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Abstract

Convolutional neural networks (CNNs) have become increasingly popular in recent

years because of their ability to tackle complex learning problems such as object

detection, and object localization. They are being used for a variety of tasks, such

as tissue abnormalities detection and localization, with an accuracy that comes close

to the level of human predictive performance in medical imaging. The success is

primarily due to the ability of CNNs to extract the discriminant features at multiple

levels of abstraction.

Photoacoustic (PA) imaging is a promising new modality that is gaining signif-

icant clinical potential. The availability of a large dataset of three dimensional PA

images of ex-vivo human prostate and thyroid specimens has facilitated this current

study aimed at evaluating the efficacy of CNN for cancer diagnosis. In PA imaging,

a short pulse of near-infrared laser light is sent into the tissue, but the image is

created by focusing the ultrasound waves that are photoacoustically generated due
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to the absorption of light, thereby mapping the optical absorption in the tissue.

By choosing multiple wavelengths of laser light, multispectral photoacoustic (MPA)

images of the same tissue specimen can be obtained. The objective of this thesis is

to implement deep learning architecture for cancer detection using the MPA image

dataset.

In this study, we built and examined a fully automated deep learning framework

that learns to detect and localize cancer regions in a given specimen entirely from

its MPA image dataset. The dataset for this work consisted of samples with size

ranging from 12 × 45 × 200 pixels to 64 × 64 × 200 pixels at five wavelengths

namely, 760 nm, 800 nm, 850 nm, 930 nm, and 970 nm.

The proposed algorithms first extract features using convolutional kernels and

then detect cancer tissue using the softmax function, the last layer of the network.

The AUC was calculated to evaluate the performance of the cancer tissue detector

with a very promising result. To the best of our knowledge, this is one of the first

examples of the application of deep 3D CNN to a large cancer MPA dataset for the

prostate and thyroid cancer detection.

While previous efforts using the same dataset involved decision making using

mathematically extracted image features, this work demonstrates that this process

can be automated without any significant loss in accuracy. Another major contribu-

tion of this work has been to demonstrate that both prostate and thyroid datasets

can be combined to produce improved results for cancer diagnosis.
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Chapter 1

Introduction and Overview

Siegel et al. [88] reported 595,690 deaths out of 1,685,210 new cases of cancer in

the United States in the year of 2016. 1,980 deaths out of 64,300 reported new

cases of thyroid cancer, and 26,120 deaths out of 180,890 reported new cases of

prostate cancer in the same year [88]. American Cancer Society recommends men

older than 50 years for (prostate) cancer screening [28]. Screening is done with

prostate-specific antigen and digital rectal examination, but both screenings suffer

from low specificity (percentage of actual negatives that are correctly classified) and

sensitivity (percentage of actual positives that are correctly classified) [28, 88].

Early detection and risk assessment play a significant role in successful treat-

ments to improve the survival of patients [28, 69]. Ultrasound (US) imaging is

widely used in cancer tissue [87] screening because of its relative safety, low cost,

noninvasive nature, real-time display [67]. Transrectal ultrasound (TRUS) is a com-

1



CHAPTER 1. INTRODUCTION AND OVERVIEW 2

mon US imaging for prostate cancer detection; however, there are types of cancers

not visible to TRUS [28]. This is because the US has a relatively low contrast,

which is based on the detection of mechanical properties of the tissue [45]. Incorrect

diagnosis of the cancer tissues using US imaging could lead to delayed diagnosis and

treatment [101] because of the low-resolution structural imaging due to the mechan-

ical properties of tissue structure [28]. In addition to the US, magnetic resonance

imaging (MRI) is another imaging for cancer tissue screening; however, it has not

been widely used because of its high cost and slow imaging speed [89]. X-ray com-

puted tomography (CT) offers high tissue penetration depth and excellent spatial

resolution; however, it suffers from low sensitivity for cancer diagnosis [25]. Gonzalez

et al. [25] also reported that X-ray radiation possesses risk of radiation associated

with cancers [45]. Sinha [89] reported that CT has minimal application in cancer

tissue screening. This is because of the risk of increased ionizing radiation expo-

sure [45]. Positron emission tomography (PET) is capable of extracting functional

information such as blood metabolism for cancer tissue detection [70]; however it

suffers from low spatial resolution [45]. Single-photon emission computed tomog-

raphy (SPECT) shares similar physics of imaging technique with PET, and hence,

it also suffers from lower spatial resolution [89]. Currently, the primary medical

imaging modality used for cancer diagnosis are US, CT, MRI, PET, and SPECT.

Although most of these technologies are well established and widely used in practice,

there are problems related to low sensitivity and specificity as in US/CT, radiation

exposure as in CT, and higher cost as in MRI for cancer diagnosis [43].
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Photoacoustic imaging (PAI) is a new medical imaging technique [104] that is

currently making a transition from bench to bedside, both in terms of technology

[104] and clinical applications [28]. PAI offers structural and functional imaging [81]

in numerous medical imaging application areas such as blood vessels imaging [72, 72],

cancer diagnosis [28, 72, 73], brain imaging [112] and is capable of high-resolution

imaging [99]. PAI is based on the photoacoustic(PA) effect, which is a phenomenon

of generating acoustic waves from an object illuminated by a pulsed laser light [104].

PAI exploits the PA effect to combine the strength of optical imaging [77]which is

capable of producing high contrast imaging and ultrasound imaging which is capable

of producing high resolution in deep tissue imaging [47, 77, 103]. PAI is safe due

to its nonionizing radiation properties [104] greatly enhance its clinical practicabil-

ity in the future, and it is also low-cost, which is an advantage over other imaging

techniques like MRI or CT [34]. Hoelen et al. demonstrated that PAI could be

implemented to image blood concentration around tumors [40] and is a key feature

to detect cancer in the early stages of life [28, 110]. MRI or CT is not capable of de-

tecting cancer tissue in the early stage and is capable of detecting cancer tissue when

the diameter grows to 1 cm in size [61]. The PA imaging at the specific wavelength

is capable of generating high contrast PA images of optically active corresponding

chromophore as in figure (1.1) with high spatial resolution [21, 78]. Multiple high

contrast PA images of the optically active chromophores such as oxyhemoglobin

(high in oxygen content), deoxyhemoglobin (low in oxygen content), lipid, and wa-

ter are generated by choosing multiple wavelengths to quantify the concentration of
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the chromophores [23]. These chromophores’ concentration makes the PA imaging

system to image optical biomarker for cancer tissue detection [28, 30, 75, 90]. In

multispectral photoacoustic (MPA) imaging, the large difference in light absorption

coefficient between blood and other tissue constituents enables detection of tissue

angiogenesis associated with rapid tumor growth in early stages [61]. Furthermore,

there is strong evidence of the dependence of the frequency content of the PA sig-

nal with the size of the tumor [47, 91] (see chapter 3, section 3.2). During tissue

pathology, the structural change of a tumor is expected, and hence, we hypothesized

that frequency content would help to detect cancer [47, 91]. The use of the wave-

length and frequency content while imaging a tissue specimen makes PAI is capable

of structural and functional imaging. The PA image acquisition produces robust

and less error-prone coregistered images capable of both structural and functional

imaging compared to current imaging techniques such as MRI with US [3]. This

is because the same ultrasound traducer can be used to record US and PA signals

to generate a US image and PA image, where US and PA imaging modality are re-

sponsible for extracting structural and functional information of the chromophores

respectively. The functional information such as concentrations of the chromophores

and structural information such as the volumetric distribution of chromophore can

be extracted with the use of multispectral (at multiple wavelengths) 3D (at multiple

depths of a tissue specimen) PA imaging for cancer diagnosis [28, 109].

Even though any electromagnetic (EM) wave can generate the PA effects, there

should be a careful choice of the range of EM for practical PAI [45]. The range
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Figure 1.1: The figure shows the pixel intensity distribution of the encircled region
of interest of the PA images taken at two wavelengths. The figure shows that the
PA image is capable of detecting cancer because of the high concentration of the
deoxyhemoglobin at 760 nm compared to the lower concentration of oxyhemoglobin
at 850 nm. Reproduced with permission from [28].

of wavelength chosen for MPA imaging lies in the near-infrared region (NIR) for

deep tissue imaging for two reasons. The first reason is that water is transparent

within the window of the near-infrared region and is the significant content of the

tissue. The second reason is that light suffers less from absorption and scattering

in deep tissue imaging [11, 104]. In the case of the tissue imaging, four variables,

namely deoxyhemoglobin, oxyhemoglobin, lipid, and water, were chosen to explain

the variations and characteristics of malignant and nonmalignant regions [19, 20]. In

this thesis, the five wavelengths from the NIR window, namely 760 nm, 850 nm, 930

nm, 970 nm, and 800 nm, were chosen. The first four wavelengths correspond to the

peak of the absorption spectrum of deoxyhemoglobin, oxyhemoglobin, lipid, and wa-

ter respectively, and the fifth wavelength corresponds to the equal of the absorption
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spectrum of oxyhemoglobin and deoxyhemoglobin. The wavelengths were chosen in

such a way that one variable is decreasing and the other is increasing to analyze

the contribution of the individual chromophores for classification of malignant and

normal region [20]. The choice of five wavelengths for cancer tissue detection was

already proposed and evaluated in the literature [28, 75, 104]. The constituent and

the concentration of the chromophores contain essential information related to a tis-

sue abnormality [89]. The concentrations of deoxyhemoglobin and oxyhemoglobin

provide information about angiogenesis for malignant tissue [91]. Dogra et al. [28]

reported that malignant tumors are generally expected to be more oxygen-deficient

than benign and healthy tissue. Figure (8.1) shows a brighter encircled region corre-

sponds to be more oxygen-deficient (deoxyhemoglobin chromophore activated more

at 760 nm) region than the normal tissue (oxyhemoglobin chromophore activated

less at 850 nm). That confirms the presence of cancer in the given tissue specimen

[28].

With the assumption that change in the tissue structure and size during tissue

pathology, the frequency content of the PA signal is also a significant contributor

to differentiate the malignant and normal tissue with three-dimensional (3D) PA

imaging [89]. The chromophores concentration, and recorded PA frequency content

at the given wavelength depend on tissue properties, and size and structure of chro-

mophore [47, 89, 104] and hence the use of 3D PA (multiple C-scan across the entire

depth of a tissue specimen) PA image at five wavelengths (chromophores’ architec-

tures and properties can be extracted with the use of absorption coefficient and is
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highly dependent on the choice of wavelengths) is useful for cancer tissue diagnosis

[28].

Figure 1.2: PA signal generation: The tissue was shone with short-pulsed laser light
to generate PA signal, and was recorded by the US transducer.

In the PA effect, the tissue is generally irradiated by a short-pulsed laser [104].

When light is locally absorbed, heat is generated, which in turn produces an in-

creased pressure. The increased pressure propagates as an ultrasound wave and

generates a PA wave signal. The Nd: YAG lasers [111], in near-infrared (NIR) win-

dow, have been widely used as the excitation source in PA tissue imaging [102]. The

pulse repetition rate of Nd: YAG lasers are typically low around 10 Hz [104]. Such

lasers generate ten ns pulses with pulse energy in the range of tens of millijoules

(mJ). This energy range falls within the American National Standards Institute

(ANSI) limit [77] and hence is safe for cancer tissue imaging unlike other conven-
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tional CT, PET and SPECT imaging [89]. The cost of PA imaging modality is very

low compared to the other imaging modality [89] that gives a huge plus to the future

for PA imaging [34]. Figure (1.2) shows the schematic of PA signal acquisition.

1.0.1 Outline

The contribution of this thesis is the development of an automated cancer tissue

detector using the entire thyroid and prostate MPA image using deep learning al-

gorithms. The cancer tissue detection technique is different from previous studies

[28, 75, 91], which use pixel-based samples extracted from the encircled region of

interest consisting of normal and malignant pixels and handcrafted features. The

extraction of the encircled region in the PA image requires co-registration of PA im-

age with histopathology slide and photograph image. The process of co-registration

was very labor-intensive and time-consuming. The previous methods [28, 75] were

trained, validated, and evaluated on the pixel-based samples extracted from the

encircled region (figure (1.1)), not on the whole MPA image (see chapter 5). The

co-registration of the MPA image with histopathology slide and photograph image

is still required to extract the encircled region of interest during testing. These

studies still require to provide the ground truth by the pathologist in advance dur-

ing testing. This is because those methods require to extract a pixel-based sample

from the encircled region of interest consisting of cancer and non-cancer region dur-

ing test time. The previous studies are a tool to validating the cancer diagnosis

proposed by the pathologist. Thus these studies still require manual work for the
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detection of cancer during test time [28, 29, 75]. In this thesis, we made cancer

tissue detection fully automated using an entire MPA image. We also implemented

the grad-cam algorithm [84] for the automatic localization of the cancer tissue. To

the best of our knowledge, this is one of the first applications of transfer learning

using inception-resnet-v2 [96], and deep 3D convolutional neural network (CNN) for

automatic cancer tissue detection and localization on the largest available cancer

MPA image dataset.

The major contribution of this study is

• development of an automated cancer tissue feature extractor and detector

using deep 2D/3D CNNs using the whole MPA image with the limited number

of the dataset. This study circumvents the manual labor-intensive and time-

consuming work of the previous studies [28, 29, 75] for the co-registration and

extraction of handcrafted mathematical features.

• implementation of a grad-cam algorithm for an automatic localization of the

cancer tissue region in a given MPA image.

1.1 Current Work: Application of Deep Learning

CNNs are increasingly popular in recent year because of their ability to tackle the

complex learning problems such as object detection and object localization, close to

the human level predictive performance. Recently, CNNs are introduced in medical

image classification [31, 60, 95] and later to image segmentation [10, 24, 71], and
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medical text classification [18, 49, 114] close to human-level predictive performance.

The success is due to the ability of CNNs to extract the discriminant features at

multiple levels of abstraction [54]. A convolutional layer in a CNN can detect certain

local features of input images in all locations. A convolutional layer with k kernels

detects k local features, where each filter has a set of shared weights and is called

a convolutional kernel; the contribution of each kernel can be visualized with a

feature map [56, 64, 117]. The convolutional layers in the CNN are often followed

by the max-pooling layer, which reduces the feature map by selecting the maximum

feature response. This is helpful for the transnational and small rotational invariance

to some extent of an angle [15]. A neuron in the convolutional neural network has

a very limited receptive field with shared weights. Therefore, fully connected layers

are typically used after the convolutional layer. The choice of function in the final

layer is problem specific. In this paper, a softmax function [50], and sigmoid function

[51] were used for cancer tissue detection.

Recently, deep learning algorithms are becoming popular in the PAI domain [82]

for PA image reconstruction [5, 37]. However, machine learning algorithms such

as logistic function [28], two-layer neural network [89] and support vector machine

(SVM) [63, 89] are still a popular choice in medical imaging applications such as

cancer diagnosis. This thesis introduces the three deep learning algorithms to detect

and localize the malignant region using the MPA image dataset [27].

The thesis work is divided into three parts, where the first part describes the

implementation of the transfer learning [86] using inception-resnet-v2 [96] for the



CHAPTER 1. INTRODUCTION AND OVERVIEW 11

thyroid cancer tissue detection using three-channel C-scan MPA images, the second

part describes the implementation of the 3D CNN with seven layers for thyroid 105-

slice C-scan MPA image dataset with higher detection accuracy than the transfer

learning network. The third part describes the implementation of the 3D CNN with

11 layers on the mixture of thyroid and prostate 105-slice C-scan MPA image dataset

with the best detection accuracy compared to the transfer learning and 3D CNN

with seven layers. The third section also describes the implementation of the grad-

cam algorithm for the localization of the cancer tissue using the deeper 3D CNN

automatically using the MPA image.

1.1.1 Automatic Feature Extraction, Detection, Localization of Can-

cer Tissue Using MPA image dataset

In this thesis, we implemented the 2D transfer learning using inception-resnet-v2

[96] and deep 3D CNN with seven layers [51] were implemented for the cancer tissue

detection using the thyroid MPA image dataset and the deep 3D CNN with 11 layers

was implemented with the mixture of thyroid and prostate MPA dataset with the

localization of cancer region in the test MPA image dataset (chapter 8). The same

dataset was used in previous studies [28, 29, 75] for cancer tissue detection using

machine learning methods with handcrafted features.
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Transfer learning using inception-resnet-v2

We prepared the MPA image dataset for the transfer learning network using the first

three wavelengths 760 nm, 800 nm, and 850 nm. The dimension of the PA dataset

was ranging from 20×64×200 pixels to 64×64×200 pixels. The single-channel 2D

C-scan image with maximum pixel intensity was extracted from the 200-channels 2D

C-scan at each wavelength. The MPA image samples were prepared by concatenating

three single-channel C-scan images at three wavelengths, namely 760 nm, 800nm,

850 nm. The spatial dimension of the MPA image was increased to 299× 299 pixels

using bilinear interpolation to fit into the input of the inception-resnet-v2 network.

One sample of thyroid cancer tissue specimens and its PA is shown in figure [1.3].

The data structure used for the transfer learning technique is shown in figure (1.4)

Figure 1.3: The figure shows the thyroid specimen with the metric scale, histopatho-
logical slide, and 3D PA image. The first two dimensions of the PA image cube
corresponds to the spatial 2D C-scan image, and the third dimension corresponds
to the A-line signals along the depth direction. One C-scan slice corresponded to
the tissue of depth 4µm. The spatial resolution of the PA image is 0.7× 0.7 mm2.
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Figure 1.4: The input data structure of the inception-resnet-v2 consisted of 3-channel
MPA image with 299× 299× 3 pixels.

Tissue Specimen Thyroid

Normal 40

Benign 46

Cancer 17

Total 103

Table 1.1: Normal, benign and malignant tissue distribution of thyroid MPA image
dataset

Deep 3D Convolutional Neural Network

Deep 3D CNN was implemented to improve the predictive performance for cancer

tissue detection than the transfer learning network. The structure of the input data

of the transfer learning network was the concatenation of one-channel C-scan images

at three wavelengths. The cancer tissue spreads in not only the 2D C-scan but also

the depth direction. The transfer learning network was not capable of extracting

the depth information for the spread of the cancer tissue in the depth direction.
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The implementation of deep 3D CNN becomes useful when the depth information

also becomes important [48]. In this thesis, to incorporate the depth and 2D C-scan

details at once (volumetric information), we implemented deep 3D CNN for the

cancer tissue detection with higher predictive performance.

The MPA dataset was collected in the imaging sciences lab at the University of

Rochester. The PA images of each thyroid samples were generated with the short-

pulsed laser at five different wavelengths: 760 nm, 800nm, 850 nm, 940nm, and

970 nm [28]. The set of wavelengths was chosen in order to extract the maximum

information of the oxyhemoglobin and deoxyhemoglobin content in human tissue

[104]. Those contents are prominent features for cancer tissue detection [75]. In this

section, the samples were divided into noncancer and cancer while in the previous

studies, the samples were divided into cancer, benign and normal tissue group [28,

29, 75, 90]. A radiologist provided the ground truth annotation for the MPA dataset.

For this thesis, the MPA images were labeled as cancer if there was cancer in the

given specimen otherwise labeled as the normal MPA image dataset which is different

from the previous studies [28, 29, 75]. The size of the data cube at each wavelength

was ranging from 20 × 64 × 200 pixels to 64 × 64 × 200 pixels. One sample of the

prostate cancer tissue specimen and its PA image is shown in figure (1.5).

The 21-slices 2D C-scan image cube was taken at each wavelength. The spatial

dimension of each PA sample was increased to 64×64 pixels with bilinear interpola-

tion to make the size of all dataset uniform. The MPA sample images were prepared

by concatenating five 21-slices 2D C-scan corresponding to 760 nm, 800 nm, 850
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Figure 1.5: The figure shows the photograph, histopathology slide and 3D PA image
(at 760 nm) of a prostate specimen respectively. The photograph was taken by a
camera, the histopathological slide was prepared by the pathologist, and 3D PA
image at 760 nm was prepared by the PA effect.

nm, 930 nm, and 970 nm, respectively, with dimensions equal to 64×64×105 (1.6).

Deep 3D CNNs were implemented for two cases. The first case was the imple-

mentation of the deep 3D CNN with seven layers on the thyroid MPA image dataset.

The second case was the implementation of deep 3D CNN with eleven layers on the

mixture of prostate and thyroid MPA image dataset with the best performance.

The latter case was able to detect the prostate and thyroid cancer at once with

localization.

Tissue Specimen Thyroid Prostate Total

Normal 91 17 108

Cancer 17 15 28

Total 108 28 136

Table 1.2: Normal and malignant tissue distribution

Automatic Localization of cancer tissue using MPA imaging

In this thesis, we implemented a grad-cam algorithm [84] to the proposed deep 3D

CNN for automatic localization of the cancer tissue.
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Figure 1.6: MPA image data structure with the dimension of 64 × 64 × 105 pixels
was proposed for the deep 3D architecture to incorporate the volumetric distribu-
tion of chromophores (frequency content of PA signal), and spectral signature (at
five wavelengths) of the chromophores [28]. 21-slices C-scans images at five wave-
lengths were concatenated to make 105-channel C-scan image (21-slices C-scan ×
five wavelengths).

1.1.2 Architecture design and hyperparameter tuning

There are numerous choice to select number of CNN layers, number of fully con-

nected layers, number of nodes in the fully connected layers and so on to design a

typical optimal deep learning architecture for the classification task with the partic-

ular problem at hand [12]. Thus the search of the optimal set of hyperparameters

makes the problem exponentially expensive in time [4]. For the efficient hyperpa-

rameter search, the architecture design for the cancer tissue detection was motivated
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from the deep learning architecture implemented for the brain hemorrhage (see Ap-

pendix A).

1.2 Challenges faced and summary of logic behind the

design of the network for the current dataset

In this thesis, deep learning algorithms were implemented for automatic cancer de-

tection. In general, a good number of sample images are required to train deep

neural networks to get the desired performance. The available dataset for this the-

sis was limited. However, there are some techniques such as transfer learning [66]

that have proven to be useful for training in such situations. The first project of

the thesis was to implement transfer learning using inception-resnet-v2 [96]. When

data is very similar to the imagenet image [26], then the training of the network

is only required on the last softmax layer of the inception-resnet-v2 [53]. But the

medical datasets are in general different from the imagenet dataset; therefore, we

had to train the last few layers of the network. This is because the first layer of

the inception network extracts the features related to the edges and low-resolution

images of the cancer lesion in the MPA cancer dataset. There is no requirement

to train the network which already extracted the relevant features. The use of the

same weight matrix of inception-resnet-v2 actually helps to initialize the network

with proper initialization value to the trainable set of layers [53]. This indeed helped

to train the network faster.

Saugata [89] work, done on the same MPA dataset, suggests that A-line infor-
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mation is also a useful feature vector for cancer diagnosis. Rajanna et al. [75] also

included the frequency content of the PA A-line signal that increased the cancer

detection accuracy to 95 % with the same dataset. Therefore, in addition to the

wavelength vector, we incorporated the A-line feature vector in our deep learning.

We prepared the dataset of 105-channel stacked C-scans consisted of 21-slice C-scan

of PA image cube at five wavelengths in include the wavelength and A-line feature

vectors to the dataset in precise order. The second part of the thesis was to imple-

ment deep 3D CNN. The model was trained on the thyroid because we had more

number of thyroid samples. However, the model was able to detect cancer with AUC

of 0.85; this is less than previous studies [28, 75]. In previous work, the significant

similarity was observed in the image features that defined the cancer region both

in thyroid and prostate [28]. We decided to exploit this similarity to handle the

limited sample number challenge by implementing the model developed for thyroid

but tested on the prostate with the AUC of 0.72, thus supporting our hypothesis and

encouraged us to proceed along this line of investigation. Since a deeper network

generally improved the predictive performance of the model, we decided to mix the

thyroid and prostate datasets for the same cancer detection problem[96].

The third distinguishing factor of this thesis is our attempt to design a deep

neural network that is capable of detecting the presence or absence of cancer in a

given specimen, regardless of where it is spatially located in the specimen. This

is a much more challenging problem than what has been done in studies with the

same dataset [75], where ground truth consisted of the definition of cancer lesion



CHAPTER 1. INTRODUCTION AND OVERVIEW 19

region precisely defined by histopathology slide image of the given specimen. The

discriminant analysis in the previous work was performed only on the pixel values in

the PA image defined by the pathology slide and all the pixels cancer pixels from all

the specimens were pooled together for discriminant analysis. In contrast, the only

ground truth that we considered given for our present work was whether a cancer

region is present or not present in a given specimen. This challenge was met by

implementing the deep 3D CNN with more layers compared to the deep 3D CNN

with seven layers [51], doing so requires more samples. The previous result [51]

suggested mixing two datasets to increase the number of samples. This is because

there is a similar trend when classifying cancer from normal tissue. The dataset

was divided into train, validation, and test. The training dataset was still limited

but augmented heavily up to 6,200 by rotation, scaling, translation, adding noise,

adding/subtracting pixel intensity, random warping, vertical flipping, and horizontal

flipping [16]. This is because the number of samples helps to improve the predictive

performance of deep learning networks. The network with 11 layers was able to

detect cancer with AUC of 0.96 with the comparable performance to the previous

study [75].

1.3 Organization of this thesis

• CHAPTER 2: PA Camera Used for Ex-vivo Tissue Imaging: This chapter

covers a brief introduction of PA imaging, MPA imaging, the protocol for

cancer tissue acquisition, and MPA data acquisition from the thyroid and
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prostate ex-vivo tissue specimen.

• CHAPTER 3: PA Features Useful for Cancer Detection: This chapter elabo-

rates the importance of PA imaging for cancer tissue diagnosis with the intro-

duction of the spectral signature and frequency distribution of the recorded

PA signals of tissue chromophores.

• CHAPTER 4: Previous work for Ex-vivo Cancer detection: This section de-

scribes the previous works related to the cancer tissue detection using the same

MPA dataset, and introduces the technique of deep learning for cancer tissue

detection.

• CHAPTER 5: Current Work for Ex-vivo Cancer Detection

• CHAPTER 6: Transfer Learning for Cancer Detection: This section imple-

ments the inception-resnet-v2 to detect cancer tissue with the AUC of 0.73.

• CHAPTER 7: 3D CNN for Cancer Detection: This method is an extension

of Chapter 6 with the use of deep 3D CNN. This model was trained on the

thyroid dataset and evaluated on the thyroid and prostate dataset with AUC of

0.85 and AUC of 0.72 respectively. The purpose of this study was to evaluate

the ability of PA imaging to extract similar characteristics from two tissue

locations such as thyroid and prostate specimens.

• CHAPTER 8: 3D CNN: Cancer Detection and Localization: This method

trained on the mixture of the thyroid and prostate MPA dataset with the
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deeper network. The network was tested on the mixture of the thyroid and

prostate dataset with the AUC of 0.96. This project also implemented a 3D

version of grad-cam to localize the cancer tissue region using the test MPA

dataset automatically.

• CHAPTER 9: Conclusions and Future Works

• Appendix A: Brain Hemorrhage Classification: The deep 3D CNN has devel-

oped for the automatic ICH detection during a real-time CT scan to red flag

the urgent cases with a promising result with the AUC of 0.87 at Geisinger

Health System (GHS).

The following publications are the outcome of this thesis work.

1 Kamal Jnawali, Mohammad R Arbabshirani, Alvaro Ulloa, Navalgund Rao,

and Alpen A Patel. Automatic classification of radiological report for intracra-

nial hemorrhage. In Semantic Computing (ICSC), In 2019 IEEE 13th Inter-

national Conference on Semantic Computing (ICSC), pages 187-190. IEEE.

[49]

2 Kamal Jnawali, Bhargava Chinni, Vikram Dogra, and Rao Navalgund. Trans-

fer Learning For Automatic Cancer Tissue Detection Using Multispectral Pho-

toacoustic Imaging. In Proc. Medical Imaging, 2019: Computer-Aided Diag-

nosis, volume 10950, page to be published. International Society for Optics

and Photonics. [50]
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Tissue Detection Using Multispectral Photoacoustic Imaging. In Proc. Medi-

cal Imaging, 2019: Ultrasonic Imaging and Tomography. [51]

4 Kamal Jnawali, Mohammad R Arbabshirani, Navalgund Rao, and Alpen A

Patel. Deep 3d convolution neural network for CT brain hemorrhage classifi-

cation. In Medical Imaging 2018: Computer-Aided Diagnosis, volume 10575,

page 105751C. International Society for Optics and Photonics, 2018. [48]

5 Kamal Jnawali, John P. Kerekes, and Navalgund Rao. ”Comparative study of

spectral matched filter, constrained energy minimization, and adaptive coher-

ence estimator for subpixel target detection based on hyperspectral imaging.”

In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultra-

spectral Imagery XXIV, vol. 10644, p. 106441V. International Society for

Optics and Photonics, 2018. [52]
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of chirp excitation response from different size absorbers. In Medical Imag-
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International Society for Optics and Photonics, 2017. [47]



Chapter 2

PA Camera Used for Ex-vivo

Tissue Imaging

2.1 Introduction

In photoacoustic imaging (PAI), the tissue specimen is exposed to a short nanosecond

laser pulse with the wavelength in near-infrared (NIR) region [116]. This process

results in a local and instantaneous pressure increase within the dominant absorbers

[47]. The pressure disturbance propagates as US waves that are then detected by

the use of the transducer and used to form a PA image [104]. These US waves or

PA waves reflected from the target, are captured by US transducers to produce a

sequence of A-line signals as in figure (2.9). The A-line signal is simply the display

of the time-dependent response of the transducer generated by the US wave. The

23
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time-gated A-line signals are suitably processed and combined to produce the 2D

C-scans PA image as in figure (2.10).

Figure 2.1: Acoustic lens set up with Gaussian short-pulse the input and N-shaped
signal as the output. In PAI, the tissue is exposed to a short nanosecond laser
pulse with the wavelength in near-infrared (NIR) region. This process results in
a local and instantaneous pressure increase within the dominant absorbers. The
pressure disturbance propagates as US waves that are then detected by the use of
the transducer and used to form a PA image.

During the PA effect, the light wave in tissue converts to ultrasonic waves which

scattered much less compared to optical waves [110]. This is because the wavelength

of the ultrasonic wave is higher than the light wave. The conversion of the optical

to ultrasonic energy helps to bring the following benefits [110].

1 The acoustic waves in the tissue specimen undergo less scattering than the

optical wave, according to the Rayleigh scattering law [94]. The acoustic waves
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also suffer less attenuation in tissue compared with the light, PAI is capable

of providing high-resolution images [85].

2 The photoacoustic imaging (PAI) is capable of imaging the multi-scale tissue

specimen with the same contrast [116].

3 The PAI modality is capable of extracting rich details of the optical contrast

of the tissue architecture, and molecular distribution as the different optical

energy (with the specific wavelength) excites the different tissue chromophores

[116].

4 As the amplitude of the PA signal is proportional to the optical absorption of

the tissue specimen, the PA image is generally free from background noise and

is often speckle-free [116].

5 The ultrasound imaging modality is based on the mechanical contrast of the

tissue specimen, and the PAI modality is based on the optical and mechanical

contrasts. [103, 116].

2.2 Experimental Set Up

Figure (2.2) shows the actual laboratory set up used for PA imaging of ex-vivo

tissues. The tissue specimen was shone with the short pulse at one end, and the

generated US waves were focused on the US transducer using an acoustic lens in 4f

geometry. The tunable laser generates the short Gaussian pulse from the wavelength

ranging from 700 to 1000 nm with pulse repetition frequency equals to 10 Hz for PA



CHAPTER 2. PA CAMERA USED FOR EX-VIVO TISSUE IMAGING 26

imaging [116]. During PA imaging, the sample holder holding the tissue and cylinder

containing the acoustic lens and the 32 elements US transducer array were both filled

with water [89]. The focal length and diameter of the PA acoustic lens were 39.8

mm and 32 mm, respectively. The depth of field of the lens was approximate ±0.5

cm around the focal plane. The center frequency of the transducer at another side of

the geometrical set up was 5 MHz. The tissue specimen was kept at the 2f position

from the acoustic lens to avoid the scaling effect. Since the object at 2f produces

the image at 2f with unit magnification [103].

Figure 2.2: Laboratory PA image acquisition set up. Adapted from [90]
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The parameters of PA imaging experimental set up is summarized in table (2.1)

below.

Table 2.1: PA experiment set up: List of parameters such as frequency, focal length
[103]

Description Value

Center Frequency 5 MHz

Number of elements in transducer 32

Focal length and diameter of acoustic lens 39.8 mm and 32 mm

Bandwidth 60

Pitch 0.7 mm

Depth of field 0.5 cm

Pulse repetition frequency 10 MHz

Wavelength 700 - 1000 nm

Figure 2.3: Tissue was shone with short-pulse NIR laser light to generate PA waves.
Traditional PAI requires the reconstruction to generate PA image. Cox et al. [22]
implemented iterative method for the PAI reconstruction.
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Figure 2.4: Tissue was shone with short-pulse NIR laser light to generate PA waves.
The acoustic lens helps to circumvent the reconstruction works. The tissue specimen
was placed at 2f position and PA image acquired at 2f position from the acoustic
lens for a unit magnification [32].

2.2.1 Lens based PA imaging acquisition

There is a trade-off between image quality and real-time imaging based on the trans-

ducer’s number of elements. Furthermore, numerous techniques have been reported

for the PA image reconstruction from the recorded PA signals by the transducer.

There is a serious mathematical difficulty to use the Radon transform equation for an

exact PA image reconstruction [116]. The reconstruction algorithms namely back-

projection [41], Fourier based [116], deconvolution based [113] were implemented,

however, these algorithms are computationally expensive to generate reconstructed

3D PA image [100]. Rao et al. [76, 77] proposed the acoustic lens, which helps to

circumvent the process of the PA image reconstruction [77]. The use of the acous-

tic lens makes the PA image acquisition process fast, robust, and less error-prone
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[77, 103].

PA acoustic lens is similar to an optical lens [77]. A lens helps to converge the

scattered wave to a point to produce distinct and high contrast images without com-

putational reconstruction [116]. There is the physics-based correspondence between

the optical lens and acoustic lens where the former is used to converge lightwave

and later is used to converge acoustic (sound) wave. The biconcave acoustic lens

was used to converge the spherically diverging US wave at a transducer when light

is traveling from water to lens [20]. The biconvex acoustic lens is used in the optical

imaging modality where light travels from air to glass. The object (tissue specimen)

was placed at 2f location to image the tissue specimen at 2f position for a unit

magnification [35]. The proper choice of tissue specimen in front of the acoustic lens

removes the concern of the scaling effect [20].

2.3 Ex-vivo PA acquisition and ANSI guidelines

PA imaging at five different wavelengths was performed on the freshly excised hu-

man prostate and thyroid specimens. The author received the PA dataset prior

to the study and wanted to acknowledge [20, 28, 77, 104] for providing datasets.

The detailed of the experiment are described below. The thyroid/prostate speci-

mens were collected from confirmed and suspected thyroid/ prostate cancer patients

who underwent biopsy. Approval from Institutional Review Board (IRB) was taken

along with consent from each patient before conducting the experimental studies

[104]. The studies were in compliance with the Health Insurance Portability and
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Accountability Act. The excised thyroid/prostate specimen was sent to the surgical

pathology laboratory where it was inked and cut into thin sections (2-5 mm thick)

by a pathologist after the surgery. One such section with a grossly visible nodule

was selected, immersed in normal saline to prevent dryness and sent to PA labo-

ratory to acquire PA images of it at five different wavelengths. Once PA imaging

was done, the tissue specimen was returned to the surgical pathology laboratory

for histopathology. The entire process to return back the specimen to the surgical

pathology laboratory took one hour. It was verified and approved by the pathologist

to ensure that the histopathology procedure of the specimen was not compromised

[90]. The laser intensity on the excised prostate specimen was maintained around

5 mJ/cm2, which is well below the safe human exposure limit according to Amer-

ican National Standards Institute (ANSI) guidelines [90]. The workflow of patient

protocol is shown in figure (2.5) [28].

Figure 2.5: Experimental protocol for ex-vivo MPA image acquisition of excised
thyroid and prostate tissue samples [28].
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Figure 2.6: Ex-vivo tissue specimen and PA image

It is important to describe the method and the resulting data structure in this

section briefly because we used a unique setup to acquire PA signal data set from

tissue specimens. The method, the details of which can be found in [20], is illustrated

in figure(2.7). An expanded beam of 10 ns pulse of NIR laser light with delivered

pulse energy below 20 mJ/cm2 and pulse repetition rate of 10 Hz was used to expose

the tissue specimen immersed in a water-filled medium [47]. PA signals in the form

of a short pulse of US generated from absorbers everywhere in the exposed 3D tissue

volume propagate towards a specially designed acoustic lens of focal length f . The

lens enables the simultaneous focusing of all the waves on the other side of the lens.

If the center of the tissue is kept at a distance 2f from the lens, then a 32 element

linear array of US transducers can be placed at 2f distance on the other side to

detect the focused PA signals at 32 different pixel locations in the image plane for

each laser firing. These US time signals, referred to as A-line signals, were amplified

and then digitized at 30 MHz on 32 independent channels simultaneously. A-line

signals were envelope detected in order to keep only the slowly varying nonzero signal

values. The linear array was scanned in the image plane with repeated laser firing

to collect PA signals over the entire image plane. The spatial resolution achieved by

this system was around 1.3 mm [90]. PA signals from different depth planes along
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the lens axis arrive at the image plane at different arrival times due to the finite

propagation speed of the US in water. By taking time slices on all the A-line signals,

one can generate 2D C-scan PA images that correspond to different depth planes in

the tissue as in figure (2.7). We were able to pick a time gate of 200 sample width,

indicated by t1 and t1 in figure (2.7), that included all PA signals coming from the

entire 3 mm thickness of every tissue specimen. The scanning in the image plane

was typically done over a 40 × 40 pixels with a pixel size of 1 mm by 1 mm. The

typical size of the 3D data was 40× 40× 200 pixels.

Figure 2.7: Schematic of the PA signal data acquisition setup at one wavelength.
An acoustic lens was used to focus the photo-acoustically generated US waves and
detect it by a linear US transducer array (not shown in the figure).

2.4 Mathematical Derivation of PA Signal

PA signals originate from optical absorption in three steps. At first a tissue absorbs

light, then absorbed optical energy is converted into heat and produces a tempera-
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ture rise, and finally, thermoelastic expansion takes place for the generation of the

acoustic wave.

The thermal expansion should be time-invariant to generate acoustic waves [115].

To achieve this requirement, we can either use a short-pulsed laser or a continuous

wave laser with intensity modulation at a constant or variable frequency [115]. Upon

short laser pulse excitation, local fractional volume expansion dV
V of the heated tissue

at position r can be expressed as

dV

V
= −κp(r) + βT (r) (2.1)

Here, κ denotes the isothermal compressibility β denotes the thermal coefficient of

volume expansion, and p and T denote the changes in pressure (in Pascal) and

temperature (in Kelvin), respectively.

For the effective PA signal generation [115].

τ < τth =
d2c
4DT

(2.2)

Where τth is the thermal confinement threshold, dc is the spatial resolution, and DT

is th thermal diffusivity. Under the assumption of the stress confinement, volume

expansion of the absorber during the illumination is neglected, thus we can write

this as

τ < τst =
dc
vs

(2.3)

Where vs is a speed of sound.
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The PA wave generation and propagation in a medium is given [109] by

(∇2 −
1

v2s

∂2

∂t2
)p(r, t) = −

−β

κv2s

∂2T

∂t2
(2.4)

The source term is represented by the right hand side and the wave propagation

term is represented by the left hand side in equation (2.4). For the short laser pulse,

from equation [2.2],

ρCv
∂T (r, t)

∂t
= H(r, t) (2.5)

Where, H is the heating function and it is related to the optical absorption

coefficient µa by H = µaΦ [90].

(∇2 −
1

v2s

∂2

∂t2
)p(r, t) = −

−β

Cp

∂H

∂t
(2.6)

The generation solution can be shown as [108]

(∇2 −
1

v2s

∂2

∂t2
)G(r, t; r′, t′) = δ(r − r′)δ(t− t′) (2.7)

The solution of the above equation can be written as

G(r, t; r′, t′) =
δ[(t− t′ − |r − r′|)/vs]

2π|r − r′|
(2.8)

Thus solution to the pressure amplitude is [108].

p(r, t) =
β

4πκv2s

∫

dr′
1

|r − r′|

∂2

∂t2
T (r′, t′)|t′=t−|r−r′|/vs (2.9)
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With additional mathematical step to equation [2.2] [108] results

p(r, t) =
r + vst

2r
po(r + vst) +

r − vst

2r
po(−r + vst) +

r − vst

2r
po(r − vst) (2.10)

The first term on the right-hand side represents a converging spherical wave; the

second term on the middle side represents a diverging spherical wave that originates

from the initially converging wave propagating through the center, and the third

term on the left represents a diverging spherical wave. We expect the increase of the

pressure amplitude up to maximum value and then the decrease to minimum value

[108] as shown in figure (2.8) [47].

Figure 2.8: The figure shows use of the short pulse of gaussian type as an input and
N-shaped PA signal as the output [104].
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2.5 Modes of PA imaging

It is useful to discuss the two-mode PA image acquisition, such as the A-line signal

and C-scan image in the following section.

2.5.1 A-line PA signal

The A-line is the display of the transducer the voltage-time signal generated by the

reflected beam coming from the tissue as in figure (2.9). It is readily observed by

connecting the received output to an oscilloscope triggered at the instant of initial

excitation. If c is the speed of the US speed in the object is constant, then the time

taken by US wave recorded by the transducer is given by

time =
z

c
(2.11)

Figure 2.9: The figure shows the theoretical A-mode signal and experimental A-line
signal
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Where z is the distance.

The A - mode provides information about an object only along the line of sight

and within the beamwidth of the transducer [104]. It is tedious and time consuming

to move the transducer around the tissue for complete tissue imaging.

2.5.2 C-scan PA image

The C-scan refers to constant depth scanning and responsible for transverse imaging

of the tissue, as shown in figure (2.10).

During PA image acquisition, the acoustic lens collected the PA waves gener-

ated by PA absorbers in the tissue specimen when shone with short-pulse laser and

focused to the point in the image plane [103]. Then the 32 array-sized transducers

located at the image plane recorded these PA signals to generate a focused C-scan

image with the assumption that wave from all tissue specimen at given depth arrive

at the image plane at the same time [103].

Figure 2.10: The figure shows the theoretical C-scan image and experimental C-scan
image



Chapter 3

PA Features Useful for Cancer

Detection

3.1 Optical Properties of Tissue Extraction Using PA

Imaging

All matters are composed of charged particles such as electrons. The interaction

between electromagnetic waves (light) and tissue (charged particles) results mainly

two phenomena such as absorption and scattering. In absorption interaction, the

absorbed energy can be transferred into heat. The portion of absorbed energy is

turned into heat, which is responsible for the photoacoustic (PA) effect [62]. The PA

effect is capable of extracting the optical properties of a tissue specimen [104]. The

optical properties of biological tissues in the visible and near infra-red (NIR) regions

38
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are related to the molecular constituents of tissue [115]. The optical properties can

reveal the changes in angiogenesis and hypermetabolism [116]. The optical absorp-

tion spectrum of chromophores (deoxyhemoglobin, oxyhemoglobin, lipid, water) is

very sensitive to tissue abnormalities and functions, and hence capable of differen-

tiating normal and cancer tissues. The scattering properties of tissue help to reveal

architectural changes in the biological tissue [116]. Both optical absorption and scat-

tering play essential roles in determining the concentration of blood chromophores

in tissue [106]. The blood chromophore in malignant tissue absorbs more light than

that due to the normal tissue at 760 nm [116], and this may be due to the higher

presence of cancer-causing chromophore (deoxyhemoglobin) during the aggressive

growth of the tumor [116]. The PAI is a suitable imaging modality to monitor tu-

mor growth and angiogenesis [116]. This is because the underlying physics of the

PA imaging technique is based on imaging the optical characteristic of the tissue

constituents [109]. That makes the PA imaging modality is capable of functional

imaging such as MRI and structural imaging such as US [116].

Table 3.1: Absorption coefficient for chromophores at the five wavelengths

Wavelength Chromophore Absorption Coefficient

760 nm deoxyhemoglobin, maximum

800 nm oxyhemoglobin, deoxyhemoglobin equal

850 nm oxyhemoglobin maximum

930 nm lipid maximum

970 nm water maximum

Figure (3.1) shows the spectral signature of the absorption coefficient of four
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chromophores ranging from 650 nm to 1000 nm. The five wavelengths were cho-

sen to extract the maximum information of chromophores [28]. Table (3.1) shows

the spectral distribution of deoxyhemoglobin, oxyhemoglobin, lipid, and water with

the maximum of the optical spectrum of 760 nm, 850 nm, 930 nm, and 970 nm,

respectively. Dogra et al. [28] reported that the PA image at 760 nm is capable of

generating a PA image with the brighter pixel intensity distribution corresponding

to the oxygen-deficient chromophore (deoxyhemoglobin). This is because the ab-

sorption coefficient of deoxyhemoglobin is higher at 760 nm compared to the three

other chromophores. The amount of concentration of deoxyhemoglobin is a strong

indicator of the presence of cancer [28].

Figure 3.1: Spectral signature of oxyhemoglobin, deoxyhemoglobin, water and lipid.
Adapted with permission from [83] c© The Optical Society.
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3.2 Frequency PA Feature for Cancer Tissue Detection

There is strong evidence of the frequency spectrum dependence on the size of a

PA absorber [80, 90]. In tissue imaging, PA absorber represents a tissue specimen

that is capable of light absorption. With the assumption that change in the tissue

structure and size during a tissue pathology, the frequency content of the PA signal

is a significant contributor to differentiate malignant and normal tissue [90]. The

spectrum of the emitted PA waves depends on the shape and structures of the

chromophores [47].

Figure 3.2: Schematic of the dependency of the frequency content of the PA signal
with absorber’s size with diameter 0.1mm, 0.5 mm, and 1 mm respectively [89].

Xu et al. [116] reported that the malignant tissue is more likely to be in an
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irregular shape, and normal tissue is more likely to be in a rounded shape. This

may be a contributing factor for the difference in the frequency content of the PA

signal in normal and malignant tissue. Sinha et al. [90] reported that frequency

content is useful for cancer tissue diagnosis using PA imaging when the size of the

tissue specimen is important. Jnawali et al. [47] implemented a k-wave Matlab

toolbox [100] to simulate the effect of the size of prostate tissue specimen on the

time content (frequency content) of the recorded PA signal.

3.3 Data Preparation

The three-channel dataset with the dimension of the 299× 299 pixels were prepared

to fit the input of the inception-resnet-v2 network with the use of the first three

wavelengths namely 760 nm, 800 nm, and 850 nm. The 105-channel dataset with

the dimension of the 64 × 64 was prepared to fit the input of the deep 3D CNNs

proposed in this thesis. The details of the data preparation are described below.

3.3.1 Data preparation: Transfer learning (inception-resnet-v2)

We implemented the transfer learning using inception-resnet-v2 [96] for the cancer

tissue detection using the MPA thyroid image dataset. The input MPA data of size

299× 299× 3 pixels was prepared by concatenating a one-channel C-scan PA image

at three wavelengths, namely 760 nm, 800 nm, 850 nm.
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Figure 3.3: The maximum intensity C-scan PA image was extracted from the 200-
slice C-scan PA image.

Figure 3.4: Three maximum intensity C-scan of PA images at three wavelengths
were concatenated to form 3-channel C-scan MPA image.

3.3.2 Data preparation: Deep 3D CNN

This section describes how the dataset was prepared to incorporate the A-line (fre-

quency) content at the five sets of wavelengths for the deep 3D CNN models. In this
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thesis, to incorporate the time domain content at five wavelengths, we stacked the

five-21-slices C-scan 3D PA image to generate a 105-channel 3D MPA image dataset.

The 21-slice of the C-scan PA image was prepared by picking the maximum inten-

sity C-scan from the 200-slice C-scan 3D PA image and then taking its ten adjacent

C-scans. The MPA image at five wavelengths consisting of 105 C-scans is prepared

by concatenating 21-slices of C-scan at five wavelengths as in figure (3.6). The use

of five wavelengths helps to generate a higher contrast PA image of corresponding

chromophores [28]. There is theoretical evidence of the signature of the PA absorber

size that can be seen in the corresponding pulse width of the PA signal. Therefore,

in addition to the wavelength feature vector, the A-line data can be considered as a

possible feature vector [47, 90]. As the size of cancer tissue usually is bigger (more

nodule vessels) than normal tissue and hence could be the stronger PA absorber.

Figure 3.5: Maximum intensity C-scan PA image was extracted from the 200-slice
C-scan PA image, and then took 10 its adjacent C-scans to make 21-slices of C-scan
of 3D PA image.
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Figure 3.6: The maximum intensity C-scan PA image was extracted from the 200-
slice C-scan PA image and then took ten its adjacent C-scans to make 21-slices of
C-scan of 3D PA image. MPA dataset was prepared by stacking five 3D PA image
cube corresponding to five wavelengths, namely 760 nm, 800 nm, 850 nm, 930 nm,
and 970 nm respectively. The 3D PA image cube at each wavelength is responsible
for extracting the volumetric distribution of the chromophores (oxyhemoglobin, de-
oxyhemoglobin, lipid, and fat), and the 3D MPA image cube at five wavelengths is
responsible for imaging optically activated chromophores.
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Previous work for Ex-vivo

Cancer detection

4.1 Multispectral Photoacoustic Data Acquisition

The PA image cubes of the tissue specimen were taken at five wavelengths (see

chapter 3). The size of the PA data cube at each wavelength was ranging from

20× 64× 200 pixels to 64× 64× 200 pixels. The first two dimensions correspond to

the time-gated spatial 2D C-scan image at the given depth, and the third dimension

corresponds to the set of time-gated C-scan at the different depth of the tissue

specimen. The time information of the recorded PA signal was encoded to the

depth using the equation. d = c× t, where d, c, t are depth, the velocity of US, and

time respectively.
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Figure 4.1: Schematic of the PA signal data acquisition setup at one wavelength.
The C-scan at t1, and t2 corresponds to the tissue specimen at depth d1 and d2
respectively. The entire tissue specimen was mapped to C-scans from time t1 to
t200, where t1 corresponds to depth of depth 4µm at each wavelength. The five PA
image acquisition was made at five wavelengths for each sample. In this paper, the
five 21-slice PA image data at five respective wavelengths were concatenated to form
a 105-channel MPA dataset.

Each time-gated 2D C-scan corresponds to the tissue specimen of depth 4µm.

The multispectral photoacoustic (MPA) dataset was taken at five wavelengths. The

set of wavelengths was chosen in such a way to extract the maximum information

of the oxyhemoglobin, deoxyhemoglobin, lipid, and water [75, 104]. The PA image

corresponding to the tissue specimen also consisted of the histopathological slide

and photograph, as shown in figure (4.2). The pathologist provided the marked

region corresponding to normal, benign, and cancer in the histopathological slide as

in figure (4.2). The samples were divided into cancer, benign and normal groups in

previous studies [28, 29, 75, 90]. One sample of prostate and thyroid cancer tissue
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specimen photograph, histopathological slide and PA image is shown in figures (4.2)

[28, 75], and (4.3) [89] respectively. The malignant region of interest was encircled

in the photograph, histopathological slide, and PA image.

Figure 4.2: Histopathology sample of the prostate specimen with the metric scale,
histopathology slide and C-scan PA imaging taken at 760 nm with dimension 45×45.
The encircled region with the malignant tissue in the PA image at 760 nm wavelength
corresponds to the higher pixel intensity. Reproduced with permission from [28].

Figure 4.3: Histopathology sample of the thyroid specimen with the metric scale,
histopathology slide and C-scan PA imaging taken at 760 nm with dimension 45×45.
The encircled brighter region in the PA at 760 nm corresponds to the malignant
tissue. Adapted with permission from [90].
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4.2 Amplitude and Frequency Based Cancer Tissue De-

tection Algorithm

Dogra et al. [28], and Rajanna et al. [75] implemented the logistic function and two-

layer neural network for cancer tissue detection using manually extracted features.

The handcrafted features were extracted by the pathologist and the expert in the

field of PA imaging. Dogra et al. [28, 29] implemented the logistic classifiers utilizing

the amplitude-based spectral signature using the pixel-based MPA dataset. Dogra

et al. reported the accuracy of 0.9 on the prostate MPA pixel-based dataset [28]

and accuracy of 0.83 on the thyroid MPA pixel-based dataset [29]. Rajanna et al.

[75] implemented the two-layer neural network using the amplitude-based spectral

signature and frequency-based PA content of the chromophores with the accuracy of

0.95. The pixel-based MPA samples were extracted from normal, benign, and cancer

regions from the PA image (the encircled region in PA image (4.2)). The encircled

region corresponding to the normal, benign, and cancer in PA image was generated

by the co-registration of the histopathological slide and photograph image. The

histopathological slide provided by the pathologist consisted of the normal, benign,

and cancerous region. All methods involved the labor-intensive work to co-register

the histopathological slide, and photograph to the PA image to extract three regions

of interest such as normal, benign, and cancer. Moreover, the process was time-

consuming to extract the optimal set of handcrafted features. That demanded the

involvement of the expert with domain knowledge such as pathologist and image

scientist [28, 29, 75].
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Co-registration and Manual Feature extraction

The encircled region required the manual co-registration of the PA image with

histopathological slide and photograph(as in figure 4.5), where the pathologist marked

the region of interest in the histopathology slide. The process may be an error-prone

while extracting the encircled region of interest. The pixel-based samples were used

to train, validate, and test the performance of the classifiers. The classifier was not

evaluated using the whole MPA image dataset but using the pixel-based samples

extracted from the encircled region of interest of the MPA image (figure 4.2).

Figure 4.4: Visualization of the image co-registration involving the photograph-
based image, histopathological-based image, and PA-based image.

Figure 4.5: The Figure shows the co-registration (overlay of PA image is not shown)
method proposed in the previous works. Adapted with permission from [90].

The figure (4.5) shows the selection of the region of interest in the PA image (not
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shown) by overlaying the histopathological slide and tissue specimen photograph

[89]. The step used for the co-registration is shown in figure (4.4).

A careful choice of handcrafted features improves the predictive performance of

a classifier and make more robust, however, it demands the involvement of expert

with domain knowledge such as pathologist, and image scientist [28, 29, 75]. The

handcrafted features may not always close to perfection; it is possible that a deep

neural network itself is capable of extracting features ranging from low level to high

level in solving the problem at hand very close to perfection at the hierarchical

structure [59].

4.2.1 Amplitude Based Analysis Using MPA Pixel-Based Dataset

Dogra et al. [28, 29] used the handcrafted spectral feature for the cancer tissue

detection using the logistic regression model. The authors took a one-slice C-scan

image out of 200-slice C-scans of PA image at each wavelength and concatenated at

five wavelengths (figure (4.2)). The five-channel C-scan image at five wavelengths

was converted to 4 chromophore images (oxyhemoglobin, deoxyhemoglobin, lipid and

water) using equation (4.1) [89] as in figure (4.6). Equation (4.1) helps to generate

higher pixel intensity corresponding to the malignant tissue in the deoxyhemoglobin

channel for the presence of cancer in a given tissue specimen as in figure ((4.7) e

and f). Finally, the author extracted the region of interest from chromophore image

at five wavelengths by coregistering the PA image with histopathological slide and

photograph-based imaging.
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Figure 4.6: Visualization of proposed chromophore analysis [28, 29] with mathemat-
ical equation of form described in equation (4.1)
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Figure 4.7: a. Tissue specimen, b. Histopathology of prostate with malignant region
encircled, c. PA image acquired at 760 nm wavelength, d. PA image acquired at
850 nm wavelength, e. PA image showing absorption of dHb, f. PA image showing
absorption of HbO2. Brighter pixel distribution of dHb is seen in the region of
interest corresponding to malignant prostate tissue compared to HbO2. Reproduced
with permission from [28].

The process consists of the following approach to generate the sample dataset.

The first step was to convert five wavelength MPA image dataset to four-channel

PA image corresponding to oxyhemoglobin, deoxyhemoglobin, lipid, and water using

the chromophore transformation equation. The second step was to extract the set of

pixels from the encircled region of interest consisting of normal, benign, and cancer.

The third step was to take the average of the encircled set of pixels to generate

a pixel with four-channels. Furthermore, only the average amplitude-based pixel

feature for each sample was used, thus ignoring any possible (2D and 3D) spatially

discriminant features as in figure (4.8).
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Figure 4.8: Type of samples used in the logistic classifier [28, 29]. The use of pixel-
based samples unable to extract spatial information.

4.2.2 Amplitude and Frequency Based Analysis Using MPA pixel

dataset

Rajanna et al. [75] implemented the neural network for the cancer tissue detection

with the handcrafted frequency and spectral features using the pixel-based MPA

samples. Rajanna et al. [75] used 29-dimensional features for each pixel and ranked

the most promising features. The 29 features consisted of five PA maximum ampli-

tude of A-line signal at five wavelengths, four chromophore concentrations at four

chromophore domain, and five pixel-amplitude intensity distribution of the samples

at five wavelengths, and 20 frequency parameters. Rajanna et al. [75] implemented a

recursive feature learning algorithm to rank the best feature contributing to the can-

cer tissue detection. Rajanna et al. [75] reported that amplitude at five wavelengths

and frequency contents attribute to the most promising features.



CHAPTER 4. PREVIOUS WORK FOR EX-VIVO CANCER DETECTION 55

This method also trained and evaluated the performance of the classifier using

the set of pixels extracted from the encircled region of interest. Only pixel-based

handcrafted features were used; thus, this works also ignores any possible (2D and

3D) spatially discriminant features.

Figure 4.9: This figure shows the type of samples used proposed by Rajanna et
al. [75]. The method is not able to extract spatial information for cancer tissue
detection.

4.3 Conclusion

Dogra et al. [28] implemented the first cancer tissue classifier using the pixel-based

samples extracted from the MPA image dataset. Rajanna et al. [75] improved

the classification accuracy with an additional 29 features using the prostate MPA

dataset, where five features were common with Dogra et al. studies [28, 29]. The
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previous studies [28, 75] trained and evaluated the classifiers using the pixel-based

MPA samples extracted from encircled region consisting of normal, benign, and

cancer from the whole MPA image dataset with the handcrafted features extracted

by the pathologist and expert in the field of PA imaging. The encircled region of

interest was extracted by the coregistration of the PA image, histopathological slide,

and camera image. The models still require manual work for the coregistration, and

not yet become fully automated. Additionally these models also fail to include

spatial information while detecting the cancer as in figures (4.8, 4.9).



Chapter 5

Current Work for Ex-vivo

Cancer Detection

The machine learning classifiers used in the previous methods were trained, vali-

dated, and tested on the MPA pixel-based dataset, not in the whole MPA image

dataset. Dogra et al. [28] and Rajanna et al. [75] used pixel-based MPA samples.

These processes consisted of the extraction of the pixel-based MPA samples from the

encircled region. The encircled part of the PA image was extracted by co-registration

of the histopathological slide, photograph image, and PA image. The process was

labor-intensive and time-consuming, and yet the classifier is not fully automated.

The current method is trained and evaluated on the whole MPA image, and

hence, it removes the labor-intensive work required to extract the pixel-based sam-

ples using co-registration during testing. That makes the current method automatic
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for detecting the cancer regions in a given specimen[50, 51].

The current method also seeks to extract features automatically using deep learn-

ing algorithms from the whole MPA image [48]. The previous studies used pixel-

based handcrafted features such as pixel intensity and frequency content[28, 29, 75]

but ignored the spatial and volumetric distribution of chromophores (blood). These

work fail to extract spatial and volumetric information (figure (8.4)), which becomes

essential when cancer tissue extends in all directions [48]. The 2D CNN using the

inception-resnet-v2 [96] performs automated extraction of the spatial blood concen-

tration but fails to extract the volumetric information (figure (8.4)). As the cancer

tissue spreads in all directions, it is useful to implement the deep 3D CNN [48].

Jnawali et al. [51] improved the performance of cancer tissue detection with the

use of the 3D CNN compared to the use of 2D inception-resnet-v2 transfer learning

network [50]. The deep 3D CNN is capable of extracting volumetric blood concen-

tration [48, 51] with the 3D convolutional kernel cube, which reduces cost, time of

analysis, and improves predictive performance. Though deep 3D CNN was much

shallower, the deeper network, in general, is a good choice to build a robust and

more predictive classifier [39]. However, the number of samples often limits the im-

plementation of deep neural networks. In the current study, we mix the thyroid and

prostate MPA dataset to increase the number of samples to design the deeper 3D

CNN for automatic cancer tissue detection and localization with the improved per-

formance compared to the previous studies using deep learning algorithms [50, 51].

The three ways of feature extraction used in previous [28, 29, 75] and current studies
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[50, 51] are compared in figure (5.1). The first figure shows the pixel-based distri-

bution, the second figure shows the spatial distribution, and the third figure shows

the volumetric distribution of the chromophores.

Figure 5.1: The figure shows the type of samples used to train, validate, and, test
the performance of the classifiers described in the previous studies [28, 29, 75] and
current studies [50, 51]. The left figure shows the pixel-based samples used in the
previous studies [28, 29, 75]. This shows the requirement of the co-registration of
PA image with the histopathological slide and the photograph of tissue specimen to
extract the encircled region of interest during testing for a cancer tissue detection.
Thus the method used in the previous studies still requires manual work for co-
registration during test time. This thesis proposed three models to detect cancer
in the given specimen using an entire C-scan image, and hence no need of manual
work as required in the previous works even during training. The middle figure
shows the entire C-scan PA image, which was used in the transfer learning network.
This method was able to extract the spatial distribution of the chromophores as
shown by the circle while using the entire C-scan image. The right figure shows the
concatenated 21-channel entire C-scan PA image which was used in the two 3D CNNs
[51]; deep 3D CNN with seven layers and deep 3D CNN with 11 layers. This data
structure was able to extract the volumetric distribution of the chromophores with
more predictive performance than that using only the spatial distribution. These
two later processes become automated with the use of an entire MPA image during
the test time for the cancer tissue detection. That is different from previous works
[28, 29, 75].
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5.1 Current works

The current work is divided in to three parts, the first part describes the implemen-

tation of the transfer learning on the thyroid cancer tissue detection, the second part

describes the implementation of the deep 3D CNN on thyroid and prostate cancer

tissue detection, and the third part describes the implementation of the deeper 3D

CNN on the mixture of thyroid and prostate cancer tissue detection with localiza-

tion.

5.1.1 Automatic Feature Extraction, Detection, and Localization

of Cancer Tissue Using Deep Learning

We implemented 2D transfer learning using inception-resnet-v2, deep 3D CNN with

seven layers, and deep 3D with 11 layers for the cancer tissue detection using the

thyroid, thyroid, and mixture of thyroid and prostate MPA image dataset respec-

tively. The same dataset was used in previous studies [28, 29, 75], which develop

cancer tissue classifiers using handcrafted features.

Transfer learning

We implemented the transfer learning using inception-resnet-v2 [96] for the cancer

tissue detection using the MPA thyroid image dataset. The input MPA data of size

299× 299× 3 pixels was prepared by concatenating a one-slice C-scan PA image at

three wavelengths, namely 760 nm, 800 nm, 850 nm.
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Deep 3D CNN

We implemented the two architecture of deep 3D CNNs for cancer tissue detection

using the MPA thyroid image dataset, and a mixture of an MPA thyroid and prostate

image dataset [51]. The input MPA data of size 64× 64× 105 pixels was prepared

by concatenating a 21-slice C-scan PA image at five wavelengths, namely 760 nm,

800 nm, 850 nm, 930 nm, 970 nm.

Automatic Localization

We implemented the grad-cam algorithm [84] using the deep 3D CNN for the auto-

matic localization of cancer region in a test MPA image.

5.2 Conclusion

While previous efforts using the same dataset involved decision making using math-

ematically extracted image features, this work demonstrates that this process can

be automated without any significant loss of accuracy. Another major contribution

of this work has been to demonstrate that both prostate and thyroid datasets can

be combined to produce improved results for cancer diagnosis with the automatic

localization of the cancerous region.



Chapter 6

Transfer Learning for Cancer

Detection

This work is taken from the paper published by SPIE Medical Imaging, 2019.

[Kamal Jnawali, Bhargava Chinni, Vikram Dogra, and Rao Navalgund.

Transfer Learning For Automatic Cancer Tissue Detection Using Multi-

spectral Photoacoustic Imaging. In Proc. Medical Imaging 2019: Computer-

Aided Diagnosis, volume 10950, page to be published. International So-

ciety for Optics and Photonics] [50].

Abstract

Pathology diagnosis is usually done by a human pathologist observing tissue

stained glass slide under a microscope. In the case of multi-specimen study to
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locate cancer region, such as in thyroidectomy, significant labor-intensive processing

is required at high cost. Multispectral photoacoustic (MPA) specimen imaging, has

proven successful in differentiating photoacoustic (PA) signal characteristics between

a histopathology defined cancer region and normal tissue. A more pragmatic research

question to ask is, can MPA imaging data predict, whether a sectioned tissue slice

has cancer region(s)? We propose to use inception-resnet-v2 convolutional neural

networks (CNNs) on the thyroid MPA data to evaluate this potential by transfer

learning. The proposed algorithm first extracts features from the thyroid MPA

image data using CNN and then detects cancer using the softmax function, the last

layer of the network. The model achieved an area under curve (AUC) of cancer,

benign nodule and normal are 0.73, 0.81, and 0.88 respectively.

6.1 Introduction

Currently, deep learning tasks are being used in the field of digital pathology, and

are successful in cancer (lymphoma) classification tasks [46]. The number of the

samples in the dataset to solve a medical imaging problem are often limited due to

many constraints. However, deep learning architectures demand significant number

of samples in a given dataset for a robust predictive performance. To overcome

this problem related to limited samples, Litjens et al. [65] discussed the possibility

of transfer learning technique in the medical imaging field. Transfer learning is a

technique where a deep learning architecture learns the features from one domain,

for example, natural image and later apply the technique to another domain which

can be different but deals with the realted problem. Transfer learning also helps
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to train the network faster than training the network from a scratch. It also helps

to minimize over-fitting issues [55]. Khosravi et al. [58] successfully implemented

the transfer learning to cancer classification tasks. In recent years [48], CNNs were

used as a popular classifier for an automatic feature extractor and classifier. In

this paper, we implemented a transfer learning technique to the limited MPA image

thyroid dataset using the state of the art inception-resnet-v2 [96] deep learning

algorithm. The performance of the model was evaluated by calculating the area

under the curve (AUC) of the receiver operating characteristic (ROC) curve [36],

precision recall, and f1 score [6].

6.2 Dataset preparation and analysis

The PA images of each thyroid samples were generated with the short-pulsed laser

at five different wavelengths: 760 nm, 800nm, 850 nm, 940nm, and 970 nm [28].

We prepared the MPA dataset using the first three wavelengths 760 nm, 800 nm

and 850 nm. The spatial dimensions of the PA image in the dataset were ranging

from 20 × 64 pixels to 64 × 64 pixels. In the depth direction; we have considered

200 slices correspond to 5 mm of tissue thickness. The single-spatial-2D C-scan

image with maximum pixel intensity was extracted from the 200-spatial-2D C-scan

at each wavelength. Finally, one MPA dataset was prepared by concatenating three

single-spatial-2D C-scan image at three different wavelengths 760 nm, 800nm, 850

nm respectively. The spatial dimension of the concatenated image was increased to

299 × 299 pixels using bilinear interpolation to fit into the input of the inception-
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resnet-v2 network. One sample of thyroid cancer tissue specimen and its PA is show

in figure [6.1].

Figure 6.1: Sample of the thyroid specimen with the metric scale, histopathological
slide and 3D PA image of the specimen of size 299 × 299× 200, where one pixel of
spatial 2D image is equal to 0.7× 0.7 mm2.

The data structure used to train the inception-resnet-v2 is shown in figure [6.2].

Figure 6.2: The structure of the input MPA dataset with size 299 × 299 × 3 pixels
fed to the inception-resnet-v2.
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Table 6.1: Normal, benign and malignant tissue distribution of thyroid MPA dataset

Tissue Specimen Thyroid

Normal 40

Benign 46

Cancer 17

Total 103

6.3 Experiment

In this paper, 103 samples, as shown in table (6.1) of thyroid specimens were taken

to train, validate, and test the inception-resnet-v2 network for the cancer tissue

detection. The MPA dataset were annotated into three groups: normal (40 speci-

mens), benign nodule (46 specimens) and cancer tissue (17 specimens). The dataset

was divided into train (73 specimens) and test dataset (30 specimens) in the ratio

of 0.7 : 0.3 respectively, and the train dataset was further divided into the ratio

of 0.8 : 0.2 into train (58 specimens) and validation dataset (15 specimens) respec-

tively. The model was trained using five-fold cross validation [15] where the dataset

is divided into five groups and one group corresponds to validation set and the rest

groups correspond to training set. The cross validation method while training a

classifier is useful to minimize the variance in the model [15].

The inception-resnet-v2 [96] network for the cancer tissue detection was trained

in tf-slim, a lighter version of tensorflow in python. The inception-resnet-v2 network

is a variation of inception-v3 network [97] borrows ideas from the residual network

[38]. The data was first divided in to the train, validation and test data set, and



CHAPTER 6. TRANSFER LEARNING FOR CANCER DETECTION 67

then converted to a tfrecord data structure.

In this paper, we changed the number of nodes in the final layer of inception-

resnet-v2 to three for three class classification. The network was initialized with

the image net weights [96] and trained with learning rate initialized at 0.0001 and

decayed by the factor of 0.1 in each two epochs. The network weights were updated

with adam optimizer [57] during back propagation [42]. The MPA dataset was

augmented by rotation, translation, mirroring, vertical and horizontal flipping, and

cropping. The image augmentation technique helps to increase the number of sample

to design an efficient deep neural network [59]. The network was trained for the

100 epochs while saving the best classification score to the disc using the model

checkpoint [2] module. The module provides a method for the early stopping method

along with an option to monitor metric during training. The early stopping [74] with

the patience of 5 was chosen while training the network. The dropout [93] of 0.9

was applied to the network to prevent overfitting. These automated methods help

to train the network with improved performance and reduced overfitting.

6.4 Result

The performance of the model was evaluated by generating the classification reports,

and AUCs of ROC curve for the cancer, benign nodule and normal tissue. The

classification report with precision, recall, and f1 score is shown in table [6.2]. The

AUCs of the ROC curve for the three classes are shown in figure [6.3]
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Precision Recall f1 Score Support

Cancer 0.80 0.50 0.62 8

Benign Nodule 0.69 0.75 0.72 12

Normal 0.75 0.90 0.82 10

Avg 0.74 0.73 0.72 30

Table 6.2: Precision, recall, f1 score and support

Figure 6.3: ROC curve for the cancer, benign nodule and normal thyroid tissue
specimen respectively compared against each other

6.5 Conclusion and Future works

In this article, we implemented the deep neural network based on transfer learn-

ing with the inception-resnet-v2 for the cancer tissue detection with limited MPA
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dataset with very promising results (AUCs for cancer, benign nodule and normal

are respectively 0.73, 0.81, and 0.88). To the best of our knowledge, this is one of

the first examples of the use of a deep transfer learning to cancer tissue detection

using PA imaging. The use of the inception-resnet-v2 network as the deep transfer

learning tool for the limited dataset shows a potential for cancer tissue detection

even when the dataset was often limited. We found that the prediction performance

of the network is more robust to benign nodule and normal tissue than cancer tissue.

This may be due to the greater number of normal and benign tissue compared to

cancer tissue.

The primary future direction of this work is to collect a significant number of bal-

anced MPA datasets to improve the predictive performance of the network, as a

predictive performance of a deep learning architecture improves generally with the

greater number of samples [48]. Jnawali et al. [47] reported that PA signal is strongly

dependent on the shape and size of the tissue. The secondary future direction of

this work is to develop the deep 3D CNN [51] to the existing dataset to extract the

volumetric temporal (frequency) tissue information. Jnawali et al. [48] reported

that a 3D CNN will be better choice than a 2D CNN when volumetric information

becomes important.



Chapter 7

3D CNN for Cancer Detection

We implemented deep 3D CNN to detect cancer tissue using the MPA thyroid image

dataset with improved performance compared to the transfer learning network de-

scribed in chapter 6. This chapter also seeks to evaluate the ability of MPA imaging

to extract the characteristic features corresponding to cancer tissue in the prostate

tissue specimen; irrespective of a tissue specimen location.

This work is taken from the paper published in SPIE Medical Imaging, 2019.

[ Kamal Jnawali, Bhargava Chinni, Vikram Dogra, Saugata Sinha, and

Rao Navalgund. Deep 3D Convolutional Neural Network For Automatic

Cancer Tissue Detection Using Multispectral Photoacoustic Imaging . In

Proc. Medical Imaging 2019: Ultrasonic Imaging and Tomography.] [51].
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Abstract

Multispectral photoacoustic (MPA) specimen imaging modality is proven suc-

cessful in differentiating photoacoustic (PA) signal characteristics from cancer and

normal region. The oxy and de-oxy hemoglobin content in human tissue captured

in the MPA data are the key features for cancer detection. In this study, we propose

to use deep 3D convolutional neural network trained on the thyroid MPA dataset

and tested on the prostate MPA dataset to evaluate this potential. The proposed

algorithm first extracts the spatial, spectral, and temporal features from the thyroid

MPA image data using 3D convolutional layers and detects cancer tissue using the

logistic function, the last layer of the network. The model achieved an area under

curve (AUC) of 0.85 and 0.72 on the thyroid and prostate MPA dataset respectively.

7.1 Introduction

The American cancer society estimates about 164,690 new cases of prostate cancer-

the third leading cause of cancer- which is estimated to cause about 29,430 deaths

in the United States for the year 2018 [1].

Photoacoustic (PA) imaging [116] is an emerging, noninvasive, functional and molec-

ular imaging modality that exploits the PA effect to combine the strength of contrast

of optical imaging and spatial resolution and penetration depth of the ultrasound

imaging [28]. In PA imaging, tissue is irradiated by a short-pulsed laser light in

the near-infrared region. When light is locally absorbed, heat is generated. The

generated heat converts into increased pressure. The increased pressure propagates



CHAPTER 7. 3D CNN FOR CANCER DETECTION 72

as an ultrasound wave and generates the PA signal which is finally recorded by a

transducer [47]. The PA signal amplitude is proportional to the optical absorp-

tion coefficient of tissue [28]. The PA image contrast is based on the distribution

of optical absorption and scattering of all tissue chromophores (deoxyhemoglobin,

oxyhemoglobin , lipid, water) [28]. Multispectral photoacoustic (MPA) imaging is

capable of containing oxy and deoxy hemoglobin at multiple wavelengths, a key fea-

ture for cancer tissue detection. This has been demonstrated in previous studies

[28, 29].

Recently convolutional neural networks (CNNs) are becoming very popular due to

their capacity to tackle complex computer vision learning problems. CNNs are used

in number of computer vision problems such as image classification tasks [48, 59],

caption generation [105], text classification [49] and image segmentation [24]. In

past few years, deep learning algorithms have been successfully used for the digital

pathology [46] for classification tasks. The power of CNN lies in its capability to

extract the discriminant features at multiple level of abstraction without human in-

volvement. CNNs are very appealing because of their ability to extract a hierarchy

of increasingly complex features specific to a problem at hand.

In this article, the deep 3D CNN was designed for the cancer tissue detection using

the thyroid and prostate MPA dataset. The same dataset was used in previous

studies [28, 29, 75] for cancer tissue detection based on the spectral, and frequency

handcrafted features. In the previous studies, the authors [28, 29, 75] trained and

tested their classifiers only on the region of interest (cancer/benign/normal), ex-
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tracted from the MPA dataset. The region of interest in the PA image was extracted

by co-registration of PA image and histopathology slide as in figure (7.1) where the

region of interest in the histopathology slide was marked by the pathologist. Dogra

et al. [28, 29] used the handcrafted spectral feature for the cancer tissue detection

using a logistic regression model. Rajanna et al. [75] implemented a neural network

for the cancer tissue detection with the handcrafted frequency and spectral features

using the 807 samples of pixel taken from the 42 prostate MPA dataset. Rajanna

et al. [75] used 29 features and ranked the most promising features. The previous

methods ignored the spatial features. The estimation of the concentration of chro-

mophores at multiple wavelength helps to measure the blood volume [11] for cancer

tissue detection. Since the malignant tissue is generally richer in blood volume than

normal tissue [72], including blood volume measurement and spatial features in can-

cer tissue detection improves a predictive performance of the network. Previous

studies used manual extraction of spectral [28, 29, 75] and frequency (temporal) [75]

features but ignored blood volume and spatial features. This CNN performs au-

tomated extraction of blood volume and spatial features in addition to automated

extraction of spectral and temporal features with the 3D convolutional kernel cube,

reduces cost, time of analysis and improves predictive performance.

In this paper, we introduced the deep 3D CNN as an automatic spatial, spectral

and temporal(frequency) cancer tissue feature extractor and detector. The current

method reduced the very time consuming manual work of feature extraction and

co-registration of the histopathology slide to PA image. In addition to the detec-
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tion, this paper also evaluated the ability of the MPA imaging technique to extract

common prominent features of cancer in the two tissue location as the network was

trained with the thyroid MPA dataset and evaluated on the thyroid and prostate

MPA dataset.

7.2 Dataset

In this paper, the samples were divided into non-cancer and cancer while in the

previous studies the samples were divided into cancer, benign and normal tissue

group [28, 29, 75, 90]. The ground truth was annotated by a radiologist. The

size of the data cube at each wavelength was ranging from 20 × 64 × 200 pixels to

64× 64× 200 pixels. The first two dimensions capture the spatial 2D C-scan image

and the third dimension captures the volumetric temporal A-line along the depth

direction where one C-scan slice corresponded to tissue of depth 4µm. One sample

of prostate cancer tissue specimen and its PA image is shown in figure [7.1].

Figure 7.1: Histopathology sample of the prostate specimen with the metric scale
and 3D PA image of the specimen of size 64× 64× 990
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Figure 7.2: The structure of the input MPA dataset with size 64 × 64 × 105 pixels
fed to the proposed deep 3D CNN architecture.

The 21 spatial 2D C-scans were extracted from the 200 spatial 2D C-scan PA

image from each wavelength of each sample. Then spatial dimension of each PA

sample was increased to 64× 64 pixels with a bilinear interpolation to make the size

of all dataset uniform. Finally, each sample data was prepared by concatenating five

21-2D PA image cube corresponding five wavelengths 760 nm, 800 nm, 850 nm, 930

nm and 970 nm respectively to 105 C-scan MPA datacube as in figure (7.2).

7.3 Method

In this paper, the proposed architecture consisted of two 3D convolutional layers,

two 3D max pooling layers, two fully connected layers and a classifier as shown in

figure (8.7). The network was trained up to 25 epochs with batch size of 80 while

saving the model corresponding to the lowest classification error. The network was

initialized with the He initialization parameter [39] that makes back-propagation

efficient. The batch normalization [44] was applied after each convolutional layer,

and fully connected layer for a faster training. The batch normalization also acts

as a regularizer to improve the network’s predictive performance. Dropout of 0.5
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was applied after each fully connected layer that acts as regularizer[93] to prevent

a over-fitting. Rectified linear unit (ReLu) activation function was applied after

each convolutional layer and fully connected layer for efficient back propagation

by reducing the gradient vanishing problem [59]. The network’s model parameters

were updated with the Adam optimizer [57] during the back propagation. The

network was trained with a learning rate equal to 0.01 and decayed exponentially

in each epoch by 0.1. The hyperparameter set {number of convolutional layers, size

of convolutional filters, stride size, maxpooling layers, number of fully connected

layers, number of nodes in the fully connected layer, activation function, dropout,

and learning rate} were optimized with grid search. The first convolutional layer

(colored in yellow) consisted of 16 filters with kernel size 3 × 3 × 3 with 1 pixel

stride in two spatial X and Y direction and 2 pixels stride in depth direction. The

maxpooling layer (colored in green) was used to reduce the number of features from

the first convolutional layer. The pooling size of the first maxpooling layer was

3× 3× 3. The second convolutional layer consisted of 24 filters with size 3× 3× 3

with 2 pixels stride in all directions. The second convolutional layer was followed

by the maxpooling layer and the pooling size of the second maxpooling layer was

2×2×2. The two fully connected layers with 500 and 100 nodes respectively added

to the network. Finally, a logistic function was applied to the network for binary

cancer tissue detection.
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Figure 7.3: The detail architecture of the proposed network for the cancer tissue
classification using the MPA dataset

Input size Output size

Image size 64× 64× 105 64× 64× 105

Convolutional layer 1 64× 64× 105 16× 64× 64× 53

Maxpooling 1 16× 64× 64× 53 16× 21× 21× 17

Convolutional layer 2 16× 21× 21× 17 24× 11× 11× 9

Maxpooling 2 24× 11× 11× 9 24× 5× 5× 4

Fully connected layer 1 24× 5× 5× 4 500

Fully connected layer 2 500 100

Binary cancer tissue classifier 100 1

Table 7.1: Hyperparameters used in the deep 3D CNN

7.4 Experiment

The 108 PA thyroid MPA dataset was used to train the 3D deep neural network

and the network was tested on the thyroid and 28 prostate MPA dataset. The

train thyroid dataset was divided into the train (92 specimens) and test data ( 16

specimens) in the ratio of 0.85:0.15 respectively. The train data was further divided

into the 0.8:0.2 for the training (74 specimens), and validation (18 specimens) dataset

respectively. The network was trained with five fold cross-validation [15]. The cross-
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validation method while training a classifier is useful to minimize the variance in

the model [33]. The network was trained, and validated using the thyroid MPA

dataset. The number of samples were increased using image augmentation [59]

before training the network. This increases the samples and is useful when dataset

is limited. In this chapter, the MPA dataset was augmented by random pixel shift

from (1, 10), random pixel rotation from (1, 10), random noise from (1, 10), vertical

flipping and horizontal flipping as in figure (7.4). The cancer MPA dataset was

augmented almost five times more than the normal MPA dataset. The distribution

of data was remained imbalanced after augmentation. In addition to augmentation,

a class-weight parameter [118] was introduced while training the network. The

validation dataset was used to optimize the hyperparameters of the network. The

optimal choice of hyperparameter improves the predictive performance of a deep

learning architecture. The set constituted the set of hyperparameters. A grid search

method was used to optimize the hyperparemeter for the proposed model. The set of

hyperparameters used for the model is tabulated in table (7.1). Finally, the network

for the cancer tissue detection was tested on the thyroid and 28 prostate MPA dataset

by generating the area under curve (AUC) of receiver operating characteristic (ROC)

curve.

Figure 7.4: Methods used for the data augmentation
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7.5 Result

The model was tested on the thyroid and prostate MPA dataset. The AUC with

value 0.85 and 0.72 for the thyroid and prostate dataset respectively are shown in

figures (7.5) and (7.6).

Figure 7.5: ROC curve generated by the model on the thyroid test dataset with
AUC of 0.85

Figure 7.6: ROC curve generated by the model on the prostate test dataset with
AUC of 0.72
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7.6 Conclusion and Future works

In this article, we implemented a 3D CNN, trained with thyroid MPA dataset to de-

tect thyroid cancer with 0.85 AUC and prostate cancer with 0.72 AUC. We trained

the network on the thyroid dataset because of grater number and tested on the

prostate. The number of training samples was limited and the distribution of dataset

was highly skewed toward normal tissue. To address this problem, data augmenta-

tion and class weight[118] methods were implemented while training the network.

Furthermore, ROC was chosen as the metric to test the performance of the classifier.

Training the model on the thyroid MPA dataset, and testing on the prostate

MPA dataset with promising result may suggest the oxy and deoxy hemoglobin,

and frequency content of the PA signal are the prominent features for cancer tissue

detection which has been proven [28, 29, 75]. In addition to spectral and frequency

content, the model was able to extract the volumetric signature of blood [11] with

the cubic convolutional kernels from the MPA dataset. Given the AUC of 0.85 on

the thyroid MPA dataset, the AUC of value 0.72, generated by the network, on the

prostate MPA dataset, may suggest the similar distribution of the optical, temporal

(frequency), and volumetric signature of blood in the thyroid and prostate cancer

tissue. These result may indicate the model’s ability to extract common prominent

features, irrespective of sample location, with a high degree of accuracy. To our

knowledge, this work is one of the first applications of a deep 3D convolutional

neural network trained on the thyroid MPA dataset and tested on the prostate

MPA dataset.
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Recently, histopathology slides were used for the prostate cancer diagnosis with

very promising result [66] with more number of the sample compared to this study,

however the two models were implemented on two different domain dataset. In

general the performance of a deep learning architecture improves with the number

of samples [48]. The primary future direction of this work is to collect a greater

number of tissue samples. Jnawali et al. [50] developed the thyroid cancer tissue

detector using the 2D inception-resnet-v2 [96] with a promising result. Since the

volumetric time domain [47] and spectral information [29] are promising features to

detect the cancer tissue, the secondary future direction of this work is to modify the

existing inception-resnet-v2 [96] deep neural network to 3D neural network.



Chapter 8

3D CNN: Cancer Detection and

Localization

This model is an improvement over the previous model described in chapters six

and seven. This model was trained and evaluated on the mixture of prostate and

thyroid dataset with the deeper network. This chapter also implemented a grad-cam

algorithm to localize the cancer tissue in the given test MPA dataset automatically.

Abstract

Pathology diagnosis is usually done by a human pathologist observing stained tissue

glass slide under a microscope. In the case of multi-specimen study to locate can-

cer regions, such as in thyroidectomy, and prostatectomy, significant labor-intensive

processing is required at a high cost. Multispectral photoacoustic (MPA) specimen

82
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imaging, has proven successful in differentiating photoacoustic (PA) signal charac-

teristics between a histopathology defined cancer region and normal tissue. This

is mainly due to its ability to efficiently map oxyhemoglobin and deoxyhemoglobin

content from MPA images, key features for cancer detection. A fully automated

deep learning algorithm is purposed, which learns to detect the presence of can-

cer in freshly excised ex-vivo human thyroid and prostate tissue specimens using

three dimensional (3D) multispectral photoacoustic (MPA) dataset. The proposed

automated deep learning model consisted of the CNN architecture, which extracts

spatially co-located features, and a logistic function that detects a cancer tissue.

The area under the curve (AUC) was used as a metric to evaluate the predictive

performance of the classifier. The proposed model detects and locates cancer tissue

with the AUC of 0.96.

8.1 Introduction

Siegel et al. [88] reported 595,690 deaths out of 1,685,210 new cases of cancer in

the United States in the year of 2016. 1,980 deaths out of 64,300 reported new

cases of thyroid cancer, and 26,120 deaths out of 180,890 reported new cases of

prostate cancer in the same year [88]. American Cancer Society recommends men

older than 50 years for (prostate) cancer screening [28]. Screening is done with

prostate-specific antigen and digital rectal examination, but both screenings suffer

from low specificity (the percentage of actual negatives that are correctly classified)

and sensitivity (percentage of actual positives that are correctly classified) [28, 88].

Early detection and risk assessment play a significant role in the success of treat-
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ments to improve the survival of patients [28]. Ultrasound (US) imaging is widely

used in cancer tissue [87] screening because of its relative safety, low cost, nonin-

vasive nature, real-time display [67]. Trans-rectal ultrasound (TRUS) is a common

US imaging for prostate cancer detection; however, there are types of cancers not

visible to TRUS [28]. This is because the US has a relatively low contrast, which is

based on the detection of mechanical properties of the tissue [45]. Incorrect diagnosis

of the cancer tissues using US imaging could lead to delayed diagnosis and treat-

ment or over-diagnosis and over-treatment [101] because of low-resolution structural

imaging [28]. In addition to the US, magnetic resonance imaging (MRI) is another

imaging for cancer tissue screening; however, it has not been widely used because of

its high cost and slow imaging speed [89]. X-ray computed tomography (CT) offers

high tissue penetration depth and excellent spatial resolution; however, it suffers

from low sensitivity for lesion detection [25]. Gonzalez et al. [25] also reported that

X-ray radiation possesses risk of radiation associated with cancers [45]. Sinha [89]

reported that CT has minimal application in cancer tissue screening because of its

ionizing radiation properties. Positron emission tomography (PET) is capable of

extracting functional information such as blood metabolism for cancer tissue detec-

tion [70]; however it suffers from low spatial resolution [45]. Single-photon emission

computed tomography (SPECT) shares similar physics of imaging technique with

PET, but it also suffers from lower spatial resolution [89]. Currently, the primary

medical imaging modality used for cancer diagnosis are US, CT, MRI, PET, and

SPECT. Although most of these technologies are well established and widely used
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in practice, there are problems related to low sensitivity and specificity and higher

cost for cancer diagnosis [43].

Figure 8.1: The figure shows the pixel intensity distribution of the encircled region
of interest of the PA images taken at two wavelengths. The figure shows that
the PA image is capable of detecting cancer because of high concentrations of the
deoxyhemoglobin at 760 nm compared to the lower concentrations of oxyhemoglobin
at 850 nm. Reproduced with permission from [28].

Photoacoustic imaging (PAI) is a new medical imaging technique [104] that is

currently making a transition from bench to bedside, both in terms of technology

[104] and clinical applications [28]. PAI is based on the photoacoustic(PA) effect,

which is a phenomenon of generating acoustic waves from an object illuminated by a

pulsed laser light [104]. PAI is an emerging noninvasive soft tissue medical imaging

modality that exploits the PA effect to combine the strength of optical imaging is
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capable of producing high contrast imaging and ultrasound imaging which is capable

of producing high resolution in deep tissue imaging [47, 103]. PA imaging is safe due

to its non-ionizing radiation properties [104]. Furthermore, it is also low-cost, which

is a huge plus over other imaging techniques like MRI or CT [34]. MRI or CT is

not capable of detecting cancer tissue in the early stage and is capable of detecting

cancer tissue when the diameter grows to 1 cm in size [107].

The PAI modality is capable of extracting rich details of the optical contrast

of the tissue architecture, and molecular distribution as the different optical energy

(with the specific wavelength) excites the different tissue chromophores [116]. The

PA imaging at the given wavelength is capable of generating high contrast PA images

of optically active corresponding chromophore as the chromophore has different ab-

sorption properties in different laser wavelengths ( higher intensity pixel distributions

of deoxy in 760 nm and lower for that of oxy in 850 nm as in figure (8.1). Multiple

high contrasts five wavelengths can generate PA images of the optically active chro-

mophores such as oxyhemoglobin (high in oxygen content), deoxyhemoglobin (low

in oxygen content), lipid, and water: 760 nm, 800 nm, 850 nm, 930 nm, and 970 nm

[28]. These chromophores make the PA imaging system to image optical biomarkers

for cancer tissue detection [28, 90]. In multispectral photoacoustic (MPA) imaging,

the large difference in light absorption coefficient between blood and other tissue

constituents enables detection of tissue angiogenesis associated with rapid tumor

growth in early stages [61]. That makes the PA imaging capable of functional imag-

ing. The PA image acquisition produces robust and less error-prone co-registered
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images capable of both structural and functional imaging compared to current imag-

ing techniques such as MRI with US [3]. The functional, and structural information

such as spatial distribution, volumetric distribution, and the spectral signature of

the chromophores can be extracted with the use of multispectral 3D PA imaging

techniques [90, 116].

Figure 8.2: a. Tissue specimen, b. Histopathology of the prostate with malignant
region encircled, c. PA image acquired at 760 nm wavelength, d. PA image acquired
at 850 nm wavelength, e. PA image showing absorption of dHb, f. PA image
showing absorption of HbO2 (Reproduced with permission from [28]). The encircled
region taken at the deoxyhemoglobin channel of the PA image (figure e) shows
the presence of malignant region because deoxyhemoglobin absorbs more light to
generate a higher pixel intensity region. The presence of deoxyhemoglobin is a strong
indicator of the presence of cancer [28]. The encircled region with the malignant
tissue in the PA image at 760 nm wavelength corresponds to the higher pixel intensity
[28]. Previous works required to extract the encircled region of interest corresponding
to cancer and non-cancer region by the co-registration of the histopathological slide,
photograph-based image, and PA-based image.
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Dogra et al. [28, 29] implemented the logistic function for cancer tissue detection

using manually extracted features using the pixel-based samples. The handcrafted

features were extracted by the pathologist and the expert in the field of PA imaging.

Dogra et al. reported the accuracy of 0.9 on the prostate pixel-based samples [28] and

accuracy of 0.83 on the thyroid pixel-based samples [29]. The pixel-based samples

were extracted from normal, benign, and cancer regions from the PA image (the

encircled region in PA image (8.2, (c))). The encircled region corresponding to the

normal, benign, and cancer in PA image was generated by the co-registration of

the histopathological slide and photograph image with the PA image (photograph

(figure 8.2, (a)), histopathology slide (figure 8.2, (b)), and the two dimensional C-

scan PA image (figure 8.2, (c))). The discriminant analysis was performed on PA

image data that fell within the selected regions, not the entire image. All methods

[28, 29] involved the manual, labor-intensive work to co-register the histopathological

slide, and photograph to the PA image to extract three regions of interest such as

normal, benign, and cancer. Moreover, the process was time-consuming to extract

the optimal set of handcrafted features. That demanded the involvement of the

expert with domain knowledge such as pathologist and image scientist [28, 29].

Dogra et al. [28] took one-slice C-scan out of 200-slice C-scan PA image (figure

8.3) at each wavelength and concatenated the five C-scans at five wavelengths to

make five-channel C-scan images [28]. The five-channel C-scan image was then con-

verted to 4-channel chromophore image (oxyhemoglobin (8.2, (e)), deoxyhemoglobin

(8.2, (f)), lipid, and water). The set of pixels from the region of interest (normal and
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malignant set of pixels from the encircled region) were collected and averaged to gen-

erate one pixel with four-channel chromophore (oxyhemoglobin, deoxyhemoglobin,

water, and fat) image. Furthermore, only the pixel amplitude-based features were

used, thus ignoring any possible (2D and 3D) spatially discriminant features. 2D

spatial and 3D volumetric information is useful when the cancer tissue structure

expands in all directions [48, 79].

Figure 8.3: Histopathology specimen with the metric scale and 3D PA image of the
specimen of size 64× 64× 200, where first two dimension corresponds to the C-scan
image and third dimension corresponds to the time-gated C-scan at different depth
of the tissue specimen.

The machine learning classifiers used in the previous methods were trained, val-

idated, and tested on the MPA pixel-based dataset, not in the whole MPA image

dataset (Figure 8.4). These processes consisted of the extraction of the pixel-based

MPA samples from the encircled region using the co-registration of the photograph,

histopathological slide (suggested by the pathologist), and C-scan PA image. The

process was labor-intensive and time-consuming, and yet the classifier is not fully
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automated during testing.

This work was trained and evaluated on the whole MPA image, and hence, it

removes the labor-intensive work required to extract the pixel-based samples using

co-registration. That makes the current method is capable of detecting cancer tissue

automatically [50, 51]. The previous studies using machine learning algorithms

[28, 29] used the pixel-based handcrafted features such as pixel intensity but ignored

the spatial and volumetric distribution of chromophores (blood). These work fail to

extract spatial and volumetric information (figure (8.4)), which becomes essential

when cancer tissue extends in all directions [48]. The process can be automated

with the use of deep learning architecture consisted of convolutional neural networks

(CNN)s.

Currently CNNs have been successfully used for a wide range of imaging tasks

including image classification [9, 48], object detection [86] and semantic segmentation

[14], and radiological text classification [49] in medical imaging. CNNs are popular

because of their ability to extract the discriminant features at multiple levels of

abstraction automatically without prior knowledge [97].

Jnawali et al [50] implemented 2D CNN using inception-resnet-v2 [96] for cancer

tissue detection the spatial distribution of the chromophores with the AUC of 0.73.

The method fails to extract the volumetric information (figure (8.4)). As the cancer

tissue spreads in all directions, it is useful to implement the deep 3D CNN [48].

Jnawali et al. [51] improved the performance of cancer tissue detection with the use

of the 3D CNN [50] with the AUC of 0.85. The improvement is due to that the
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Figure 8.4: The figure shows the type of samples used to train, validate and, test
the performance of the classifiers described in the previous studies (A) [28, 29], (B)
[50], (C) [51] and the current study. The left figure shows the pixel-based samples
used in the previous studies [28, 29]. The middle figure shows the concatenated
one-channel C-scan PA image at three wavelengths samples used in the transfer
learning network. The right figure shows the concatenated 21-channel C-scan PA
image at five wavelengths samples used in the two 3D CNNs [51] and this paper.
The left figure shows the requirement of the co-registration of PA image with the
histopathological slide and the photograph of tissue specimen to extract the encircled
region of interest during a time for a cancer tissue detection. The method used in
the previous studies still requires manual work for co-registration during test time.
This process becomes automated with the use of an entire MPA image during the
test time for the cancer tissue detection.

deep 3D CNN is capable of automated extraction of volumetric blood concentration

[48, 51] with the 3D convolutional kernel cube, which reduces cost, time of analysis

and improves predictive performance. These two methods reduced the very time

consuming manual work of feature extraction and co-registration [28, 29] and made
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the detector complete automatic.

Jnawali et al. [51] implemented the deep 3D CNN with seven layers on the

prostate MPA image with the AUC of 0.72, given the AUC of 0.85 on the thyroid

test dataset, where author trained the deep 3D CNN on the thyroid MPA image

[51]. Jnawali et al. [51] reported that there are common dominant discriminant

features extracted by a PAI for cancer detection in thyroid and prostate. With

this assumption, we created the train, validation, and test dataset with mixing the

thyroid and prostate MPA image datasets with more balanced samples to train with

deeper 3D CNN than the previous work [51]. A deep learning network generally

improves with more samples [48], and the depth of the network (helps to extract

more number of features with the use of more CNN filters) [38]. In this paper, the

deep 3D CNN with more number of hidden layers is introduced for cancer detection

and cancer region localization and compared to the deep 3D CNN with seven layers

[51].

8.2 Ex-vivo PA dataset acquisition

Because we used a unique setup to acquire PA signal data set from tissue specimens,

it is important to describe the method and the resulting data structure in this section

briefly. The method, the details of which can be found in [103], is illustrated in figure

(8.5). An expanded beam of 10 ns pulse of NIR laser light with delivered pulse energy

below 20 mJ/cm2 and pulse repetition rate of 10 Hz was used to expose the tissue

specimen immersed in a water-filled medium [47]. PA signals in the form of a short
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pulse of US generated from absorbers everywhere in the exposed 3D tissue volume

propagate towards a specially designed acoustic lens of focal length f . The lens

enables the simultaneous focusing of all the waves on the other side of the lens. If

the center of the tissue is kept at a distance 2f from the lens, then a 32 element

linear array of US transducers can be placed at 2f distance on the other side to

detect the focused PA signals at 32 different pixel locations in the image plane for

each laser firing. These US time signals, referred to as A-line signals, were amplified

and then digitized at 30 MHz on 32 independent channels simultaneously. A-line

signals were envelope detected in order to keep only the slowly varying nonzero signal

values. The linear array was scanned in the image plane with repeated laser firing

to collect PA signals over the entire image plane. The spatial resolution achieved by

this system was around 1.3 mm [104]. PA signals from different depth planes along

the lens axis arrive at the image plane at different arrival times due to the finite

propagation speed of the US in water. By taking time slices on all the A-line signals,

one can generate 2D C-scan PA images that correspond to different depth planes in

the tissue as in figure (8.5). We were able to pick a time gate of 200 sample width,

indicated by t1 and t1 in figure (8.5), that included all PA signals coming from the

entire 3 mm thickness of every tissue specimen. The scanning in the image plane

was typically done over a 40 × 40 pixels with a pixel size of 1 mm by 1 mm. The

typical size of the 3D data for CNN study was 40× 40× 200.

Every tissue specimen was imaged at five different NIR wavelengths, 760 nm,

800 nm, 850 nm, 930 nm, and 970 nm, generating 3D PA image dataset of typical
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size 40 × 40 × 200 for each. Patient consent was taken before prostatectomy and

thyroidectomy following the University of Rochester medical center internal review

board (IRB) protocol. One slice from the freshly excised gland was photoacousti-

cally imaged with our set up within 15 to 30 minutes of surgery and then returned

to the pathology department for further processing. Histology slide image and in-

terpretation of that particular specimen was given to us later to be used as ground

truth.

Figure 8.5: Schematic of the PA signal data acquisition setup. An acoustic lens was
used to focus the photo-acoustically generated US waves and detect it by a linear
US transducer array (not shown in figure). The C-scan image at the given depth
is simply the magnitude of the raster scanned A-line signals at the given time for
example t1 (the time information was encoded to depth using c = d× t, where c is
the velocity of sound, d is the distance, and t is the time travel.) [103].

There is a trade-off between image quality and real-time imaging based on the

transducer’s number of elements. Furthermore, there are numerous techniques re-

ported for the PA image reconstruction from the recorded PA signals by the trans-
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ducer. There is a serious mathematical difficulty to use the Radon transform equa-

tion for an exact PA image reconstruction [116]. The algorithms namely back-

projection [41], Fourier based [116], deconvolution based [113], iterative [22] were

implemented for PA image reconstruction [116]. Rao et al. [76, 77] proposed the

acoustic lens, which helps to circumvent the process of the PA image reconstruc-

tion [77]. The use of the acoustic lens makes the PA image acquisition process fast,

robust, and less error-prone [77, 103].

Table 8.1: Normal and malignant tissue distribution

Tissue Specimen Thyroid Prostate Total

Normal 91 17 108

Cancer 17 15 28

Total 108 28 136

8.3 Method: Deep 3D CNN with 11 layers

This section describes the step involving data preparation and the details of the

algorithm for cancer tissue detection. This paper introduced the deeper deep 3D

CNN with 11 layers than the deep 3D CNN with seven layers [51] and proved to be

the best model to the date, to the best of our knowledge, compared with models

[28, 29, 50, 51].

Data Preparation

Due to variability in data acquisition, the size of the data cube was not constant; it

ranged from 20× 64× 200 to 64× 64× 200. The first two dimensions correspond to
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the C-scan image along X, and Y direction in figure (8.6) and the third dimension

corresponds to time samples along with the array of A-line signal (time-gated C-scan

[104]). The third dimension reduced to 21 slices from 200 slices of C-scan PA image

by taking the maximum of the sum of pixel intensity of C-scan and its ten neighbors.

Equalization in the X and Y direction was done by increasing the dimension to 64

by 64 with bilinear interpolation, as shown in (8.6). The complete MPA dataset for

each specimen was prepared by concatenating the five image cubes corresponding

to wavelengths 760 nm, 800 nm, 850 nm, 930 nm, and 970 nm respectively, in that

precise order (figure 7.2). The reason for choosing these wavelengths was because

deoxyhemoglobin, oxyhemoglobin, fat, and water show peak absorption coefficient

at 760 nm, 800 nm, 850 nm, 930 nm, and 970 respectively and the oxyhemoglobin

and deoxyhemoglobin corresponds to same absorption coefficient at 800 nm [28].

Table 8.2: Training, validation, test, and augmented training dataset distribution.

Training Validation Testing Augmented training

110 10 16 6,200

Algorithm

The proposed architecture consisted of four 3D convolutional layers, four 3D max-

pooling layers, two fully connected layers, and a classifier as in figure (8.7). The

network was trained up to 10 epochs with a batch size of 80 while saving the model

corresponding to the lowest classification error using TensorFlow [2]. The network

was initialized with the He initialization parameter that makes back-propagation
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Figure 8.6: 105-channel (5 wavelength × 21-slice of C-scans PA image) of MPA
dataset was prepared by stacking five 21-slice of C-scans PA image cube corre-
sponding to five wavelengths, namely 760 nm, 800 nm, 850 nm, 930 nm, and 970 nm
respectively. The 3D PA image cube at each wavelength is responsible for extracting
the volumetric distribution of the chromophores (oxyhemoglobin, deoxyhemoglobin,
lipid, and fat), and the 3D PA image cube at five wavelengths is responsible for
imaging optically activated chromophores. For example, The deoxyhemoglobin is
optically active at 760 nm and is responsible for a brighter pixel distribution in the
PA image (figure 8.2 (c))

more efficient[38]. The backpropagation algorithm was used to minimize the loss

function (A.1). The batch normalization [44] was applied after each convolutional

layer and fully connected layer for faster training. The batch normalization also acts

as a regularizer to prevent an overfitting [44]. A dropout of 0.5 was applied after each

fully connected layer that acts as regularizer [93] to prevent the overfitting. Rectified

linear unit (ReLu) activation function was applied after each convolutional layer and

fully connected layer for efficient backpropagation by reducing the gradient vanishing

problem [59]. The network’s model parameters were updated with the stochastic
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gradient descent [57] during the backpropagation. The network was trained with

a learning rate initialized at 0.01 and decayed exponentially in each epoch by 0.1

as in figure (8.8). The hyperparameter set {number of convolutional layers, size

of convolutional filters, stride size, max-pooling layers, number of fully connected

layers, number of nodes in the fully connected layer, activation function, dropout,

and learning rate} were chosen using a grid search started from the deep 3D network

described in the model 1 [48]. The first, second, third, and fourth convolutional

layers (colored in black) consisted of 8, 16, 24, 32 filters respectively with kernel

size 3 × 3 × 3. The max-pooling layer (colored in gray) was used to reduce the

number of features from the convolutional layer that helps to keep the deep learning

network invariant to translation and small rotation [15]. The pooling size of the

max-pooling layer was set at 2 × 2 × 2. The two fully connected layers with 512

and 128 nodes respectively added to the network after the max-pooling layer. The

detail architecture is shown in figure (8.7) with its hyperparameters in table (8.3).

Finally, a softmax function was applied to the network for the binary cancer tissue

detection.

Multiclass cross entropy error function is given by the equation [15]

L = −

N
∑

n=1

K
∑

k=1

tnkln ynk (8.1)

yk(φ) =
exp(ak)

∑

j exp(aj)
(8.2)

where yk(φ) represents a softmax function, K is number of class, tk is the class
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Figure 8.7: The detail architecture of the network used in the experiment 3 for
cancer tissue detection which is deeper than that used in the experiment 2

Figure 8.8: learning rate decay in each epochs

target vector of 1-of-K coding scheme, ak is given by W T
k φ, ynk is given by yk(φn)

[15].

The 136 thyroid and prostate MPA image datasets were used to train, validate,

and test the proposed deep 3D neural network and the network. The MPA image

dataset was divided into the train (120 specimens) and test data (16 specimens) in

the ratio of 0.9:0.1 respectively. The train data was further divided into the 0.9:0.1
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Hyperparameters Input Output

Convolutional layer 1 64× 64× 105 8× 64× 64× 105

Max pooling layer 1 8× 64× 64× 105 8× 32× 32× 52

Convolutional layer 2 8× 32× 32× 52 16× 32× 32× 52

Max pooling layer 2 16× 32× 32× 52 16× 16× 16× 26

Convolutional layer 3 16× 16× 16× 52 24× 16× 16× 26

Max pooling layer 3 24× 16× 16× 26 24× 8× 8× 13

Convolutional layer 4 24× 8× 8× 13 32× 8× 8× 13

Max pooling layer 4 32× 8× 8× 13 32× 4× 4× 6

Fully connected layer 1 32× 4× 4× 6 512

Fully connected layer 2 512 128

Classifier layer 1 128 2

Table 8.3: Hyperparameters of the deep 3D CNN with 11 layers

for the training (110 specimens), and validation (10 specimens) MPA image dataset

respectively. The network was trained with five-fold cross-validation [15]. The cross-

validation method, while training a classifier is useful to minimize the variance in

the model [33]. The network was trained and validated with a mixture of prostate

and thyroid MPA dataset. The number of samples was increased using image aug-

mentation [59] before training the network. This increases the samples and is useful

when the dataset is limited. The MPA dataset was augmented by random pixel shift

from (1, 10) pixels, random pixel rotation from (−40, 40) degrees, random noise from

(5, 15) pixel intensity, random cropping, random warping, vertical flipping, and hor-

izontal flipping. The figure shows three methods of augmentation as in figure (8.9)

[16]. The cancer MPA dataset was augmented almost five times more than the

normal MPA dataset to make normal cancer more balanced. The distribution of

data was remained imbalanced after augmentation. In addition to augmentation, a

class-weight parameter [118] was introduced while training the network. The class



CHAPTER 8. 3D CNN: CANCER DETECTION AND LOCALIZATION 101

weight function looks at the distribution of positive and negative samples and pro-

duces weights to equally penalize under or over-represented classes to minimize the

problem due to imbalance class distribution [49]. Finally, the network for the can-

cer tissue detection was evaluated by generating an AUC of ROC curve, a metric

of choice when the dataset becomes imbalance [14] and provides a more degree of

freedom for threshold choice [14]. The validation dataset was used to optimize the

hyperparameters of the network, which helps to improve the classifier’s predictive

performance. A grid search method was used to optimize the hyperparameter for

the proposed model. The set of hyperparameters used for the model is tabulated in

table (8.3).

Figure 8.9: The MPA dataset was augmented by random pixel shift from (1, 10)
pixels, random pixel rotation from (−40, 40) degrees, random noise from (5, 15)
pixel intensity, random cropping, random warping, vertical flipping and horizontal
flipping. The figure shows three methods of augmentation.

8.3.1 Results

Figure (8.10) shows the activation map of the deep 3D CNN implemented in this

paper. The activation map for the cancer tissue shows a wider distribution of the
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mass than that for the normal tissue, a key feature to detect cancer [69]. This could

be due to a higher blood distribution around the malignant tissue [11].

Figure 8.10: Activation map generated by the deep 3D CNN on the normal and
cancer MPA test image. Xu et al. [116] reported that the malignant tissue is more
likely to be in irregular shape and normal tissue is more likely to be in rounded
shape.

Figure 8.11: ROC curve generated by the model on the test MPA image.
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The proposed 3D CNN with 11 layers generated the AUC of 0.96 as in figure

(8.11) higher than the previous works using transfer learning [50] and deep 3D

CNN with seven layers [51]. This model shows the improvement over the earlier

models described [50, 51] because of deeper architecture [39], and more samples

[48]. The proposed deep 3D CNN with 11 layers is capable of extracting all spatial,

volumetric, and spectral features with the AUC of 0.96. The accuracy improvement

is expected with more number of samples [51]. The algorithm described in this paper

reduces labor and time-intensive human involvement for image co-registration, and

handcrafted feature extraction [28] for cancer tissue detection. The confusion matrix

and precision, recall, f1 score are shown in the tables below. Table (8.6) shows the

metric and its value used to measure the classification performance.

Predicted

Case Negative Positive Total

Ground
Truth

Negative 11 0 11
Positive 1 4 5

Table 8.4: Confusion Matrix

Precision Recall f1-Score Support

Normal 0.92 1.0 0.96 11

Cancer 1.0 0.8 0.89 5

Avg 0.94 0.94 0.94 16

Table 8.5: Precision, recall, f1- score and support

Algorithms Feature used Dataset Metric Scalar value Author

Logistic function Handcrafted Prostate Accuracy 0.9 Dogra et al. [28]

Logistic function Handcrafted Thyroid Accuracy 0.83 Dogra et al. [29]

2D Transfer learning (inception-resnet-v2) 2D image based Thyroid AUC 0.72 Jnawali et al. [50]

deep 3D CNN (seven layers) 3D image based Thyroid/Prostate AUC 0.85/0.72 Jnawali et al. [51]

deep 3D CNN (11 layers) 3D image based Thyroid and Prostate AUC 0.96 This paper

Table 8.6: The proposed model is compared with the previous models [28, 29, 50, 51]
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8.4 Automatic Localization of the Cancer Tissue Re-

gion

The aim of this section is not only to detect cancer in the given MPA image dataset

but also to localize it with additional confidence. There is numerous approach de-

scribed in the literature to visualize the region where CNN is giving more importance.

Selvaraju et al. [84] proposed the gradient-weighted class activation mapping

for the visualization of the areas where deep learning network is looking into for

a given object. The author used the VGG-network to detect the region where the

neural network is looking. In this thesis, we implemented the grad-cam algorithm

using the proposed deep 3D CNN with 11 layers for the cancer region localization

automatically with the promising result as in figure (8.10).

Figure 8.12: The automatic localization using grad-cam is very useful not only to
detect the object with localization but also to shed light on how the given neural
network architecture is working.
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8.5 Discussion and Conclusion

CNNs generally require a large dataset for training. PA imaging being a new medical

imaging modality clinical data is not yet available. The PA dataset used in this

work is, to the best of our knowledge, is the largest available human ex-vivo dataset

on thyroid and prostate tissue specimens. Jnawali et al. [51] hypothesized that

the underlying PA discriminant features for cancer and non-cancer have a common

trend in thyroid and prostate cancer detection, and hence they trained on thyroid

and applied the model to the prostate MPA image. Thyroid was chosen for training

because this set had a more substantial number of specimens (table (8.1)). Given

the AUC of 0.85 on the thyroid dataset, the AUC of 0.72 on the prostate dataset

using the deep 3D CNN with seven layers (trained and evaluated on the thyroid

MPA image samples) is encouraging and supports the hypothesis [51].

In this paper, the next step was to mix the dataset with the thyroid and prostate,

given the result from previous work [51]. The number of samples to train the network

for this paper was more significant than previous work [51] and hence decided to

develop a deeper 3D CNN. A deeper CNN is more powerful in predictive performance

compared to a shallower one [38, 96]. The AUC of 0.96 is much better compared

to the previous two deep learning methods. There could be multiple reasons for

this improvement. The first reason is the larger number of the dataset, with similar

deterministic features, the second reason is the dataset becoming more balanced

between cancer and normal (table (8.1)), and the third region is the more number of

CNN filters (more number of features) [96]. This suggests that in situations where
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the number of a dataset is small, this type of approach is reasonable to train CNNs

adequately.

This work is different from the previous works using machine learning algorithms

[28, 29]. There, with the pathology ground truth, the data from cancer and nor-

mal regions were isolated from the encircled area of each specimen and then used

for discriminant analysis — this required extensive expert human involvement of

pathologists and image processing personnel. The cancer region marked by the

pathologist on the histopathology slide had to be co-registered and transferred over

to the PA images [28]. The process is still not automated because of the extraction

of the pixel-based samples during test time. The use of the CNN model is able to

circumvent this labor-intensive human involvement.

One plausible advantage of our current work using the deep 3D CNN is that the

model is able to learn from the spatial, volumetric, and spectral features, all at once.

This model may have immediate application in cancer screening of the numerous

sliced specimens that result from thyroidectomy and prostatectomy. Since the in-

strument that was used to capture the ex-vivo PA images is now being developed for

in-vivo use, this model may also prove to be a starting point for in-vivo PA image

analysis for cancer diagnosis. This model is also capable of localizing the cancer

region in the given MPA image automatically. This method not only detects cancer

but also locate the cancer region in the given MPA image.
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8.6 Future Work

There are two options for improving the predictive performance of CNN for cancer

tissue detection using the MPA dataset. The first option is to collect more similar

specimens dataset to be included in the model building process because the perfor-

mance is known to increase with the number of dataset [48]. The second option is

to modify the inception-resnet-v2 [96] to 3D inception-resnet-v2 and then used with

the existing MPA dataset; this is because there is some evidence that 2D inception-

resnet-v2 [50] gives a promising result and extension to 3D will very likely result in

further improvement.
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Chapter 9

Conclusions and Future Works

Photoacoustic imaging (PAI) is a new medical imaging modality [104] that is cur-

rently making a transition from bench to bedside, both in terms of technology [104]

and clinical applications [28]. In this thesis, we discussed the potential of PAI

modality for cancer tissue diagnosis in the near future. The 3D multispectral PAI is

capable of extracting the optical signature and volumetric distribution of the optical

biomarkers for cancer diagnosis such as oxyhemoglobin, deoxyhemoglobin, lipid, and

water [28]. These biomarkers have been proved to be the key attributes for the early

cancer diagnosis using MPA image [28, 61]. CT or MRI imaging is not capable of

detecting cancer tissue in the early stage and is capable of detecting cancer tissue

only when the diameter grows to 1 cm in size [61]. It has been already proven that

early detection of cancer tissue increases the chance of cure [28] and PAI offers to

detect cancer in the early stages [61]. PA image is safe due to their non-ionizing ra-

108



CHAPTER 9. CONCLUSIONS AND FUTURE WORKS 109

diation properties [104] unlike CT image. This makes PAI is capable of imaging soft

tissue noninvasively and enhances its clinical feasibility in the future. Its low-cost

feature too a great advantage over other imaging techniques like MRI or CT [34].

Dogra et al. [28] and Rajanna et al. [75] proposed machine learning algorithms,

namely logistic classifier, and two-layer neural network respectively for cancer tissue

detection with manually extracted features based on the MPA pixel-based samples.

Pixel-Based cancer and normal samples were extracted from the region of interest.

The pathologist provided the histopathological slide with the marking of normal and

cancer as the region of interest. This required to co-register histopathological-based

image and photograph-based image and transfer over to the PA images for the ex-

traction of the region of interests - normal and cancer region. The mathematically

extracted handcrafted pixel-based features were used to build the classifiers. Their

classifiers were trained, validated, and tested on the pixel-based samples obtained

from the region of interest of the PA image. There is still manual involvement of the

pathologist to mark the region of interest during test time as their classifiers still re-

quire to co-register the histopathological slide to the PA image to extract pixel-based

samples corresponding to the normal and cancer class during testing. The models

still require the labor-intensive and time-consuming co-registration work during the

test. These models still demand the marking of the label (region of interest) by the

pathologist during testing, that is generally not the case in the machine learning ap-

proach. This is because all models should be automated during testing at least [15].

In the machine learning approach, the feature set is extracted by the expert with the
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domain knowledge during training. However, the extraction of features can be au-

tomated with the use of deep learning architectures, especially convolutional neural

networks (CNNs). The use of the CNN model is able to circumvent this extraction

of handcrafted features for cancer tissue detection. The current study detects can-

cer tissue using the MPA image automatically using deep learning algorithms and is

different from the previous studies, which still requires manual work at least for the

co-registration. The current method solves the problem of co-registration by using

entire C-scan image where involvement of pathologist during testing is none unlike

previous studies [28, 75].

The three models were implemented for cancer tissue detection starting from the

transfer learning using inception-resnet-v2 [96], deep 3D CNN with seven layers [51]

and deep 3D CNN with 11 layers. All three models take the entire C-scan image

as the input and hence no involvement of the pathologist during testing, which is

not the case in the previous studies [28, 75]. The transfer learning network was

implemented to evaluate the predictive performance of a deep learning algorithm

to detect cancer tissue. The transfer learning network using inception-resnet-v2 is

quick to implement and train. The number of input channels used in the inception-

resnet-v2 is three [96]. So the three-channel MPA image input of the model was

prepared by concatenating the one-slice of C-scan image with the sum of maximum

pixel intensity at three wavelengths, namely 760 nm, 800 nm, and 850 nm. The

model was able to detect cancer with the AUC of 0.73 on the thyroid three-channel

MPA image [50]. Since the model was unable to use data consisting of all five
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wavelengths and the entire depth of the tissue specimen, we chose to develop a deep

3D CNN model. The input of the model was prepared by concatenating the 21-slice

of C-scan image at five wavelengths, namely 760 nm, 800 nm, 850 nm, 930 nm, and

970 nm. The input dataset for the deep 3D CNN architecture was able to contain the

volumetric distribution of the chromophore at five wavelengths. The deep 3D CNN

with seven layers was trained and evaluated using the thyroid 105 (5 wavelengths

× 21)-channel MPA image dataset. The model was also evaluated on the prostate

MPA test dataset to validate the hypothesis that PA imaging modality is capable

of extracting the characteristic feature of chromophores in two tissue specimens,

namely thyroid, and prostate [51]. The model was able to generate the AUC of 0.85

on the thyroid MPA image dataset and 0.72 on the prostate MPA image dataset.

We mixed the thyroid and prostate MPA 105-channel MPA image dataset together

to increase the sample size. The decision of mixing two datasets together was based

on our previous results, which suggest that there is a similar trend in classifying

cancer form normal with prostate and thyroid tissue [28]. The performance of deep

learning algorithms generally improves with the number of samples [48] and helps to

make deeper CNNS [97]. The deep CNNs are a generally good choice for the robust

predictive performance but limited to the case with a smaller number of samples [15].

Finally, the deep 3D CNN with 11 layers was trained with a mixture of thyroid and

prostate 105-channel MPA image dataset with a higher number of samples compared

to the previous studies. The model (deep 3D CNN with 11 layers) was also used to

automatically localize the cancer tissue region in the given MPA image test dataset
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using the grad-cam algorithm [84].

The model (deep 3D CNN with 11 layers) is not only the improvement over the

previous works using machine learning [28, 29] and deep learning algorithms [50, 51]

but also capable of detecting and localizing the prostate and thyroid cancer tissue

at once. One plausible advantage of our current model using the deep 3D CNN with

11 layers is to learn spatial 2D and volumetric 3D features of chromophores all at

once for both thyroid and prostate specimens. The model was also implemented to

localize the cancer region in the given MPA dataset for additional confidence where

the deep 3D CNN is looking into during cancer tissue detection. The recommen-

dation of the region of interest (cancer) also could save the time of pathologists for

early screening. This model may have immediate application in cancer screening of

the numerous sliced specimens that result from thyroidectomy and prostatectomy.

Since the instrument that was used to capture the ex-vivo PA images is now being

developed for in-vivo use, this model may also prove to be a starting point for in-vivo

PA image analysis for cancer diagnosis.
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Appendix A

Brain Hemorrhage Classification

This work is taken from the paper published in SPIE Medical Imaging, 2018.

[ Kamal Jnawali, Mohammad R Arbabshirani, Navalgund Rao, and

Alpen A Patel. Deep 3d convolution neural network for CT brain hem-

orrhage classification. In Medical Imaging 2018: Computer-Aided Di-

agnosis, volume 10575, page 105751C. International Society for Optics

and Photonics, 2018.] [48]

Abstract

Intracranial hemorrhage is a critical conditional with high mortality rate that is

typically diagnosed based on head computer tomography (CT) images. Deep learn-

ing algorithms, in particular convolution neural networks (CNN), are becoming the

methodology of choice in medical image analysis for a variety of applications such
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as computer-aided diagnosis and segmentation. In this study, we propose a fully

automated deep learning framework which learns to detect brain hemorrhage based

on cross sectional CT images. The dataset for this work consists of 40,367 3D head

CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from

multiple radiology facilities at Geisinger Health System. The proposed algorithm

first extracts features using 3D CNN and then detects brain hemorrhage using the

logistic function as the last layer of the network. Finally, we created an ensemble

of three different 3D CNN architectures to improve the classification accuracy. The

area under the curve (AUC) of the receiver operator characteristic (ROC) curve of

the ensemble of three architectures was 0.87. The results are very promising con-

sidering the fact that the head CT studies were not controlled for slice thickness,

scanner type, study protocol or any other settings. Moreover, the proposed algo-

rithm reliably detected various types of hemorrhage within the skull. This work is

one of the first applications of 3D CNN trained on a large dataset of cross sectional

medical images for detection of a critical radiological condition.

A.1 INTRODUCTION

Deep neural network is machine learning framework with a wide range of applica-

tions from natural language processing [68] to medical image classification [86] and

segmentation [8]. In particular, convolution neural networks (CNNs) have become

a very popular method in the field of computer vision community. They have been

used in variety of tasks including object detection, classification [59], [97] and lo-

calization. The power of CNN deep architecture is to automatically extract the
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discriminant features at multiple levels of abstraction. The early few layers of CNN

learn low-level image features and later layers learn high-level image features which

are specific to the type of applications.

Before 2012, traditional computer vision techniques based on handcrafted fea-

tures were popular for medical image analysis [65]. In 2012, Krizhevsky et al [59]

introduced a deep convolution neural network (DCNN) which outperformed tradi-

tional methods by a significant margin in image classification and localization [65].

In such models, the features are learned and extracted automatically. A Convolu-

tion layer in a CNN detects certain local features from input images. A filter with

a set of shared weights (called convolution kernel) is moved around the image to

extract the features. Therefore, a convolution layer with k kernels detects k local

features. Some convolution layers are followed by max pooling layer which reduces

the feature size by selecting the maximum feature response. Max pooling helps with

translational invariance [98] and to some extent rotational invariance. A neuron in

the convolution neural network has very limited receptive filed with shared weights.

Therefore, fully connected layers are typically used after convolutional layers (where

each hidden neuron connects to all previous hidden neurons with individual weights).

Finally, a logistic regression layer is used to get the desired output, in our case clas-

sification. The back-propagation algorithm is used to trained CNNs to minimize the

cost function of the form [A.1]:

L = −
1

N

|N |
∑

i

ln(p(yi|Xi)) (A.1)
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where N is the number of training images, yi and Xi are ith label and image respec-

tively. The weights in the convolution layer l is updated using stochastic gradient

descent:

W t+1

l = W t
l − α(t)

∂L̂

∂Wl
(A.2)

where α(t) is a learning rate at the specific epoch and α(t+1). Learning rate at the

following epoch, is given by the following equation:

α(t+ 1) = α(t)×
1

(1 + decay× epoch(t))
(A.3)

where, the decay is given by the following equation:

decay =
α(t)

Total epoch
(A.4)

2D CNN is mostly used in natural RGB images to extract the spatial features

only in two dimension [59] [97]. Though 2D CNN can be applied to the volumetric

data set (such as cross sectional CT images), some researchers [65] have reported

the benefit of 3D CNN to incorporate the volumetric information in medical images

to get a higher accuracy. In our experiment, we extend 2D CNN to 3D CNN for

the brain hemorrhage classification since the spatial information of the brain hem-

orrhage in CT image extends to three dimension. This work as an extension of our

previous work using 2D DNN architecture [7] We modified the AlexNet type [59]

and GoogLeNet type[97] architecture to 3D CNN structure with a fewer number of
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hidden layers and network parameters.

A.2 Dataset and Data Processing

The head CTdataset was collected retrospectively from Geisinger Health System

(GHS). It consists of 40,357 CT brain images with 30,001 negative cases (no hem-

orrhage) and 10,356 with a brain hemorrhage termed as a positive case. The total

number of data set present in the training set are 34,848 with 26,383 as the negative

case and 8465 as the positive case. The available CT image cube has the dimension

ranging from 12× 512× 512 to 150× 512× 512. We reduce the size of the CT image

cube to 24×256×256 using cubic spline interpolation technique. One sample of CT

is shown in figure [??]. The data set is highly unbalanced and it is a typical concern

in the field of medical image analysis. We augmented the data set up to balanced

276,237 images by translation, rotation, and mirroring to reduce the issues of the

imbalanced dataset. We used 2,000 studies for validation and 3,509 for testing the

algorithm.

A.3 Method

In this study, we explore, evaluate and analyze the influence of various CNN archi-

tectures. Three type of 3D CNN architectures are proposed and are combined and

averaged to make a single model. We explore two different 2D CNN architectures

AlexNet [59] and GoogLeNet [97] and extend them to 3D CNN with numerous mod-
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Figure A.1: One sample of CT image used in our experiment

ifications. Each architecture is modified to 3D CNN with a fewer number of deep

layers and a fewer number of parameters to minimize the computational complex-

ity in terms of space and time. Originally, two deep CNN network architectures,

AlexNet [59] and GoogLeNet [97], are designed for the fixed image dimension of

the 256 × 256 × 3 with 60 million and 21 million parameters respectively. Those

architectures are very expensive in terms of time and space complexity. We reduce

the number of layers, filter size, stride and pooling parameters of the AlexNet type

and GoogLeNet type architectures to (6,456,717 and 5,217,417) and 11,486,845 re-

spectively to address the issue of space and time complexity in the proposed 3D
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CNN.

A.4 Experiments and Results

A.4.1 Experiments

The three 3D CNN architectures were programmed in Tensorflow [? ]. This networks

were trained with augmented 276,237 data set for 10 epochs with a training batch size

of 74 using a batch normalization technique [44] that accelerates the deep learning

training by reducing the co-variance shift. The batch normalization which acts as a

regularizer [44]was applied after each ReLu layer of the network. A ReLu activation

function was applied after each layer of the networks except the last layer where a

sigmoid activation function was applied. The ReLu activation function is extremely

efficient to avoid the vanishing gradient problem during the back-propagation [59].

The networks were made more robust further with He initialization [38] that makes

back-propagation more efficient. He initialization draws samples from a truncated

normal distribution with mean of value zero and standard deviation of value
√

2

N
,

where N is the number of input units in the weight tensor [38]. The networks

were trained with the learning rate equal to 0.01 and is decayed by a factor given

by equation [A.3] for each epoch. The learning rate decay pattern is shown in

figure [A.5]. Dropout was applied after each fully connected layer which acts as a

regularizer [93] to overcome an over-fitting issue. Finally, the probability of the class

is read from the output of the logistic regression layer, the last layer of the networks,

for generating the ROC curves. The detailed information of the architectures are
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described below.

A.4.2 First Architecture

This network had four CNN layers, two max pooling layers, two fully connected

layers, and one output layer (figure [A.2]). Dropout [93] of value equals to 0.6 was

applied after each fully connected layer. The total number of parameters for this

network was 6,456,717.

Figure A.2: First Architecture : Model 1

A.4.3 Second Architecture

This network had two CNN layers, two max pooling layers, one inception module

[97] two fully connected layers, and one output layer (figure [A.3]). The inception

module block consists of 1 × 1, 3 × 3, and 5 × 5 filters Dropout of value equals to

0.8 was applied after each fully connected layer. The total number of parameters

for this network was 11,486,029.
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Figure A.3: Second Architecture : Model 2

A.4.4 Third Architecture

This network had four CNN layers, two max pooling layers, two fully connected

layers, and one output layer (figure [A.4]). Dropout of value equals to 0.8 was

applied after each fully connected layer. The total number of parameters for this

network was 5,217,417.

Figure A.4: Third Architecture : Model 3
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Figure A.5: Visualization of the rate of decay of the learning rate with each epoch

A.4.5 Evaluation and Result

The deep learning architectures were trained, validated and tested by splitting the

dataset into three group, train-dataset, validation-dataset and test-dataset. The

model is validated with the validation-dataset to pick the best choice of the weight

matrix of the deep learning architecture that minimizes the classification error. The

classification error minimization task in the deep learning architecture also demands

a very careful choice of hyperparameters, for example, number of hidden layers,
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number of hidden units in the fully connected layer, drop out, learning rate etc. We

experimented with various value of drop out in the range of 0.0 to 1.0 and the value

corresponding to the minimum classification error was selected.

The choice of metric to evaluate the performance of a classifier is crucial in the

field of medical imaging where an unbalanced dataset is a typical concern. The

number of the studies without a brain hemorrhage was significantly larger than that

with a brain hemorrhage in this work. In contrast, a natural image dataset is very

balanced and in such case the accuracy is a typical choice of metric to measure the

performance of a classifier[59] [97].

The ROC curve is a popular metric to evaluate the performance of a classifier

even for unbalanced datasets. For each architecture, the classifier performance was

evaluated using the AUC of the ROC curve [17]. The AUCs for three different

architectures at the threshold of 0.5 were 0.85, 0.85 and 0.86. The AUC of the

ensemble of the three architectures at the threshold of 0.5 (illustrated in figure

[A.6]) was 0.87.

At threshold of 0.5, the confusion matrix of the ensemble of three architecture

is summarized in Table A.1. The table shows the distribution of the ground truth

(actual) and predicted dataset.

The recall, precision and f1− score of the ensemble of three architecture at

threshold of 0.5 are shown in Table A.2.
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Figure A.6: Generated ROC curve based on the ensemble of three 3D architectures

A.5 Conclusion

In this work, we implemented three different 3D CNN architectures for detection of

brain hemorrhage on head CT images. We augmented the imbalanced CT image

data set to create a training dataset of approximately 250,000 samples. The ensemble
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Predicted

Case Negative Positive Total

Ground
Truth

Negative 1797 520 2317
Positive 270 922 1192

Table A.1: Confusion Matrix

Precision Recall f1− score Support

0 0.87 0.78 0.83 2317
1 0.64 0.77 0.70 1192

Avg/Total 0.80 0.77 0.78 3509

Table A.2: Precision, recall, f1− score and support

of the three 3D architectures resulted in AUC of 0.87 which is very promising. To

our knowledge, this is one of the first examples of 3D CNN applied to large head CT

data set to detect a critical condition such as intracranial hemorrhage. The results

may be a step toward wider adoption of deep learning in modern computer-aided

diagnosis.

One future direction of this work is to explore automated technique to pick the

optimal hyperparameters to minimize the classification error of the deep learning

architectures. The random search [13] and bayesian optimization technique [92] are

popular automated technique to obtain the optimal value of the hyperparameter of

deep learning architectures. These two approaches greatly reduce the computational

time of the deep learning architecture to find the optimal set of hyper parameter

automatically.
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A.5.1 Future work

One future direction of this work is to explore automated technique to pick the

optimal hyper-parameters to minimize the classification error of the deep learning

architectures. The random search and bayesian optimization technique. The ran-

dom search [13] and bayesian optimization technique [92] are popular automated

technique to obtain the optimal value of the hyperparameter of deep learning archi-

tectures. These two approaches greatly reduce the computational time of the deep

learning architecture to find the optimal set of hyper parameter automatically.
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