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Abs t r ac t .  We describe progress in completely automatically recovering 

3D scene structure together with 3D camera positions from a sequence of 

images acquired by an unknown camera undergoing unknown movement. 

The main departure from previous structure from motion strategies is 

that processing is not  sequential. Instead a hierarchical approach is em- 

ployed building from image triplets and associated trifocal tensors. This 

is advantageous both in obtaining correspondences and also in optimally 

distributing error over the sequence. 

The major step forward is that closed sequences can now be dealt with 

easily. That is, sequences where part of a scene is revisited at a later stage 

in the sequence. Such sequences contain additional constraints, compared 

to open sequences, from which the reconstruction can now benefit. 

The computed cameras and structure are the backbone of a system to 

build texture mapped graphical models directly from image sequences. 

1 I n t r o d u c t i o n  

The goal of this work is to obtain camera projection matrices and 3D struc- 

ture from long sequences of uncalibrated images. Once obtained the cameras 

and structure are the basis for building 3D graphical models directly from im- 

ages. This competence is also required for many other structure-from-motion 

applications, for example ego-motion determination. 

There are two main aspects. The first is establishing corresponding image 

tokens (corners here) over all the images. This problem is exasperated because 

a corner feature will generally not appear  in all of the images, and often will 

be missing from consecutive images. Sequential marchers have proved the most  

successful [1, 2, 3, 4, 13, 26, 27, 33]. 

The second aspect is distributing camera and structure "error" in an optimal  

manner  over all the images. Optimal  here is defined as minimizing the repro- 

jection error over the sequence. In the case of affine cameras (e.g. weak per- 

spective) the factorization method of Tomasi and Kanade [26] is optimal  [18]. In 

the case of general perspective (which is the only case considered from here on) 

factorization-like methods have been developed [9, 22, 25] but these minimize 

an algebraic error ra ther  than reprojection error. Furthermore, all factorization 

methods are limited to features for which there are correspondences in every 
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Fig. 1. Example  sequences: Dinosaur on turntable (36 frames); Castle, hand-held 
camera (25 frames); Basement, camera on AGV (12 frames). 

image, a problem that  is addressed in [10]. Bundle adjustment [6, 15] involves 

varying the structure and cameras in order to minimize reprojection error. This 

is optimal, and is not hindered by missing correspondences. However, bundle 

adjustment does not have a direct solution (such as the SVD solution in factor- 

ization) and involves a non-linear optimization which requires a good starting 

point. A sub-optimal alternative to bundle adjustment is a recursive (Kalman 

like) filter in sequential processing [1, 3, 4, 14]. However a poor two view or three 

view structure initialization severely affects the accuracy of subsequent camera 

and structure recovery for sequential systems. The problem of distributing error 

over many measurements of a 3D scene is a recurring one in computer vision. 

Ikeuchi [21] dealt with it for range images, and Porrill [17] for a calibrated stereo 

head. 

The starting point for the work described here is the competence in com- 

puting multiple view relations for consecutive frames of a sequence - -  the fun- 

damental matrix F for image pairs and trifocal tensor [7, 20, 23] T for image 

triplets can be computed well. Their computation is automatic and reliable, 

and the estimated tensor is extremely accurate. The key idea here is to always 

build on this competence. As will be demonstrated in the sequel, building on 

this strength allows the detection and avoidance of many of the problems that  

plague both sequential matching and the initialization of bundle adjustment. 

The building block used is an image triplet. A triplet consists of three ele- 

ments: image corner correspondences between the three views; the trifocal tensor 

for the triplet; and the 3D structure in an arbitrary projective frame defined by 

three camera matrices consistent with the trifocal tensor. This basic unit is op- 

timal in the sense that  the projection matrices and 3D structure are refined 

by bundle adjustment. Its computation is described in section 2. Using triplets 

as the building block confers a number of important  advantages: the strong 

geometric constraint means that  very few false corner correspondences are en- 

countered, line matches can also be included, and the problem of critical surfaces 

is reduced [12]. 
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Fig. 2. Overv iew of the  problem.  A rigid object is observed by unknown cameras. 

Camera positions and the structure of the object axe computed automatically using 

image triplets as the basic building block. The triplets/trifocal tensors are registered 

into sub-sequences. 

To proceed from triplets to a complete description of a sequence it is necessary 

to register all the triplets into the same coordinate frame. One possible s t rategy 

is to register triplets directly and thence build up common 3D structure and con- 

sistent camera matrices for all views. It  will be shown tha t  there are significant 

advantages in instead using a hierarchical approach where triplets are registered 

into sub-sequences, (figure 2), followed by registering sub-sequences into the en- 

tire sequence. The overall process is summarised in figure 3. Of course, if the 

sub-sequence is the entire sequence then triplets are registered directly. Similar 

approaches to ours have been developed by Laveau [11] and Sturm [24]. 

1. Optimally estimate trifocal tensors T for all consecutive image triplets. 

2. Compute structure points {Xi} and camera positions {P1,P2,P3} for each triplet. 

3. Register triplets into consistent sub-sequcnces using 3-space homographies H. 

4. Bundle adjust sub-sequences. 

5. Optional hierarchical registration of sub-sequences into longer sub-sequences. 

6. Register sub-sequences, again using homgraphies, to obtain cameras and structure 

for the complete sequence. 

7. Bundle adjust the cameras and 3D structure for the complete sequence. 

Fig. 3. A lgor i thm overview: Hierarchically compute correspondences, cameras and 

3D structure over a sequence. 

The advantages conferred by proceeding in this hierarchical fashion, as op- 

posed to a sequential approach, are five fold, and are the main contributions 



314 

of this paper. First, erroneous processing in particular sub-sequences can be 

dealt with locally before the frames are combined; second, the dependency on a 

good estimate from the early frames of the sequence is reduced; third, the overall 

process can sometimes be more computationally efficient; fourth, the reconstruc- 

tion after bundle adjustment is more accurate because a closer starting point is 

provided; finally, closed sequences can be processed easily in this framework. 

Registration of triplets and sub-sequences is achieved by computing the ho- 

mography of 3-space which results in the best overlap (where "best" will be 

defined later) of the two projective structures. Section 3 describes and compares 

a number of strategies for determining this homography, and the registration 

of triplets. Section 4 describes the registration of sub-sequences. Finally, ap- 

pendix A overviews the bundle adjustment algorithm which is used at a number 

of stages throughout this work. 

In order to be able to visually assess the reconstruction quality all cameras 

and 3D structure are Euclidean corrected. The auto-calibration method for this 

Euclidean correction proceeds from the computed camera matrices, and is based 

on the dual of the absolute conic parametrization of Triggs [31] together with 

the algorithm of Pollefeys et al. [16]. 

2 E s t i m a t i o n  o f  7 -  f o r  i m a g e  t r i p l e t s  

The foundation of the methods described in this paper is the ability to automat- 

ically and reliably compute an accurate trifocal tensor for consecutive frames 

of a sequence. Trifocal tensor computation has greatly improved over the com- 

putational method described in [2]. This improvement is not due solely to one 

factor, but to a combination of many incremental changes. As T estimation is 

not the main contribution of this paper the algorithm will not be described in 

detail, but the important incremental improvements are summarised. 

Briefly, putative point matches (Harris corners[5]) are first obtained for the 

consecutive image pairs, one/two and two/three, by simultaneously computing 

epipolar geometry and matches consistent with this estimated geometry using 

a robust estimation algorithm. This is now fairly standard [2, 28, 32]. From 

these seed matches the trifocal tensor is robustly fitted, and new matches are 

found (guided matching) which are consistent with the fitted T. Fitting and 

guided matching are repeated until the number of matched points stabilises. 

The improvements over [2] include: 

1. Parametrizing the trifocal tensor such that  it obeys all the constraints between 

the tensor elements [30]. 

2. Maximum-Likelihood Estimation (MLE) of T via bundle adjustment (appendix 

A). The use of a cost function which corresponds to reprojection error [30] 

rather than transfer error is one of the most important improvements, as 

the transfer error tends to accept points which are large outliers to the MLE 

distance and vice-versa. 
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3. Point pairs are transferred for guided matching by first Har t ley-Sturm [8] 

correcting the pair. This ensures that  the guided matching stage does not 

lose inliers. 

4. Point triplets are accepted during guided matching based on reprojection 

error ra ther  than transfer distance. This is also an important  modification: 

if the guided matching stage uses a different distance measure to the fitting 

stage, the number  of matches oscillates with each iteration and heuristic 

termination criteria are needed to decide when to stop the procedure. When 

the same error is used for both  stages, the number of matches increases 

monotonically until convergence. 

5. The RANSAC procedure uses the adaptive termination criterion detailed 

in [29, p. 286] which allows safe early termination for simple scenes without 

prejudicing more complex ones. 

Together, these modifications result in more accurate tensors with more in- 

liers and fewer false matches. Although some of the modifications appear  ex- 

pensive, the improvement in convergence properties means that  the total  t ime 

to est imate T is substantially reduced. 

3 F r o m  t r i p l e t s  t o  s u b - s e q u e n c e s  

T123 ' T234 T34--7 T,2--7~J~$~ ~ 

Fig. 4. Reg i s t r a t ion  of tr ifocal tensors  into consis tent  p ro jec t ive  frames.  Ho- 

mographies of /)3 axe computed which place tensors 7234 and T34~ in the frame of 

~ 1 2 3  �9 

This section describes the registration of image triplets to form sub-sequences 

(see figure 4). To be specific the case of registering two triplets will be considered, 

but the issues that  arise are common to all the registration problems in the 

following sections. 

We are given a pair of image triplets, each with an estimated trifocal tensor 

and a set of 3D points corresponding to image points in all views of the triplet. 

I t  is assumed that  some of the 3D points are common to both sets. The goal is 

to obtain a common set of 3D points and a camera for each view, such tha t  the 

reprojection error is minimized. 

In more detail we have a set of 3D points represented in the two project-  

ive frames provided by the trifocal tensor of each triplet. Suppose a point has 
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coordinates X~ in the first triplet and X~ in the second. If all measurements 

were perfect then there would exist a homography H of 3-space between the two 

projective frames such that  

Pj = - 1  (1)  

= (2)  

, 
where P j,  Pj are the corresponding camera matrices for images common to the 

triplets. Of course, with real image sequences the relationship will not be obeyed 

exactly, and an error-minimizing estimate must be found. 

Registration will always proceed in two steps: first, a homography of 3 space 

is computed which approximately registers the triplets; second, an optimal re- 

gistration is obtained by bundle adjustment (see appendix A). The different 

strategies are targetted on how best to obtain the approximate homography. 

Zisserman et al. [34] and Laveau [11, w describe two ways in which this 

homography may be obtained. The first is to minimize a "distance" between the 

3D points: 

min ~D = E D2(X~' HX~) (3) 
H 

i 

where the distance D(., .) is either algebraic distance 

3 

DA(X,Y) = E(XkY4 - Y k X 4 )  2 (4) 

k=l  

or Euclidean distance 

3 X 
DE(X,Y)  = E ( ~ 4  k Yk)2y4 (5) 

k=l  

which is only strictly meaningful if the 3D projective frame has been corrected to 

metric. The second estimator minimizes reprojection error to the original corners 

from which the 3D points were triangulated 

mined = E d2 (PJ HX'i' xij) + d 2 (P} H-1Xi, xij) (6) 
H 

i j  

where d(x, y) is a Euclidean image distance between the inhomogeneous points 

corresponding to x and y. 

3.1 T h e  degree  of  over lap  a n d  es t ab l i sh ing  c o r r e s p o n d e n c e s  

Two triplets can share zero, one or two images so that  after registration the 

sub-sequences consist of six, five or four images respectively. We start with the 

correspondence problem when there is no overlap. Suppose, I,  the last image 

of triplet one is the neighbour of I ' ,  the first image of triplet two. Then corres- 

pondences can be computed by simultaneously estimating F and corner matches 
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consistent with F between images I and I ' .  The corners in I will index some 

points in the 3D structure {Xi} of triplet one, and corners in I '  will index some 

points in {X~}. Thus the corner correspondence provides a partial correspond- 

ence between the two 3D point sets {Xi} and {X~}. 

..'i..:" 

:" 

Fig. 5. Regis te red  subsequence.  Registered cameras and point structure for a 
7-frame sub-sequence of the Dinosaur sequence. The cameras (numbered) are repres- 
ented by their image planes and principal axes. 

A much simpler solution has been suggested by Laveau [11]. Suppose there 

is an overlap of one view. Then image I is image I ' .  Consequently corner points 

in I / I '  directly supply partial correspondences between the two 3D point sets 

{Xi} and {X~}. The correspondence is only partial because a 3D point is only 

instantiated in a triplet if there are corner correspondences in all 3 images. So 

a particular corner might have an associated 3D point in one triplet but  not 

the other. An analogous simplification in establishing correspondences applies if 

there is a two view overlap. 

3.2 Obtaining the in i t i a l  h o m o g r a p h y  

We now describe methods of computing H which allow direct solutions (such 

as SVD). These solutions generally minimize an algebraic error with no direct 

geometric or statistical meaning. Furthermore, the solutions are not covariant 

with the choice of projective frame. However these methods are necessary for 

initialization of the bundle adjustment that  follows, and of interest in themselves. 

In some cases the direct solution can be further refined by a nonlinear stage (to 

use reprojection error rather than algebraic distance for example) before the 

final bundle adjustment. 

Method I: Direct 3D point registration The 3D algebraic distance (4) is readily 

minimized using linear algebraic methods. The Euclidean distance (5) can be 

solved in closed form when H is limited to similarity transformations, but  re- 

quires a nonlinear minimization when the homography is allowed to be a general 

projectivity. This method is applicable for any number of overlapping views, 

including zero. 
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Method II: Enforcing camera consistency: one-view overlap Since a homography 

has 15 degrees of freedom and a camera matr ix  only 11, two cameras P and P~ 

can be exactly registered, by (1). This constrains all but four of the parameters  

of H. The determination of the remaining parameters  will now be described. 

We seek a homography n which minimizes ~D : ~ i  D2( x i '  nX~) subject to 

the constraint PH = P~. The solution is a member  of the 4-parameter  family of 

homographies: 

H(v) = P+P~ + hv  T 

where h is the nullvector and P+ the pseudoinverse of P. When D is the algebraic 

distance, a direct solution for v is obtained, leading to a system of 3 equations 

for v per 3D point: 

bX~Tv = c 

where the 3-vectors b and c are defined by bk -~ hkX4 - h 4 X k ,  ck = X k a 4 -  X4ak 

and a = P+P~X ~. When D is Euclidean distance or reprojection error, a nonlinear 

minimization over v is required. 

Method III: Maximizing camera consistency: two-view overlap In this case, there 

is a pair of overlapping projection matrices, say P1, P2 which overlap with P~, P~. 

Each overlapping matr ix  P~, P~ provides 11 linear constraints on the elements of 

H and therefore two or more overlapping views are sufficient to over determine 

H in (1), without recourse to the 3D point information. In general, this process 

is followed by a minimization of reprojection error before proceeding to bundle 

adjustment.  

3.3 C o m p a r i s o n  o f  t r i p l e t  r e g i s t r a t i o n  m e t h o d s  

In this section we compare registration methods in terms of accuracy, reliability 

and computat ional  cost. First the one-view and two-view methods are compared 

and then experimental results are provided. 

O n e - v i e w  o v e r l a p  

Update  based on single-view overlap is fast because trifocal tensors are required 

only for triplets which begin every second image. Conversely, however, it is not 

clear how one might use the alternate triplets. For example, having combined 

triplets 123, 345 and 567, how can use be made of triplets 234 and 456? On the 

other hand, the one-view version requires tha t  3D point matches be available, 

which implies tha t  some feature tracking must be maintained for five images. 

Although this imposes stringent robustness requirements on the trifocal tensor 

computat ion,  it has not proved a problem in the hundreds of images on which 

the algorithm has been tested. Typically 400 corners are extracted from each 

image which yields on average 50 to 100 correspondences over the five views. 

On the positive side, such tracks correspond to the most reliably located and 

detected 3D points, so tha t  registration accuracy is maintained. Of course, the 
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A b b r e v i a t i o n  Over l ap  A l g o r i t h m  

lin 1 view II, linear algebraic 

linc 1 view "fin", conditioned 

euc 1 view II, nonlinear 3D distance 

eucc i view "euc", conditioned 

2view 2 views III + Reprojection error 

T a b l e  1. C o m p a r i s o n  of t r i p l e t  r e g i s t r a t i o n  a lgor i thms .  The first three tables 

are for subsequences 0-6~ 6-12 and 12-18 of the Dinosaur sequence. The others are for 

the first seven frames of the Basement and Castle sequences. The initial and final error 

columns are the (average) reprojection errors in pixels before and after bundle adjust- 

ment. The iterations column shows the number of bundle adjustment steps required 

for each algorithm. 
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final bundle adjustment uses all correspondences (not just the 5-view ones) to 

obtain greater accuracy. 

If using Method I, at least five 3D point correspondences are required to 

constrain H, and many more are needed to obtain a reliable least squares estim- 

ate. Using Method II, just two correspondences are required, meaning that  the 

estimate is more reliable, 50 corresponding points providing a reasonable basis 

for the least squares computation. 

Two-view overlap 

With two-view overlap 3D points are not required, at least for the linear al- 

gorithm. Therefore there is no dependence on the distance metric in 3D. However, 

it is again difficult both to interpret the measure being minimized in terms 

of maximum likelihood estimation and indeed to define a ML estimator for H 

without recourse to the 3D point information. The two-view overlap has the ad- 

vantage that shorter tracks are needed--four views rather than five--and that 

any false inliers to the trifocal tensors may be identified because their tracks are 

inconsistent. For example, a 3D point in the triplet (I -2-3) may be matched to 

image corners numbered (100, 200,300), say, in each frame. If the corner match 

(200,p, q) appears in the second triplet and p ~ 300, then one of the two triplet 

matches is incorrect. In the current implementation, the absence of further in- 

formation means that both should be rejected. Finally, two view overlap means 

that all tensors in the sequence are used, which can lead to an improvement in 

accuracy at the expense of computational effort. 

E x p e r i m e n t a l  r e su l t s  

Table 1 compares the triplet registration strategies on a number of sequences. 

Each strategy was used to sequentially register seven images, and the RMS re- 

projection error before and after bundle adjustment was recorded. Seven images 

were registered in order to reflect the use to which they will be put in the fol- 

lowing sections. An example of the registered views and structure is shown in 

figure 5. 

The algorithms were compared using the direct linear algorithms, in both 

preconditioned versions (for which the 3D points were centered on the unit cube 

prior to computation) and non-preconditioned versions. Execution time for all 

algorithms is very similar: about one tenth of a second for 200 points on a Sun 

Ultra 170. Non-linear minimization is carried out using the Levenberg-Marquardt 

algorithm. 

The table shows that  the one-view algorithms all perform similarly, with 

the linear algorithm the cheapest (in terms of the number of bundle-adjustment 

steps subsequently needed) on high-quality laboratory sequences. However, the 

best all-round choice is the conditioned nonlinear algorithm. The performance 

of the two-view algorithm is more variable than the single view techniques, but  

in some cases it can lead to significantly better  results. In the light of this, the 

recommended strategy is to use both approaches and select whichever yields 
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lower reprojection error for each sub-sequence. If speed is more impor tant  than  

reliability, the single-view linear approach is indicated. 

4 F r o m  s u b - s e q u e n c e s  t o  s e q u e n c e s  

The previous section describes and compares methods for the registration of 

triplets. Here we describe the subsequence pasting. Clearly the triplet regis- 

t ra t ion approaches extend perfectly naturally to the registration of longer sub- 

sequences, being defined purely in terms of the camera projection matrices and 

3D points. This can be extended to the entire input sequence, giving an algorithm 

similar in spirit to the earlier purely sequential approaches. On occasion however, 

a more hierarchical approach can yield superior results. One such situation oc- 

curs when the sequence is closed, visiting the same points of the object at the 

beginning and end of (or at any other times during) the sequence. Even with an 

open sequence, the hierarchical approach confers advantages in terms of speed 

and accuracy. 

4.1 C l o s e d  s e q u e n c e s  

In the case of a closed sequence, for example if the camera completely circum- 

navigates an object, there is a very tight constraint available - -  if there is a 

single overlapping frame then the camera at the head of the sequence coincides 

with the camera at the tail. The extent to which the computed cameras differ is 

a clear measure of the success of the camera recovery. 

~ r t h e r m o r e ,  by explicitly enforcing the constraint that  the cameras are the 

same, a significant improvement in accuracy is obtained. Although bundle ad- 

jus tment  should theoretically be able to distribute the error in such a way as to 

close the sequence, the point from which it starts is often sufficiently far from 

the true solution that  the bundle adjustment converges to a local minimum. 

Using the sub-sequence registration paradigm, we can solve this problem 

easily. Conceptually we break the full sequence into sub-sequences which are 

then "hinged" together using homographies. Each subsequence is then allowed 

to deform under a homography in order to minimize the 3D error. Because 

the entire system can be transformed by a homography without changing the 

relative positioning of the sub-sequences, one sub-sequence is chosen as a basis 

and remains unchanged through the minimization. Taking as an example the 

case of four  sub-sequences numbered 1 through 4, with sub-sequence 1 as the 

basis, the error to be minimized is 

D2(X1, H2X2)+~-~ D2 (H2X2, H3X3)+~ D2 (H3X3, H4X4) +~-~ D2 (It4X4, Xl) 

where the sums are taken over the overlapping subsets of the 3D points in each 

frame. With  this error function the choice of basis sequence will affect the result. 

If  instead reprojection error is used, the basis is immaterial  as the error function 

is invariant to homographies of space. However an advantage of the 3-space error 
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Fig. 6. Closed sequence before and after imposit ion of  closure constraint.  

The left figure shows a plan view of the cameras for the Dinosaur scene as recovered by 

the hierarchical process. The right figure shows the same cameras after closure. Frames 

0-12 are in exactly the same position in both models. The double cameras at positions 
12 and 24 show where the structure was "hinged". 

distance is that  the camera centres may be included as part of the overlapping 

point sets, which assists the process when the cameras are far from the object 

as they are in the dinosaur sequence. 

Solving the closure problem in this way has the effect of distributing the 

closure constraint over the entire sequence in an approximate--but  computa- 

tionally tractable--manner.  A final bundle adjustment completes the proced- 

ure. Figure 6 illustrates the efficacy of this approach on a sequence taken using 

a rotating turntable. 

4.2 O p e n  s e q u e n c e s  

Although the above technique was described as a solution to the closure problem, 

it is also of use in the case where no constraint is available. By hierarchically 

building sub-sequences using trifocal tensor registration, and then registering 

these sub-sequences together we can improve the speed and accuracy of the 

overall strategy. The m-view bundle adjustment problem is broken down into a 

number of smaller subproblems followed by a final m-view pass. The reason for 

the improvement is that  the final pass generally converges much more quickly 

and to a better minimum if preceded by the hierarchical approach. To give some 

example costs: if the sequence is broken into 3 parts, each of m/3 views, the cost 

to process each part 1 is m2/9, and the cost of processing all subparts is m2/3. If 

1 Although bundle adjustment of many views is dominated by an m 3 cost, the small 

number of views used here means that the overall cost is approximately m 2 
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the final adjustment  is made faster by a factor of more than 1 ~, the hierarchical 

s t ra tegy is faster. Table 2 shows typical results from our implementation: the 

costs are roughly offset, meaning tha t  both  approaches take approximately the 

same time, but  the hierarchical approach achieves a lower reprojection error. 

]l Timings (sec) ]RMS Errors 

Number of views subseq full Total Initial Final 

19 - 285 285 0.638 0.175 

3 x 7 74 222 296 0.332 0.161 

Table  2. Hierarchica l  versus  monol i th ic  processing. Comparison for one example 

sequence. The hieraxchical approach is slightly slower on this short sequence, but is 
more accurate. 

5 Discussion 

We have presented a system for structure and motion recovery which overcomes 

many  of the problems with previous methods. The system builds on the ma- 

tur i ty  and robustness of the estimation algorithm for the trifocal tensor, and 

extends these algorithms to sequence matching in a similarly robust manner.  

In addition, the approach makes it easy to solve some other difficult problems, 

notably employing the extra information provided in a closed sequence. 

Computat ional  complexity is placed on the shoulders of the trifocal tensor 

computat ions,  which are independent of each other. This independence means 

tha t  it is easy to continue processing if one of the triplet computat ions fails. 

Also, the independence of these (very) large-grain processes means tha t  parallel 

computat ion is immediately useful. 

In summary  the range of applicability of the approach is largely tha t  of the 

tradit ional sequential systems, but it is markedly superior in terms of reliability, 

accuracy, ease of use, and possibly speed. Figures 7 and 8 show results of the 

system. 

A Bundle  Adjustment  

A key component  of the system described here is the ability to quickly compute 

max imum likelihood estimates of cameras and structure via bundle adjustment.  

The  description of the process is relatively simple: For m views of n 3D points, we 

wish to est imate projection matrices ^ m {Pi}i=l and 3D points J~j which project  

exactly to image points ~ij as ~ij  = f~i:Kj. The projection matrices and 3D 

points which we seek are those tha t  minimize the image distance between the 
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Fig. 7. Results:  3D point structure for the dinosaur sequence (a). The castle sequence 

(b) is shown in plan view with the estimated cameras. 

Fig. 8. Basement :  Texture mapped planar model built from 11 views of the basement 

sequence. Left: VRML model of the scene with the cameras represented by their image 

planes. Right: a rendering of the scene from a novel viewpoint different from any in 

the sequence. The planar structure was built from 3D lines extracted by the algorithm 

of Schmid [19] using projection matrices computed by our algorithm. 

reprojected point and detected (measured) image points xij for every view in 

which the 3D point appears, i.e. 

m i n c  : E d2(f)ixJ' xij) 
Pi ,xj ij 

where d(x, y) is the Euclidean image distance between the homogeneous points x 

and y. If the image error is Gaussian then bundle adjustment is the MLE. While 

simply expressed, the size of this optimization problem in a typical sequence of 

30 images of 3000 points means that  particular care must be taken to ensure 
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a computationally tractable solution. Following [6], efficient use is made of the 

block structure of the matrices involved, and the sparsity of the problem. 
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