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Figure 1: We automatically determine 3 orthogonal vanishing points, con-

struct vehicle bounding boxes (left), and automatically determine the cam-

era scale by knowing the statistics of vehicle dimensions. This allows us

to measure dimensions and speed (right) and analyze the traffic scene.

This paper proposes a method for fully automatic calibration of traffic

surveillance cameras. Our method allows for calibration of the camera

– including scale – without any user input, only from several minutes of

input surveillance video. The targeted applications include speed mea-

surement, measurement of vehicle dimensions, vehicle classification, etc.

The first step of our approach is camera calibration by determining

three vanishing points defining the stream of vehicles (Fig. 2, [3]). The

second step is construction of 3D bounding boxes of vehicles (Fig. 3) and

their measurement up to scale. In the third step, we use the dimensions of

the 3D bounding boxes for calibration of the scene scale (Fig. 4).

Figure 2: (left) Tracked points used for estimation of the 1st VP. Points

exhibiting a significant movement (green) are accumulated. (right) Ac-

cumulation of the 2nd vanishing point. Only edges excluding the vertical

ones and those with their direction towards the first VP (green) are accu-

mulated to the diamond space.

Our method for VP detection uses Hough transform based on paral-

lel coordinates [2], which maps the projective plane into a finite space

referred to as the diamond space by a piecewise linear mapping of lines.
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Figure 3: Construction of vehicle’s 3D bounding box. From left to right:

tangent lines and their relevant intersections A,B,C; derived lines and

their intersections E,D,F ; derived lines and intersection H; constructed

bounding box.

The next step of our approach is construction of 3D bounding boxes

of the observed vehicles (Fig. 3). We assume that the vehicle silhouettes

can be extracted by background modeling and foreground detection and

that the vehicles of interest are moving from/towards the first vanishing

point. The 3D bounding box is constructed using tangent lines from van-

ishing points to the blob’s boundary.

Having the bounding box projection, it is directly possible to calculate

the 3D bounding box dimensions (and position in the scene) up to precise

scale. By fitting the statistics of known dimensions and the measured data

from the traffic, we obtain the scale of the scene (Fig. 4).

Camera orientation together with a know distance enables for measur-

ing of vehicle speed/size or distances in the scene. We measured several
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Figure 4: Calculation of scene scale. (left) Median (green bar) for each

dimension is found in the measured data. (middle) Scales are derived

separately based on known median car size and the final scale is derived

as the minimum from these three scales. (right) Examples of relative size

of the vehicles (yellow) and real dimensions in meters after scaling.

distances on the road plane and evaluated the error in measurements by

our approach. Similar evaluation was provided by Zhang [5], who report

average error of measurement “less then 10%”. Our average error is 1.9%

with worst case 5.6%, (Tab. 1).

dist 1.5 m 3 m 3.5 m 5.3 m 6 m all

# 85 32 15 16 15 163

mean (%) 1.8 1.7 2.0 2.8 1.5 1.9
worst (%) 3.6 3.9 5.5 5.6 3.3 5.6

Table 1: Percentage error of absolute distance measurements. The error is

evaluated as |lm − lgt |/lgt ∗100%, where lgt is the ground truth value and

lm is the distance measured by the presented algorithm. For each distance

we evaluate the average and worst error. The numbers in the row labeled

‘#’ are the number of measurements of the given length (from 5 videos).

When measuring the vehicle speed (Tab. 2), we take into account one

corner of the bounding box which lies directly on the road). Vehicles

in the video are tracked and their velocity is evaluated over the whole

straight part of the track. The average speed of the vehicles was 75 km
h

and therefore 2% error causes ±1.5 km
h deviation. A similar evaluation

was provided by Dailey [1] who used distribution of car lengths for scale

calculation and reached average deviation 6.4 km
h or by Grammatikopou-

los [4] whose algorithm has accuracy ±3 km
h but requires manual distance

measurements to obtain the scale.

a (5) b (3) c (5) d (5) e (5) f (5) all (28)

mean (%) 2.39 2.90 1.49 1.65 1.31 2.58 1.99

worst (%) 3.47 3.63 3.18 3.77 2.40 4.26 4.26

Table 2: Percentage error in speed measurement. For obtaining the ground

truth values, we drove cars with cruise control and get the speed from

GPS. The error is evaluated as |sm − sgt |/sgt ∗ 100%, where sgt is speed

from GPS and sm is speed calculated by presented algorithm. The number

in parentheses stands for the number of evaluated measurements for given

video.
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