. The resulting map is
sharper and the indoor environment is more defined.
The structure on the ground plane is also straight after

calibration in comparison to a bent structure prior to
calibration.

5. Discussion

In this work, we did not make use of lidar intensity
returns, which could contribute useful constraints on
the calibration. Nonetheless, forming this image is not
always possible. For some sensors, intensity returns
may not be available, or may not have enough sampling
density to construct an image suitable for calibration.
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(a) 270°

(b) 200° (c) 180°

(d) 90° (e) 45°

Figure 11: Data used for calibration from different FOV’s.
The sensor is located at the origin (indicated with a square).

In such cases, interpolation artifacts might severely
impact the accuracy of corner localization. Consider, for
example, a spinning lidar observing a calibration target
at long-range. Regardless of the spinning resolution
of the actuator, a clean intensity image is difficult to
obtain (c.f . Fig. 9).

In addition, intensity-based methods rely on calibra-
tion targets. This has some drawbacks, namely the need
to correctly identify and extract the calibration pattern
from a large amount of data. This also restricts the
calibration to close-range, where the calibration target
can be accurately localized in the intensity image and
may induce range-dependent bias in the results.

We note that it is possible to use an actuated lidar
in SLAM applications without a specialized calibra-
tion step as describe in the work by (Bosse and Zlot,
2009). The algorithm proposed by (Bosse and Zlot,
2009) solves the SLAM problem by optimizing a contin-
uous trajectory that aligns half-scans from a spinning
lidar assembly. However, calibration remains important
and useful. During their recent work, (Zlot and Bosse,

2014) indicate the use of their SLAM algorithm to cal-
ibrate a spinning lidar from stationary data prior to
using the sensor for SLAM. Similar to our results, (Zlot
and Bosse, 2014) observe an improved SLAM system
when the internal parameters of the sensor have been
calibrated.

Our algorithm is accurate, automated and generic in
the sense that it does not enforce restrictive assumptions
on the sensor configuration. The only requirement on
the actuation mechanism is that points from each set
(half-scans for spinner) are produced from distinct joint
angles (lidar mirror and actuation angles). Otherwise,
both sets will be identical and do not provide enough
information to allow for an automated calibration.

The canonical example for this case is a nod-
ding/pitching sensor as illustrated in Fig. 21. On the
left column of Figs. 21a and 21b we show data from
a calibrated nodder (using CAD measurements). To
the right is an illustration of how the data would ap-
pear if the calibration offsets were not accounted for.
We have used a large offset of one meter to stress the
effect visually. The datasets contain several nods of
the scene. In Fig. 21c both, calibration and uncali-
brated, are overlaid to show the sever distortion. Not
only that distance measurements are incorrect, but also
we observe non-rigid shearing and stretching. Solv-
ing the nodder would require making more restrictive
assumptions on the environment (e.g. it consists of
large, readily identifiable planes such as the ground
surface), or integrating motion which would couple the
pose estimation problem.

As can be seen, data collected while the sensor is
nodding upwards is identical to the data collected while
the sensor is nodding downwards. This is because the
lidar beam sampling the scene is identical in both nod-
ding directions. In the spinning lidar case, the second
half-scan switches the beams sampling the scene and we
obtain enough information for automated calibration.

5.1. Failure Cases

Although we have observed excellent empirical per-
formance on spinning and wobbling (two-axis) lidar
systems, the algorithm is not fail-proof. It is expected
to fail in the following scenarios:

• Insufficiently constrained geometry. For example,
a single plane in the scene will not be able to con-
strain the full degrees of freedom of the calibration
model. To avoid this situation, we recommend
collecting data with at least three visible plane
orientations. Room-like structures, with several
orthogonal plane orientations are ideal.

• Lack of surface correspondences. We have shown
that the algorithm is resilient to lack of precise

16



(a) Corner

(b) Long narrow environment

(c) Corner with high-detail feature (mailboxes)

Figure 12: Example calibration results for the same sensor using data from different indoor environments. On the left we
show an image of the environment for reference. The center column shows the environment from an uncalibrated sensors.
Calibration results are shown on the right. A closeup view of the details in the Mailroom data is shown in Fig. 13.

Figure 13: Detailed top view of the mail room scene shown
in Fig. 12c. The top figure shows an uncalibrated sensor,
while the bottom shows the calibration results. Protrusions
going “inside” the wall are the mail boxes. Notice the ex-
pected more regular structure of the boxes post calibration.

point-point correspondences. However, for ex-
tremely sparse data the probability of correct sur-
face correspondences drops and might affect the
accuracy of the algorithm. Such situations might
happen with the actuator’s speed is very fast and
the majority of the scene structure lies at a far
distance (i.e. the point sampling density is large

with respect to the surface geometry roughness).
This is easily avoided by adjusting the actuation
speed and selecting the proper environment for
calibration.

• Very large calibration offsets with lack of a good
initialization. Our problem here differs significantly
from standard registration problems. The calibra-
tion values directly affect the resulting point clouds.
This is better visualized in Fig. 22. The figure
shows a large offset that causes severe distortion of
the data that we cannot recover from without the
aid of an initialization. The initialization need not
be very accurate, it is merely needed to reduces
the distortion in the data.

5.2. Accuracy Assessment

Calibration results will need to be inspected care-
fully. As was shown in Fig. 12, it is possible for the
algorithm to generate a very visually convincing result
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Figure 14: Calibration results on outdoor data. The left column shows a point cloud triangulated from an uncalibrated
sensor with clear misalignment. On the right, the point cloud triangulated with the estimated calibration.

Figure 15: Mine mapping results. Top left figure shows
a small section of the mine from top. The longest corridor
is approximately 150 m. To the right is a 3D view of the
scene. On the bottom is a profile view demonstrating the
lack of vertical drift.

on under-constrained geometry. In addition to inspect-
ing the covariance of the estimates, we recommend a
visual inspection of the calibration results using a “test
data” of different scenes. Yet, a better verification of
the calibration accuracy is evaluation as a function of
system’s performance, such as SLAM results compared
to ground truth if available.

6. Conclusions & Future Work

In this work we presented an algorithm for fully
automated targetless calibration of actuated spinning
lidar internal parameters. These parameters are the
mechanical offsets between the center of rotation of the
lidar’s mirror and the center of rotation of the actuation

mechanism. The algorithm was evaluated on real and
simulated data and was shown to be repeatable, robust
and accurate.

Our algorithm does not rely on specific calibration
targets and is readily applicable for any locally-planar
environments. Robustness to errors in normal estima-
tion was achieved by using an adaptive data-driven
selection of the neighborhood radius. Furthermore, by
automatically detecting unreliably estimated planes we
can reduce their effect on calibration accuracy by down
weighting their contributions to the error function.

In this work, we did not address calibration problems
pertaining to timing errors, range bias due to different
object materials, or bias due to thermal fluctuations.
These might be avenues of future work.

We also did not make use of lidar re-
flectance/intensity information in the calibration
process. This is an advantage that makes the algorithm
applicable to a variety of sensors. However, reflectance
data contain important information that could be
used to aid in the search for correspondences and even
improve the cost function. We have not observed a
need to include lidar reflectance in any of the steps. A
more interesting direction of future work is designing
an automated algorithm for nodder calibration.

Another venue of future work is studying the im-
pact of calibration errors on the shape of the point
clouds (Habib and Kersting, 2010), and the overall
system performance. Better understanding of calibra-
tion error effects on system performance is important
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Figure 16: 3D mapping results in a mine environment. We show a top down view and a 3D view reconstruction. Distance
travelled by the robot is approximately 1.0 km. While we do not have precise ground truth, the results look visually good
and there is a small amount of drift in the estimated robot trajectory. These results are obtained without loop closure.

Figure 17: SLAM results in a indoor environment with
several loops. The view is from top and colorized by height.
This is the same building shown in Fig. 10. A highbay area
is shown at the center of the figure. This is the area with
the largest height variation and is surrounded by offices.
The overhanging structures in the middle of the highbay are
lighting fixtures.

to achieving high accuracy, identifying mis-calibration
events and devising online calibration methods (Roy
and Thrun, 1999; Hansen et al., 2012; Levinson and
Thrun, 2014).
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