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Abstract— As a core robotic and vision problem, camera
and range sensor calibration have been researched intensely
over the last decades. However, robotic research efforts still
often get heavily delayed by the requirement of setting up
a calibrated system consisting of multiple cameras and range
measurement units. With regard to removing this burden, we
present a toolbox with web interface for fully automatic camera-
to-camera and camera-to-range calibration. Our system is easy
to setup and recovers intrinsic and extrinsic camera parameters
as well as the transformation between cameras and range
sensors within one minute. In contrast to existing calibration
approaches, which often require user intervention, the proposed
method is robust to varying imaging conditions, fully automatic,
and easy to use since a single image and range scan proves
sufficient for most calibration scenarios. Experimentally, we
demonstrate that the proposed checkerboard corner detector
significantly outperforms current state-of-the-art. Furthermore,
the proposed camera-to-range registration method is able to
discover multiple solutions in the case of ambiguities. Experi-
ments using a variety of sensors such as grayscale and color
cameras, the Kinect 3D sensor and the Velodyne HDL-64 laser
scanner show the robustness of our method in different indoor
and outdoor settings and under various lighting conditions.

I. INTRODUCTION AND RELATED WORK

Robots are typically equipped with multiple complemen-

tary sensors, which require calibration in order to represent

sensed information in a common coordinate system. Hereby,

each sensor can be characterized by its intrinsic (e.g. shape of

the camera lens) and extrinsic (i.e. pose) parameters. Calibra-

tion methods aim at estimating these parameters, often using

checkerboard patterns as targets. Although calibration is an

ubiquitous problem in robotics and computer vision, current

camera calibration tools such as the widely used Matlab

Camera Calibration Toolbox [1] or OpenCV [2] are not very

robust and often require manual intervention, leading to a

cumbersome calibration procedure. Furthermore, only little

work on camera-to-range sensor calibration has been done,

and to our knowledge [3] and [4] are the only toolboxes

online available.

In this work, we try to close this gap by proposing a robust

solution to automatically calibrating multiple cameras and

3D range sensors with respect to each other. Our approach

relies on a cheap and simple calibration setup: We attach

multiple printed checkerboard patterns at the walls and the

floor, see Fig. 4 for an illustration. As input, our method

requires a single range or camera image per sensor (which we

call shot in the following), as well as the distance between the

inner checkerboard corners for resolving the scale ambiguity.
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Fig. 1. Experimental setup. Trinocular camera with Velodyne HDL-64E
laser scanner (left) and binocular camera with Microsoft Kinect (right).

Note that this differs from previous approaches [1], [2], [3],

[4] which require multiple (synchronized) images of a single

calibration target presented at different orientations, as well

as the number of checkerboard rows and columns as input.

The only assumption we make is that all sensors return either

intensity or depth images and share a common field of view.

Experimentally we show the robustness of our method

on calibration images from the internet, a binocular camera

setup with the Kinect range sensor and a trinocular camera

setup with the Velodyne HDL-64E laser scanner, illustrated

in Fig. 1. We will also make an online version of our system1

available to the community: After uploading images and 3D

point clouds, the calibration parameters are computed within

one minute.

This work is organized as follows: The next section starts

with a discussion of related work. Sec. III and Sec. IV give

a detailed description of the proposed method on camera-to-

camera and camera-to-range calibration, respectively. After

an evaluation in Sec. V the paper is concluded in Sec. VI.

II. RELATED WORK

A. Camera-to-Camera Calibration

The most widely used toolbox for camera calibration

is probably Bouget’s Matlab Camera Calibration Toolbox

[1], of which a C++ version has been implemented in the

OpenCV library [2]. It uses the distortion model described

in [1], [5], [6], covering a large variety of lenses, and

allows to calibrate up to two video cameras intrinsically and

extrinsically by presenting a checkerboard calibration pattern

at multiple orientations. The OpenCV additionally offers an

automatic corner detection method based on quadrangles,

which has been extended and improved upon by Rufli et

al. [7]. Due to the method’s sensitivity to clutter in the input

image, Kassir et al. [4] propose a more robust corner detector

1www.cvlibs.net



based on multi-scale Harris [8] points and an improved

filtering mechanism inspired by [9]. From the recovered

corner points, they are able to detect a single checkerboard

within an image. The problem of multi-camera calibration

for the distortion-free scenario has been tackled in [10].

While all of the existing methods concentrate on the prob-

lem of detecting only a single (and often known) calibration

target, our approach finds multiple unknown checkerboard

patterns in an image and automatically matches them be-

tween cameras. This facilitates the calibration setup as a

single image is sufficient for calibration and unsynchronized

sensors such as line sweep laser scanners (e.g. rotating SICK)

can be readily employed. Furthermore, our method requires

no manual intervention, and the proposed corner detector

significantly outperforms current state-of-the art [4], [9], as

illustrated by our experiments in Sec. V-A.

B. Camera-to-Range Calibration

For camera-to-range sensor calibration, all existing works

assume a valid intrinsic calibration of the camera and focus

on estimating the six parameters needed to align the two

coordinate systems. The approaches can be classified into

two groups, based on the type of range sensor used:

The first group of approaches uses full 3D sensors giving

rise to a dense 3D point cloud. Unnikrishnan et al. [3]

have developed a toolbox where the user has to mark the

calibration pattern in an interactive GUI. The approach of

Scaramuzza et al. [11] is comparable but specialized to

omni-directional cameras. Likewise, correspondences must

be selected manually.

The second and more established group uses one- or four-

layer laser scanners. Since these sensors only measure a

small part of the scene, most approaches rely on manual

selection of correspondences [12], [13], [14]. Only recently

this effort was reduced by either classifying line-segments

[4] or by exploiting reflectance measurements from the lidar

scanner [15]. Unfortunately, these approaches are not directly

applicable to 3D range sensors.

Common to all approaches is the use of only one cal-

ibration pattern. This requires to take several recordings

with the need for manually moving the calibration pattern.

In this paper we propose a robust method for 3D range

sensors which determines all six extrinsic parameters fully

automatically using a single shot only. Hereby, calibration

efforts are reduced dramatically.

III. CAMERA-TO-CAMERA CALIBRATION

Following [16], we use planar checkerboard patterns as

calibration targets for multiple reasons: They are cheap

to employ, corners can be localized with high sub-pixel

accuracy and structure recovery profits from strong edges

between corners. In contrast to existing methods which

capture multiple images of a single checkerboard, we take

a single shot of multiple checkerboards placed at different

locations in the image. This also facilitates the calibration

process, especially with respect to registering the triangulated

checkerboards to a 3D point cloud, as detailed in section IV.

(a) Corner Prototype 1 (b) Corner Prototype 2

(c) Input Image I (d) Corner Likelihood C

(e) Orientation & Score (f) Detected Checkerboard Corners

Fig. 2. Corner detection. We filter the input image I using corner proto-
types, apply non-maxima-suppression on the resulting corner likelihood C

and verify corners by their gradient distribution. See Sec. III-A for details.

Through not strictly necessary, we assume the prevalent cali-

bration scenario where all sensors have a part of their field of

view in common. Our camera calibration algorithm proceeds

as follows: First, we robustly locate checkerboard corners

in the image (Sec. III-A) and refine them for sub-pixel

accuracy (Sec. III-B). Checkerboard structures are recovered

by optimizing an energy function subject to structural con-

straints (Sec. III-C). Correspondences between images are

obtained by deterministically sampling affine transformations

and maximizing a fitness function (Sec. III-D). The final

camera parameters are recovered via non-linear optimization,

where we use weak regularizers to avoid degenerate solutions

(Sec. III-E). The following subsections give details about

each of these steps.

A. Corner Detection

Harris points [8] or Shi-Tomasi corners [17] are a common

choice for localizing junctions in an image. However, we

found that the following procedure gives more robust results

with respect to image clutter, blurring artifacts and localiza-

tion accuracy: In order to locate checkerboard corners in a

grayscale image I (Fig. 2(c)), we compute a corner likelihood

at each pixel in the image using two different n× n corner

prototypes: One for axis-aligned corners (Fig. 2(a)) and one

for corners, which are rotated by 45◦ (Fig. 2(b)). Empirically,

we found that these two simple prototypes are sufficient for

detecting corners over a wide range of distortions induced by

perspective transformations. Each prototype is composed of

four filter kernels {A,B,C,D}, which are convolved with

the input image I. For an ideal corner, the response of {A,B}



should be greater than the mean response of {A,B,C,D},
while the response of {C,D} should be smaller, and vice

versa for flipped corners. This fact can be expressed formally

as follows: Let f i
X be the filter response of kernel X and

prototype i for a particular pixel. The corner likelihood c

at this pixel is defined by taking the maximum over all

combinations of prototypes and flippings:

c = max(s11, s
1
2, s

2
1, s

2
2) (1)

si1 = min(min(f i
A, f

i
B)− µ, µ−min(f i

C , f
i
D))

si2 = min(µ−min(f i
A, f

i
B),min(f i

C , f
i
D)− µ)

µ = 0.25 (f i
A + f i

B + f i
C + f i

D)

Here, si1 and si2 denote the likelihood of the two possible

flippings for prototype i. Computing this likelihood for every

pixel in the image yields a corner likelihood map C. See

Fig. 2(d) for an illustration. Importantly, note that the above

definition leads to a low likelihood c, if any of the four filter

kernels responds weakly. This is important for removing as

many non-checkerboard style corners as possible from the

hypotheses space. To produce a list of corner candidates,

we apply conservative non-maxima-suppression (with pa-

rameters nnms and τnms) [18] on C, followed by verifying

the candidates by their gradient statistics in a local n × n

pixel neighborhood, as illustrated in Fig. 2(e): We compute

a weighted orientation histogram (32 bins) from Sobel filter

responses and find the two dominant modes α1 and α2 using

mean shift [19]. Based on the edge orientations, we construct

a template T for the expected gradient strength ‖∇I‖2. The

product of T ∗ ‖∇I‖2 and the corner likelihood in (1) gives

the corner score, which we threshold by τcorner for obtaining

a final list of corner candidates, see Fig. 2(f). Here, ’∗’
denotes the normalized cross-correlation operator.

B. Sub-pixel Corner and Orientation Refinement

It is well-known that calibration benefits from sub-pixel

accurate corner locations [20], [21], [2]. In this work we

refine both, the corner location and the edge orientations.

For sub-pixel corner localization, we make use of the fact

that at a corner location c ∈ R
2 the image gradient gp ∈

R
2 at a neighboring pixel p ∈ R

2 should be approximately

orthogonal to p− c, leading to the optimization problem

c = argmin
c′

∑

p∈NI(c′)

(

gT
p (p− c′)

)2
(2)

where NI is a local 11× 11 pixel neighborhood around the

corner candidate. Note that neighboring pixels are automat-

ically weighted by the gradient magnitude. This problem is

straightforward to solve in closed form, yielding the solution:

c = (
∑

p∈NI

gpg
T
p )

−1
∑

p∈NI

(gpg
T
p )p (3)

To refine the edge orientation vectors e1 ∈ R
2 and e2 ∈ R

2,

we seek to minimize the error in deviation of their normals

with respect to the image gradients

ei = argmin
e′

i

∑

p∈Mi

(gT
pe

′
i)

2 s.t. e′
T
i e

′
i = 1 (4)

(a) Iterative Expansion of Checkerboard Hypotheses from Seed Points

(b) Triples (c) Detected Checkerboards on Large-Scale Example

Fig. 3. Structure recovery. We iteratively expand seed points (a) into the
direction of the strongest gradient of an energy function evaluating the local
structuredness (b). Fig. (c) shows final detection result.

where Mi = {p | p ∈ NI ∧ |m
T
i gp| < 0.25} is the set

of neighboring pixels, which are aligned with the gradient

mi = [cos(αi) sin(αi)]
T of mode i. The solution to Eq. 4

is obtained, by setting the derivative of its Lagrangian to

zero, leading to an eigenvalue problem, with ei being the

eigenvector corresponding to the smallest eigenvalue of

∑

p∈Mi

(

g1pg
T
p

g2pg
T
p

)

∈ R
2×2 (5)

where gip denotes the i’th entry of gp.

C. Structure Recovery

Let the set of corner candidates be X = {c1, .., cN} and

let Y = {y1, ..,yN} be the corresponding set of labels. Here,

y ∈ {O} ∪ N
2 represents either an outlier detection (O)

or the row / column (N2) within the checkerboard. For all

checkerboards present in the image our goal is to recover Y
given X . We do this by minimizing the energy function

E(X ,Y) = Ecorners(Y) + Estruct(X ,Y) (6)

subject to the constraint, that no two labels can explain the

same checkerboard corner. Intuitively, we try to explain as

many corners as possible using a regular structured element

(the checkerboard): Ecorners(Y) = −|{y|y 6= O}| is taken

as the negative number of explained checkerboard corners

and Estruct measures how well two neighboring corners i

and j are able to predict a third one k, weighted by the

number of explained corners:

Estruct(X ,Y) = |{y|y 6= O}| max
(i,j,k)∈T

||ci + ck − 2cj ||2
||ci − ck||2

(7)

Here, T denotes the set of all row and column triples of the

current checkerboard configuration induced by Y , see Fig.

3(b) for an illustration. In total, we have |T | = m(n− 2) +
n(m−2) triples, with m and n denoting the number of rows

and columns respectively. Importantly note that due to the

local nature of our linearity requirement in Eq. 7, we gain

flexibility and also allow for strongly distorted patterns as

imaged by fisheye lenses, for instance.



Since the set of possible states Y can take is exponentially

large in N , exhaustive search is intractable. Instead, we

employ a simple discrete optimization scheme, which works

well in practice as confirmed by our experiments in Sec. V:

Given a seed corner, we search for its closest neighbors

in the direction of its edges e1 and e2, yielding an initial

2 × 2 checkerboard hypothesis with an associated energy

value E(X ,Y). To optimize E(X ,Y), we propose expansion

moves on Y , which expand any of the checkerboard borders

by a single row or column. Amongst all four possibilities,

we select the proposal, which reduces E(X ,Y) the most.

Fig. 3(a) illustrates the expansion moves exemplarily.

In order to recover multiple checkerboards in a single

image, we repeat the aforementioned procedure for every

corner in the image as seed, yielding a set of overlapping

checkerboards. Duplicates (having at least one corner index

in common) are removed greedily by keeping only the top

scoring candidates with respect to E(X ,Y), starting with the

highest scoring checkerboard first. Fig. 3(c) shows an image

with 11 discovered checkerboards exemplarily.

D. Matching Checkerboards between Images

Having recovered checkerboards in all camera images, we

are left with the problem of finding corner correspondences

between cameras. We do this by defining one camera as

the reference camera, and independently match all other

camera images against this reference image. Due to ap-

pearance ambiguities, classical feature descriptors such as

SIFT [22] or SURF [23] can not be employed. Instead, we

consider all possible combinations of two checkerboards in

both images (resulting in a loop over four variables), from

which we compute the corresponding unique 2D similarity

transformation ϕ(p;A,b) = Ap+b. Here, ϕ takes a point p

in the target image and projects it into the reference image by

changing translation, rotation and scale. Given ϕ, we assign

all checkerboards of the target image to their closest neigh-

bors in the reference image and resolve the two (rectangular

pattern) / four (quadratic pattern) fold checkerboard rotation

ambiguity by taking the minimizer of the corner projection

errors independently for each matched checkerboard. Here,

we only assign checkerboards, which agree in the number

of rows and columns and for which the relative projection

error is smaller than τmatch, measured relative to the image

width. From all samples, we choose the final solution as the

one which maximizes the number of matched checkerboards.

Fig. 8 shows the final matching results for different scenarios.

E. Optimization

Following [1], [2], we assume a pin-hole camera

model with radial and tangential lens distortion as de-

scribed in [1], [5], [6]. In total we have 10 intrinsic

(fu, fv, cu, cv, α, k1, k2, k3, k4, k5) and 6 extrinsic parame-

ters for each camera / reference camera combination. For

optimization, we extended the Matlab Camera Calibration

Toolbox [1] to handle an arbitrary number of cameras. We

initialize the intrinsic parameters of each camera indepen-

dently by exhaustively searching for fu and fv , placing the

principal point (cu, cv) at the center of the image and setting

α = k1 = k2 = k3 = k4 = k5 = 0. In practice we

found this procedure to yield more robust results than closed-

form solutions, such as the one proposed by Zhang et al.

[24], especially in the presence of only a small number of

checkerboards. The extrinsic parameters are initialized by av-

eraging the checkerboard-to-image plane homographies [24].

To carry out the final non-linear refinement, we minimize

the sum of squared corner reprojection errors using Gauss-

Newton optimization. Since we found the sixth order radial

distortion coefficient k5 hard to observe, we add a quadratic

regularization term to prevent k5 from getting too large.

Alternatively, individual distortion parameters can be fixed

to 0 in our toolbox.

IV. CAMERA-TO-RANGE CALIBRATION

Goal of this section is to estimate the 6-DOF rigid trans-

formation parameters θ = (rx, ry, rz, tx, ty, tz)
T specifying

the relative pose of the reference camera coordinate system

wrt. the coordinate system of a range sensor. A 3D point

in camera coordinates pc can then be transformed into

range sensor coordinates via pr = Rθ · pc + tθ using the

corresponding rotation matrix Rθ and translation vector tθ .

Input from the range sensor is an unordered set of 3D

points Pr = {(x, y, z)} which keeps the approach as

generic as possible. Similarly, we obtain sets of 3D points

Pj
c = {(x, y, z)} from the camera-to-camera calibration

stage, where each set j corresponds to one checkerboard and

comprises the corner locations in 3D. In the following, we

describe how both sets of points can be aligned, giving rise

to the transformation parameters θ.

Existing methods [14], [13], [11], [3], [12] simplify

camera-to-laser calibration by manual user intervention and

the fact that several scans are taken with only one board

visible at a time. Our system is designed for easy usage

with the consequence of having a more difficult situation:

We can neither rely on correspondences between the two

point clouds, nor is it possible to use existing 3D point cloud

alignment methods due to the small overlap (full world vs.

checkerboards only) and the unknown initialization.

The proposed algorithm proceeds as follow: First, seg-

mentation is leveraged to identify planes in the range data

(Sec. IV-A). Next, transformation hypotheses are generated

by random plane associations (Sec. IV-B). The best ones

are refined and verified (Sec. IV-C). A final non-maxima

suppression step yields all feasible solutions (Sec. IV-D).

A. Segmentation

Segmentation aims at finding contiguous regions (or seg-

ments) Pj
r = {(x, y, z)} ⊆ Pr in the range data that

represent a plane and could potentially correspond to a

checkerboard mounting. Note that there might be several

checkerboards sticking to the same wall.

As a preprocessing step, we calculate normal vectors ni
r ∈

R
3 for each point pi

r ∈ Pr by principal component analysis

on the K nearest neighbors NK,Pr
(pi

r). Segmentation is

carried out by greedily growing regions from random seed



(a) Input camera image

(b) Input range data and calibration result

Fig. 4. Calibration example. Camera with Velodyne HDL-64E.

points pj
r ∈ Pr, each generating the corresponding set Pj

r .

A point pi
r is added to the region Pj

r iff it is a neighbor and

its normal vector is similar to the seed’s normal:

∃pm
r ∈ NK,Pr

(pi
r) : p

m
r ∈ P

j
r ∧ ni

r

T
nj
r > τsegment (8)

Each region is grown until it converges, then removed from

Pr, and a new seed is selected until no more points are

left in Pr. A final filtering step removes segments which are

either significantly smaller than a checkerboard or not planar

enough.

Note that the above algorithm is nondeterministic: Seed

points are chosen randomly and each region-expansion is

dependent on the seed. Experiments show that the outcome

is nevertheless very stable. Compared to using local decisions

this can guarantee that resulting segments are planar.

B. Global Registration

Given a set of planar point clouds {Pj
r} and {Pj

c} from the

range sensor and camera respectively, this section generates a

set of initial transformations G = {θi}. Therefore, each point

cloud region Pj
c/l is transformed into a disc-shaped surface

s
j
c/l = (pj

c/l,n
j
c/l) with center p

j
c/l and normal n

j
c/l using

principal component analysis. Next, we repeatedly select and

associate three surfaces from both sets in a random manner,

calculate the transformation, and verify it using a distance

measure. Algorithm 1 lists these steps in detail.

In line 4 of the algorithm, three surfaces are selected

randomly from the checkerboards. A surface triple (sac , s
b
c, s

c
c)

thereby has the following probability of being selected:

p(sac , s
b
c, s

c
c) =

1

Z
exp(−na

c
T
nb
c − na

c
T
nc
c − nb

c

T
nc
c) (9)

with Z being a normalizing constant. Intuitively, a surface

triple is selected with higher probability if normals point into

different directions. The probabilites of all possible combi-

nations are computed in advance. Tractability is guaranteed

by the limited number of checkerboards present in the scene.

Algorithm 1 Global registration

1: GenerateTransformations({sjc}, {s
j
r},Pr):

2: G ← {}; S ← {};
3: while not enough(G) do

4: (sac , s
b
c, s

c
c) ← randomselect({sjc})

5: (sar , s
b
r, s

c
r) ← randomselect({sjr})

6: θ ← minimize(sac , s
b
c, s

c
c, s

a
r , s

b
r, s

c
r)

7: s ← score(sac , s
b
c, s

c
c,θ,Pr)

8: G, S ← selectbest(G ∪ θ, S ∪ s)

9: end while

10: return G

On the contrary, random selection in line 5 is for each

s
a/b/c
r independent with a uniform probability distribution

over {sjr}.

The transformation θ is computed (line 6) by aligning the

selected surfaces. We first estimate the rotation matrix R,

which maximally aligns all normal vectors

R = argmax
R′

∑

i∈{a,b,c}

ni
r

T
R′ ni

c = VUT (10)

using the singular value decomposition (SVD) of the covari-

ance matrix
∑

i n
i
cn

i
r
T

= UΣVT . Next, we estimate the

translation t by minimizing point-to-plane distances

t = argmin
t′

∑

i∈{a,b,c}

((R · pi
c + t′ − pi

r)
Tni

r)
2 (11)

in closed form using least squares. Each transformation is

scored (line 7) by

s = −
∑

i∈{a,b,c}

||p̃i
c −N1,Pr

(p̃i
c)||, p̃

i
c = R · pi

c + t (12)

which determines the distance from the transformed checker-

board centers to the nearest neighbors in Pr. We return all

solutions for which the score exceeds τscore ·max({s}). The

algorithm terminates if either all possible combinations have

been processed or enough good transformations have been

found (|G| > τcomb).

C. Fine Registration

In the previous section, the initial transformation set G has

been calculated from point clouds {Pj
r}, {P

j
c} based on their

centroids and normal vectors solely. Since this is very fast

but less accurate, all transformations θ ∈ G are refined by

gradient descent using the following error function:

E(θ) =
∑

pi
c
∈Pc

||p̃i
c −N1,Pr

(p̃i
c)||

2, p̃i
c = R · pi

c + t (13)

This minimizes the sum of point-to-point distances to closest

neighbors, which can be solved with the well-known iterative

closest points algorithm [25]. This results in a set of finely

registered transformations F .



D. Solution Selection

The transformation set F might contain several transfor-

mations that are very similar. Hence, we employ non-maxima

suppression in order to suppress similar transformations in a

local neighborhood based on their energy (13).

Under typical conditions, we retain exactly one solution

after this process. If not, there exist ambiguities that result

from the constellation of the checkerboards, i.e. orthogonality

as in Fig. 6. In this case, an automatic view is rendered for

each transformation and the final selection is left to the user.

V. EXPERIMENTS

To evaluate our approach, we collected a database of 10
different calibration settings with multiple shots each, as

listed in Table I. Calibration settings differ by baseline, focal

lengths and range sensors employed. For each shot, we varied

the position, orientation and number of calibration targets.

To make our dataset more representative, we additionally

collected 16 random calibration images from the internet,

which are only used to evaluate corner detection. In total, we

used 126 camera images and 55 range measurements in our

experiments. Despite the fact that the proposed framework

extends to an arbitrary number of sensors, we restrict our

quantitative evaluation to setups involving two cameras and

a single range sensor for clarity of illustration, as illustrated

in Fig. 1. As parameters, we empirically picked nnms = 3,

τnms = τcorner = 0.02, τmatch = 0.1, τsegment = 0.9,

τscore = 1.5 and τcomb = 25 and keep them fixed throughout

all experiments. To obtain a modest level of scale invariance

and robustness with respect to blur, we detect corners using

4 × 4, 8 × 8, and 12 × 12 pixel windows in Sec. III-

A and take the maximum of the three scores. Our C++

implementation achieves running times of less than one

minute per calibration scenario, where most time is spent

in the camera-to-range point cloud optimization procedures.

A. Corner Detection and Checkerboard Matching

We first evaluate the ability of our method to correctly

locate checkerboard corners in all 126 test images, for which

we annotated all checkerboard corners manually. We com-

pare our approach to several competitive baseline methods:

Harris corners [8] using the Shi-Tomasi criterium [17], a

reimplementation of the method of Ha et al. [9] and the

detector of Kassir et al. [4]. Note that a fair comparison to the

more noise sensitive OpenCV detector [2] and its derivates

(Rufli et al. [7]) is not possible due to the fact that they

directly return a single checkerboard per image.

Fig. 5 (left) shows the precision-recall plot obtained by

varying the detection threshold τ for each of the methods. For

Ha et al. [9] we varied the relative number of pixels required

to classify a region as dark or bright while employing a very

conservative Harris threshold. Kassir et al. [4] has been run

using the code and parameters proposed by the authors.

Note that our method significantly outperforms all base-

lines, especially in terms of recall. The recall of Ha et al.

[9] and Kassir et al. [4] is bound by the (multi-scale) Harris

corner detector, which serves as an input to those methods.
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Fig. 5. Left: Precision-recall curves for different corner detection methods.
Right: Close-up for the range {precision, recall} ∈ [0.9...1.0]. Bottom:

Corner reprojection errors of our method after fitting the model parameters.

Qualitative results of our detector are illustrated in Fig. 8

and at www.cvlibs.net.

B. Camera-to-Camera Calibration

In this section we evaluate the camera-to-camera calibra-

tion accuracy by comparing the estimated baselines and focal

lengths to ground truth in all 10 calibration settings. On

average, we obtain a corner reprojection error of 0.18 pixels

indicating high sub-pixel accuracies and a good model fit.

This is also illustrated by the Poisson distribution of the

reprojection errors shown in Fig. 5 (right). Further results

are depicted in Table I: Here, the fifth and eighth column

are the ground truth focal length and baseline, followed by

the mean and standard deviation of the estimated values

respectively. In general, the errors of our fully automatic

calibration system are small. The largest ones occur for

setting 7 and 8. This can be explained as those are the

outdoor setups, which are more difficult since fewer corners

have been matched as a consequence of cast shadows and

difficult lighting conditions. Also note that the provided

ground truth itself is subject to slight measurement errors,

as the values have been measured manually or simply have

been read from the objective lens.

C. Camera-to-Range Calibration

Assuming a precise camera-calibration, this section eval-

uates the robustness of camera-to-range calibration. Since

range sensors are independent from lighting conditions and

the proposed approach does not assume any initially given

parameters, the only two factors of influence are the constel-

lation of the checkerboards and the noise within the range

data. The former is covered by the collected dataset (see

Table I) that contains a varying number of checkerboards

in different constellations. For the latter, we added Gaussian

noise N (0, σ2I3) to the point cloud Pr for varying values of

σ and carry out calibration. The final result R, t is compared

against ground truth Rg, tg , which was determined with the



(a) Input data: camera image and range image from the Kinect sensor

(b) Camera-to-Range calibration result: Three solutions were detected,
automatically rendered images help selecting the appropriate solution.

Fig. 6. Calibration example. Ambiguities are automatically detected.

fine registration (Sec. IV-C) on the original point cloud in a

supervised way. Errors are given independently for rotation

and translation

et = ||t− tg|| (14)

er = ∠(R−1Rg) (15)

where er is the smallest rotation angle around a rotation

axis that represents the rotation difference. This process is

repeated 20 times for each setting, and the statistics over et
and er are gathered for the Velodyne and the Kinect sensor

independently. The results, depicted in Fig. 7, indicate that

the approach is sufficiently robust to noise, but highly depen-

dent on the calibration setting: Only configurations where the

checkerboards constrain the problem sufficiently well lead to

low errors. This is the case when the checkerboards cover

most parts of the image and they are presented at various

distances and orientations. The feasible higher noise level for

the Velodyne sensor in comparison with the Kinect sensor

is thereby due to sparser range data and roughly five times

more distant checkerboards.

VI. CONCLUSIONS

We have proposed a toolbox for automatic camera and

range sensor calibration and shown its effectiveness under

various conditions. The main limiting assumption of our

approach is a common field of view of the camera and

range sensors. While this remains a useful scenario for

applications such as generating stereo or scene flow ground

truth, augmenting images with depth values or colorizing a

point cloud, we believe that extending our method to handle

partly overlapping fields of view will further increase the

range of applications.
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