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Abstract 

Large VC-dimension classifiers can learn difficult tasks, but are usually 
impractical because they generalize well only if they are trained with huge 
quantities of data. In this paper we show that even high-order polynomial 
classifiers in high dimensional spaces can be trained with a small amount 
of training data and yet generalize better than classifiers with a smaller 
VC-dimension. This is achieved with a maximum margin algorithm (the 
Generalized Portrait). The technique is applicable to a wide variety of 
classifiers, including Perceptrons, polynomial classifiers (sigma-pi unit net­
works) and Radial Basis Functions. The effective number of parameters is 
adjusted automatically by the training algorithm to match the complexity 
of the problem. It is shown to equal the number of those training patterns 
which are closest patterns to the decision boundary (supporting patterns). 
Bounds on the generalization error and the speed of convergence of the al­
gorithm are given. Experimental results on handwritten digit recognition 
demonstrate good generalization compared to other algorithms. 

1 INTRODUCTION 

Both experimental evidence and theoretical studies [1] link the generalization of a 
classifier to the error on the training examples and the capacity of the classifier. 

·Part of this work was done while B. Boser was at AT&T Bell Laboratories. He is now 
at the University of California, Berkeley. 
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Classifiers with a large number of adjustable parameters, and therefore large ca­
pacity, likely learn the training set without error, but exhibit poor generalization. 
Conversely, a classifier with insufficient capacity might not be able to learn the task 
at all. The goal of capacity tuning methods is to find the optimal capacity which 
minimizes the expected generalization error for a given amount of training data. 

Capacity tuning techniques include: starting with a low capacity system and allocat­
ing more parameters as needed or starting with an large capacity system and elim­
inating unnecessary adjustable parameters with regularization. The first method 
requires searching in the space of classifier structures which possibly contains many 
local minima. The second method is computationally inefficient since it does not 
avoid adjusting a large number of parameters although the effective number of pa­
rameters may be small. 

With the method proposed in this paper, the capacity of some very large VC­
dimension classifiers is adjusted automatically in the process of training. The prob­
lem is formulated as a quadratic programming problem which has a single global 
minimum. Only the effective parameters get adjusted during training which ensures 
compu tational efficiency. 

1.1 MAXIMUM MARGIN AND SUPPORTING PATTERNS 

Here is a familiar problem: Given is a limited number of training examples from two 
classes A and B; find the linear decision boundary which yields best generalization 
performance. When the training data is scarce, there exists usually many errorless 
separations (figure 1.1). This is especially true when the dimension of input space 
(i.e. the number of tunable parameters) is large compared to the number of training 
examples. The question arises which of these solutions to choose? The one solution 
that achieves the largest possible margin between the decision boundary and the 
training patterns (figure 1.2) is optimal in the "minimax" sense [2] (see section 2.2). 
This choice is intuitively justifiable: a new example from class A is likely to fall 
within or near the convex envelope of the examples of class A (and similarly for 
class B). By providing the largest possible "safety" margin, we minimize the chances 
that examples from class A and B cross the border to the wrong side. 

An important property of the maximum margin solution is that it is only depen­
dent upon a restricted number of training examples, called supporting patterns (or 
informative patterns). These are those examples which lie on the margin and there­
fore are closest to the decision boundary (figure 1.2). The number m of linearly 
independent supporting patterns satisfies the inequality: 

m ~ min(N + 1,p). (1) 

In this inequality, (N + 1) is the number of adjustable parameters and equals the 
Vapnik-Chervonenkis dimension (VC-dimension) [2], and p is the number of training 
examples. In reference [3], we show that the generalization error is bounded by m/p 

and therefore m is a measure of complexity of the learning problem. Because m is 
bounded by p and is generally a lot smaller than p, the maximum margin solution 
obtains good generalization even when the problem is grossly underdetermined, 
i.e. the number of training patterns p is much smaller than the number of adjustable 
parameters, N + 1. In section 2.3 we show that the existence of supporting patterns 
is advantageous for computational reasons as well. 
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Figure 1: Linear separations. 
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(1) When many linear decision rules separate the training set, which one to choose? 
(2) The maximum margin solution. The distance to the decision boundary of the 
closest training patterns is maximized. The grey shading indicates the margin area 
in which no pattern falls. The supporting patterns (in white) lie on the margin. 

1.2 NON-LINEAR CLASSIFIERS 

Although algorithms that maximize the margin between classes have been known 
for many years [4, 2], they have for computational reasons so far been limited to the 
special case of finding linear separations and consequently to relatively simple clas­
sification problems. In this paper, we present an extension to one of these maximum 
margin training algorithms called the "Generalized Portrait Method" (G P) [2] to 
various non-linear classifiers, including including Perceptrons, polynomial classifiers 
(sigma-pi unit networks) and kernel classifiers (Radial Basis Functions) (figure 2). 
The new algorithm trains efficiently very high VC-dimension classifiers with a huge 
number of tunable parameters. Despite the large number of free parameters, the 
solution exhibits good generalization due to the inherent regularization of the max­
imum margin cost function. 

As an example, let us consider the case of a second order polynomial classifier. Its 
decision surface is described by the following equation: 

2::::: WiXi + 2::::: WijXiXj + b = O. (2) 
i i,j 

he Wi, Wij and b are adjustable parameters, and Xi are the coordinates of a pattern 
x. If n is the dimension of input pattern x, the number of adjustable parameters 
of the second order polynomial classifier is [n( n + 1 )/2] + 1. In general, the number 
of adjustable parameters of a qth order polynomial is of the order of N ~ n q • 

The G P algorithm has been tested on the problem of handwritten digit recognition. 
The input patterns consist of 16 X 16 pixel images (n = 256). The results achieved 
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256 
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4.109 
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5.8% 
5.2% 

4.9% 

5.2% 

Table 1: Handwritten digit recognition experiments. The first database 
(DB1) consists of 1200 clean images recorded from ten subjects. Half of this data 
is used for training, and the other half is used to evaluate the generalization per­
formance. The other database (DB2) consists of 7300 images for training and 2000 
for testing and has been recorded from actual mail pieces. We use ten polynomial 
classification functions of order q, separating one class against all others. We list the 
number N of adjustable parameters, the error rates on the test set and the average 
number <m>of supporting patterns per separating hypersurface. The results com­
pare favorably to neural network classifiers which minimize the mean squared error 
with backpropagation. For the one layer network (linear classifier),the error on the 
test set is 12.7 % on DB1 and larger than 25 % on DB2. The lowest error rate for 
DB2, 4.9 %, obtained with a forth order polynomial, is comparable to the 5.1 % 
error obtained with a multi-layer neural network with sophisticated architecture 
being trained and tested on the same data [6]. 

with polynomial classifiers of order q are summarized in table 1. Also listed is 
the number of adjustable parameters, N. This quantity increases rapidly with q 

and quickly reaches a level that is computationally intractable for algorithms thdt 
explicitly compute each parameter [5]. Moreover, as N increases, the learning prob­
lem becomes grossly underdetermined: the number of training patterns (p = 600 
for DB1 and p = 7300 for DB2) becomes very small compared to N. Nevertheless, 
good generalization is achieved as shown by the experimental results listed in the 
table. This is a consequence of the inherent regularization of the algorithm. 

An important concern is the sensitivity of the maximum margin solution to the 
presence of outliers in the training data. It is indeed important to remove undesired 
outliers (such as meaningless or mislabeled patterns) to get best generalization 

performance. Conversely, "good" outliers (such as examples of rare styles) must be 
kept. Cleaning techniques have been developed based on the re-examination by a 
human supervisor of those supporting patterns which result in the largest increase of 
the margin when removed, and thus, are the most likely candidates for outliers [3]. 
In our experiments on DB2 with linear classifiers, the error rate on the test set 
dropped from 15.2% to 10.5% after cleaning the training data (not the test data). 

2 ALGORITHM DESIGN 

The properties of the G P algorithm arise from merging two separate ideas: Training 
in dual space, and minimizing the maximum loss. For large VC-dimension classifiers 
(N ~ p), the first idea reduces the number of effective parameters to be actually 
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computed from N to p. The second idea reduces it from p to m. 

2.1 DUALITY 

We seek a decision function for pattern vectors x of dimension n belonging to either 
of two classes A and B. The input to the training algorithm is a set of p examples 

Xi with labels Yi: 

where {Yk = 1 
Yk =-1 

if Xk E class A 
if Xk E class B. 

(3) 

From these training examples the algorithm finds the parameters of the decision 
function D(x) during a learning phase. After training, the classification of unknown 
patterns is predicted according to the following rule: 

x E A if D(x) > 0 
x E B otherwise. 

(4) 

We limit ourselves to classifiers linear in their parameters, but not restricted to 
linear dependences in their input components, such as Perceptrons and kernel-based 

classifiers. Perceptrons [5] have a decision function defined as: 

N 

D(x) = w . <p(x) + b = L Wi<Pi(X) + b, (5) 

i=l 

where the <Pi are predefined functions of x, and the Wi and b are the adjustable 
parameters of the decision function. This definition encompasses that of polynomial 
classifiers. In that particular case, the <Pi are products of components of vector x(see 
equation 2). Kernel-based classifiers, have a decision function defined as: 

p 

D(x) = L CtkI«Xk, x) + b, (6) 
k=l 

The coefficients Ctk and the bias b are the parameters to be adjusted and the Xk 

are the training patterns. The function I< is a predefined kernel, for example a 
potential function [7] or any Radial Basis Function (see for instance [8]). 

Perceptrons and RBF's are often considered two very distinct approaches to classifi­
cation. However, for a number of training algorithms, the resulting decision function 
can be cast either in the form of equation (5) or (6). This has been pointed out 
in the literature for the Perceptron and potential function algorithms [7], for the 
polynomial classifiers trained with pseudo-inverse [9] and more recently for regular­
ization algorithms and RBF's [8]. In those cases, Perceptrons and RBF's constitute 
dual representations of the same decision function. 

The duality principle can be understood simply in the case of Heb b 's learning rule. 
The weight vector of a linear Perceptron (<pi(X) = Xi), trained with Hebb's rule, is 
simply the average of all training patterns Xk, multiplied by their class membership 
polarity Yk: 

1 p 

w = - LYkXk . 

P k=l 
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Substituting this solution into equation (5), we obtain the dual representation 

1 p 

D(x) = w· x + b = - 2: Yk Xk . X + b . 
P k=l 

The corresponding kernel classifier has kernel K(x, x') = X· x' and the dual param­

eters ctk are equal to (l/p)Yk. 

In general, a training algorithm for Perceptron classifiers admits a dual kernel rep­
resentation if its solution is a linear combination of the training patterns in ip-space: 

p 

w = L ctkip(Xk) . (7) 

k=l 

Reciprocally, a kernel classifier admits a dual Perceptron representation if the kernel 

function possesses a finite (or infinite) expansion of the form: 

K(x, x') = L ipi(X) ipi(X/) . (8) 

Such is the case for instance for some symmetric kernels [10]. 
that we have been using include 

Examples of kernels 

K(x, x') (x. x, + l)q 

K(x, x') tanh (1' x . x') 
K(x, x') exp (1' x . x') - 1 

K(x, x') exp (-lIx - x/1l2/-y) 
K(x, x') exp (-lIx - x/ll/-Y) 
K(x, x') (x. x' + l)q exp (-llx - x/ll/-Y) 

(polynomial of order q), 
(neural units), 
(exponential) , 

(gaussian RBF), 
(exponential RBF), 

(mixed polynomial & RBF). 

(9) 
These kernels have positive parameters (the integer q or the real number -y) which 
can be determined with a Structural Risk Minimization or Cross-Validation proce­
dure (see for instance [2]). More elaborate kernels incorporating known invariances 
of the data could be used also. 

The G P algorithm computes the maximum margin solution in the kernel represen­
tation. This is crucial for making the computation tractable when training very 
large VC-dimension classifiers. Training a classifier in the kernel representation is 
computationally advantageous when the dimension N of vectors w (or the VC­
dimension N + 1) is large compared to the number of parameters ctk, which equals 
the number of training patterns p. This is always true if the kernel function pos­
sesses an infinite expansions (8). The experimental results listed in table 1 indicate 
that this argument holds in practice even for low order polynomial expansions when 
the dimension n of input space is sufficiently large. 

2.2 MINIMIZING THE MAXIMUM LOSS 

The margin, defined as the Euclidean distance between the decision boundary and 
the closest training patterns in ip-space can be computed as 

(10) 
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The goal of the maximum margin training algorithm is to find the decision function 
D(x) which maximizes M, that is the solution of the optimization problem 

. YkD(Xk) 
m~x~n IIwll . (11) 

The solution w of this problem depends only on those patterns which are on the 
margin, i.e. the ones that are closest to the decision boundary, called supporting 
patterns. It can be shown that w can indeed be represented as a linear combination 
of the supporting patterns in ip-space [4, 2, 3] (see section 2.3). 

In the classical framework of loss minimization, problem 11 is equivalent to mini­
mizing (over w) the maximum loss. The loss function is defined as 

This "minimax" approach contrasts with training algorithms which minimize the 
average loss. For example, backpropagation minimizes the mean squared error 

(MSE), which is the average of 

The benefit of minimax algorithms is that the solution is a function only of a 
restricted number of training patterns, namely the supporting patterns. This results 
in high computational efficiency in those cases when the number m of supporting 
patterns is small compared to both the total number of training patterns p and the 
dimension N of ip-space. 

2.3 THE GENERALIZED PORTRAIT 

The G P algorithm consists in formulating the problem 11 in the dual a-space as 
the quadratic programming problem of maximizing the cost function 

p 1 
J(a, b) = L ak (1- bYk) - -a . H . a, 

k=l 2 

under the constrains ak > 0 [4, 2]. The p x p square matrix H has elements: 

Hkl = YkYIK(Xk,Xl). 

where K(x, x') is a kernel, such as the ones proposed in (9), which can be expanded 
as in (8). Examples are shown in figure 2. K(x, x') is not restricted to the dot 
product K(x, x') = x . x' as in the original formulation of the GP algorithm [2]. 

In order for a unique solution to exist, H must be positive definite. The bias b can 

be either fixed or optimized together with the parameters ak. This case introduces 

another set of constraints: Ek Ykak = 0 [4]. 

The quadratic programming problem thus defined can be solved efficiently by stan­
dard numerical methods [11]. Numerical computation can be further reduced by 
processing iteratively small chunks of data [2]. The computational time is linear the 
dimension n of x-space (not the dimension N of ip-space) and in the number p of 
training examples and polynomial in the number m < min(N + 1,p) of supporting 
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Figure 2: Non-linear separations. 
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Decision boundaries obtained by maximizing the margin in ip-space (see text). The 
grey shading indicates the margin area projected back to x-space. The supporting 
patterns (white) lie on the margin. (1) Polynomial classifier of order two (sigma-pi 
unit network), with kernel K(x, x') = (x. x' + 1)2. (2) Kernel classifier (RBF) with 

kernel K(x,x) = (exp -llx - x'lI/lO). 

patterns. It can be theoretically proven that it is a polynomial in m of order lower 
than 10, but experimentally an order 2 was observed. 

Only the supporting patterns appear in the solution with non-zero weight a'k: 

D(x) = LYka'kK(Xk, x) + h, 
k 

Substituting (8) in D(x), we obtain: 

W = LYka'kip(Xk) . 
k 

(12) 

(13) 

Using the kernel representation, with a factorized kernel (such as 9), the classifica­
tion time is linear in n (not N) and in m (not p). 

3 CONCLUSIONS 

We presented an algorithm to train in high dimensional spaces polynomial classifiers 
and Radial Basis functions which has remarquable computational and generaliza­
tion performances. The algorithms seeks the solution with the largest possible 
margin on both side of the decision boundary. The properties of the algorithm arise 
from the fact that the solution is a function only of a small number of supporting 
patterns, namely those training examples that are closest to the decision boundary. 
The generalization error of the maximum margin classifier is bounded by the ratio 
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of the number of linearly independent supporting patterns and the number of train­
ing examples. This bound is tighter than a bound based on the VC-dimension of 
the classifier family. For further improvement of the generalization error, outliers 
corresponding to supporting patterns with large elk can be eliminated automati­
cally or with the assistance of a supervisor. This feature suggests other interesting 
applications of the maximum margin algorithm for database cleaning. 
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