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Abstract—This paper is concerned with the task of automatically generating captions for images, which is important for many image-

related applications. Examples include video and image retrieval as well as the development of tools that aid visually impaired

individuals to access pictorial information. Our approach leverages the vast resource of pictures available on the web and the fact that

many of them are captioned and colocated with thematically related documents. Our model learns to create captions from a database

of news articles, the pictures embedded in them, and their captions, and consists of two stages. Content selection identifies what the

image and accompanying article are about, whereas surface realization determines how to verbalize the chosen content. We

approximate content selection with a probabilistic image annotation model that suggests keywords for an image. The model postulates

that images and their textual descriptions are generated by a shared set of latent variables (topics) and is trained on a weakly labeled

dataset (which treats the captions and associated news articles as image labels). Inspired by recent work in summarization, we

propose extractive and abstractive surface realization models. Experimental results show that it is viable to generate captions that are

pertinent to the specific content of an image and its associated article, while permitting creativity in the description. Indeed, the output

of our abstractive model compares favorably to handwritten captions and is often superior to extractive methods.

Index Terms—Caption generation, image annotation, summarization, topic models

Ç

1 INTRODUCTION

RECENTyears havewitnessed an unprecedented growth in
the amount of digital information available on the

Internet. Flickr, one of the best known photo sharing
websites, hosts more than 3 billion images, with approxi-
mately 2.5 million images being uploaded every day.1 Many
online news sites like CNN, Yahoo!, and BBC publish images
with their stories and even provide photo feeds related to
current events. Browsing and finding pictures in large-scale
and heterogeneous collections are an important problem
that has attractedmuch interest within information retrieval.

Many of the search engines deployed on the web
retrieve images without analyzing their content, simply by
matching user queries against collocated textual informa-
tion. Examples include metadata (e.g., the image’s file
name and format), user-annotated tags, captions, and,
generally, text surrounding the image. As this limits the
applicability of search engines (images that do not coincide
with textual data cannot be retrieved), a great deal of work
has focused on the development of methods that generate
description words for a picture automatically. The literature
is littered with various attempts to learn the associations
between image features and words using supervised

classification [1], [2], instantiations of the noisy-channel
model [3], latent variable models [4], [5], [6], and models
inspired by information retrieval [7], [8].

Although keyword-based indexing techniques are popu-
lar and the method of choice for image retrieval engines,
there are good reasons for using more linguistically mean-
ingful descriptions. A list of keywords is often ambiguous.
An image annotatedwith thewords blue, sky, car could depict
a blue car or a blue sky, whereas the caption “car running
against the blue sky” would make the relations between the
words explicit. Furthermore, image descriptions tend to be
concise, focusing on the most important depicted objects or
events. A method that generates such descriptions auto-
matically could therefore improve image retrieval by
supporting longer andmore targeted queries, by functioning
as a short summary of the image’s content, and by enabling
the use of question-answer interfaces. It could also assist
journalists in creating descriptions for the images associated
with their articles or in finding images that appropriately
illustrate their text. More generally, the ability to link images
with textual descriptions would facilitate the retrieval and
management of multimedia data (e.g., video and image
collections, graphics) as well as increase the accessibility of
the web for visually impaired (blind and partially sighted)
userswho cannot access the content ofmany sites in the same
ways as sighted users can [9].

The standard approach to image description generation
adopts a two-stage framework consisting of content selec-
tion and surface realization. The former stage analyzes the
content of the image and identifies “what to say” (i.e.,
which events or objects are worth talking about), whereas
the second stage determines “how to say it” (i.e., how to
render the selected content into natural language text). Both
stages are usually manually developed. Content selection
makes use of dictionaries that specify a mapping between
words and image regions or features [10], [11], [12], [13],
[14], and surface realization uses human written templates
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or grammars for producing textual output. This approach
can create sentences of high quality that are both mean-
ingful and fluent; however, the reliance on manually
created resources largely limits the deployment of existing
methods to real-world applications. Developing diction-
aries that specify exhaustively image-to-text correspon-
dences is a difficult and time-consuming task that must be
repeated for new domains and languages. The same is also
true for templates and rule-based generation methods; the
former are typically specific to the domain in question and
not portable to new tasks, whereas the latter can be more
general and linguistically sophisticated, albeit with exten-
sive knowledge engineering.

In this paper, we tackle the related problem of generating
captions for news images. Our approach leverages the vast
resource of pictures available on the web and the fact that
many of them naturally co-occur with topically related
documents and are captioned.We focus on captioned images
embedded in news articles, and learn bothmodels of content
selection and surface realization from datawithout requiring
expensive manual annotation. At training time, our models
learn from images, their captions, and associated documents,
while at test time they are given an image and the document
it is embedded in and generate a caption. Compared to most
work on image description generation, our approach is
shallower, it does not rely on dictionaries specifying image-
to-text correspondences, nor does it use a human-authored
grammar for the caption creation task. Instead, it uses the
document colocated with the image as a proxy for linguistic,
visual, and world-knowledge. Our innovation is to exploit
this implicit information and treat the surrounding docu-
ment and caption words as labels for the image, thus
reducing the need for human supervision. These labels are
weak in the sense that there may be no correspondence
between them and regions in the image. However, we argue

that the redundancy inherent in such a multimodal dataset
allows the development of a fully unsupervised caption
generation model, despite noisy input.

Fig. 1 provides example images together with their
captions and accompanying documents. Here, document
(a) reports on the death of the Tongan King Tupou IV, also
depicted in the accompanying image whose caption reads
“King Tupou, who was 88, died a week ago.” Document (b)
discusses a salmonella poisoning outbreak caused by
Cadbury’s chocolate shown in the image. The caption reads
“Cadbury will increase its contamination testing levels.” Con-
trary to image descriptions, captions are contextually
relevant to their images but need not describe their specific
content in detail. The aim is to create news-worthy text that
draws the reader into the accompanying article rather than
enumerating the objects in the picture and how they relate to
each other. The task itself is challenging even for humans, let
alone computers. Along with the title, the lead, and section
headings, captions are the most commonly read words in a
news article. Due to their prominence, journalists are given
explicit instructions on how to write good captions.2 The
latter must be succinct and informative, clearly identify the
subject of the picture, establish its relevance to the article,
and provide some context for the picture. It is also worth
noting that journalists write captions creatively rather than
simply cutting and pasting sentences from the document.
They do this by relying on general world knowledge and
expertise in current affairs that goes beyond what is
described in the article or shown in the picture.

Inspired by recent work in summarization, we propose
extractive and abstractive caption generation models. The
backbone for both approaches is a probabilistic image
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2. A good overview of the caption writing task is given in http://
en.wikipedia.org/wiki/Wikipedia:Captions.

Fig. 1. Each entry in the BBC News database contains a document, an image, and its caption (shown in boldface); only the beginning of the
documents is shown for the sake of brevity.



annotation model that suggests keywords for an image. The
model postulates that images and their textual descriptions
are generated by a shared set of latent variables (topics), and
is trained on a weakly labeled dataset (consisting of images,
their captions, and associated news articles) representative
of the scale, diversity, and difficulty of real-world image
collections. We consider the keywords output by the image
annotation model as a crude approximation of the picture’s
content. Following an extractive approach, we can then
simply identify (and rank) the sentences in the documents
that share these keywords. An appealing alternative is to
create a new caption that is potentially more concise but also
informative and fluent. We propose an abstractive model
that operates over image description keywords and docu-
ment phrases. Their combination gives rise to many caption
realizations which we select probabilistically by taking into
account dependency and word order constraints.

Our contributions in this work are threefold: We intro-
duce a novel knowledge-lean framework for news image
caption generation; we demonstrate that content selection
and surface realization models can be learned from weakly
labeled data in an unsupervised fashion; and we show that
we can compose image captions from scratch without
resorting to task-specific templates or image annotations.
Experimental results indicate that it is viable to generate
captions that are pertinent to the specific content of an image
and its associated article, while permitting creativity in
the description. Indeed, the output of our abstractive model
compares favorably to hand-written captions and is often
superior to extractive methods.

2 RELATED WORK

Although image understanding is a popular topic within
computer vision, relatively little work has focused on caption
generation. As mentioned earlier, a handful of approaches
create image descriptions automatically following a two-
stage architecture. The picture is first analyzed using image
processing techniques into an abstract representation, which
is then rendered into a natural language description with a
text generation engine. A common theme across different
models is domain specificity, the use of hand-labeled data,
and reliance on background ontological information.

For example, Héde et al. [13] generate descriptions for
images of objects shot in uniform background. Their system
relies on a manually created database of objects indexed by
an image signature (e.g., color and texture) and two
keywords (the object’s name and category). Images are first
segmented into objects, their signature is retrieved from the
database, and a description is generated using templates.
Other work (e.g., [11], [12]) creates descriptions for human
activities in office scenes. The idea is to extract features of
human motion from video keyframes and interleave them
with a concept hierarchy of actions to create a case frame
from which a natural language sentence is generated. Yao
et al. [14] present a general framework for generating text
descriptions of image and video content based on image
parsing. Specifically, images are hierarchically decomposed
into their constituent visual patterns, which are subse-
quently converted into a semantic representation using
WordNet. The image parser is trained on a corpus, manually

annotated with graphs representing image structure. A
multisentence description is generated using a document
planner and a surface realizer.

A notable exception to the use of manually crafted
resources is Kulkarni et al. [15], who generate natural
language descriptions for images while exploiting state-of-
the-art image recognition and generation techniques. Their
image recognition system extracts visual information as a set
of triples describing the depicted objects, their attributes and
spatial relationships (e.g., <furry, sheep> against <green,
grass>). These triples are then used to create descriptive
sentences (e.g., There is a furry sheep against the green grass),
while gluing words (e.g., there, is, the) are provided by a
language model or templates. Farhadi et al. [16] describe
a related system that can match a descriptive sentence to a
given image or to obtain images that illustrate a given
sentence. Their approach essentially retrieves sentences
rather than composing new ones. Nonetheless, images and
sentential descriptions are expressed via a shared meaning
representation which also takes the form of triples describ-
ing the objects, actions, and scenes (e.g., <bus, parks, street>,
<plane, fly, sky>). More recently, Ordonez et al. [17]
demonstrate that this sentence retrieval task scales to a
large dataset containing 1 million captioned images.

Much work within computer vision has focused on
image annotation,3 a task related to but distinct from image
description generation. The goal is to automatically label an
image with keywords relating to its content without
however attempting to arrange these into a meaningful
sentence or text. Despite differences in application and
formulation, all previous methods essentially attempt to
learn the correlation between image features and words
from examples of images manually annotated with key-
words. They are typically developed and evaluated on the
Corel database, a collection of stock photographs, divided
into themes (e.g., tigers, sunsets) each of which are
associated with keywords (e.g., sun, sea) that are in turn
considered appropriate descriptors for all images belonging
to the same theme.

Supervised methods define image annotation as a
classification task, e.g., by assuming a one-to-one correspon-
dence between vocabulary words and classes or by group-
ing several words into a class (see [19] for an overview).
Unsupervised approaches attempt to discover the under-
lying connections between visual features and words,
typically by introducing latent variables. Standard latent
semantic analysis (LSA) and its probabilistic variant (PLSA)
have been applied to this task (e.g., [20], [21], [22]). More
sophisticatedmodels estimate the joint distribution of words
and regional image features while treating annotation as a
problem of statistical inference in a graphical model (e.g.,
[4], [5], [6]). Relevance models, originally developed for
information retrieval, have been also successfully used for
image annotation (e.g., [7], [8]). A key idea behind these
models is to find the images most similar to the test image
and then use their shared keywords for annotation.

Although the bulk of image annotation models learn
from images and their corresponding keyword tags, a few
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exhaustively; see [18] for an overview.



approaches exploit full-sentence captions and their struc-
ture. Examples include associating names mentioned in the
captions to faces depicted in news images (e.g., [23], [24]),
verbs to body poses [25], and learning models for
recognizing objects [26] and their relative importance [27].

Within natural language processing,most previous efforts
have focused on generating captions to accompany complex
graphical presentations such as pie charts and bars (e.g., [28],
[29]), or on using the captions accompanying information
graphics to infer their intended message, e.g., the author’s
goal to convey ostensible increase or decrease of a quantity of
interest [30]. Here, the main emphasis is on how best to
describe the data in the graph (e.g., by selecting appropriate
sentence templates) rather than image content analysis.
There is no image processing involved as it is assumed that
the data used to create the graphics are available and the goal
is to enable users understand the information expressed in
them. More recently, Aker and Gaizauskas [31] generated
extended captions for images indexed by GPS coordinates
(e.g., a multisentence description of the Eiffel Tower,
including where and when it was built and by whom, why
it is an important site, and so on). They achieve this by
summarizingmultipleWebdocuments that contain informa-
tion related to an image’s location, without, however, taking
any visual information into account.

The task of generating captions for news images is novel
to our knowledge. Instead of relying on manual annotation
or background ontological information we exploit a multi-
modal database of news articles, images, and their captions.
The latter is admittedly noisy, yet can be easily obtained
from online sources and contains rich information about the
entities and events depicted in the images and their
relations. Similarly to previous work, we also follow a two-
stage approach. Using an image annotation model, we first
describe the picture with keywords, which are subsequently
realized into a human readable sentence. Contrary to
Kulkarni et al. [15], we do not produce detailed image
descriptions; therefore our image analysis is more light-
weight (e.g., we do not aim to detect all depicted objects and
their relations). The caption generation task bears some
resemblance to headline generation [32], where the aim is to
create a very short summary for a document. However, we
wish to create a caption that not only summarizes the
document [31] but is also faithful to the image’s content (i.e.,
the caption should also mention some of the objects or
individuals depicted in the image). We therefore explore
extractive and abstractive summarization models that rely
on visual information to drive the generation process. Our
extractive models are close in spirit to Farhadi et al. [16]—the
caption generation task can be conceived as that of retrieving
the sentence in the document most similar to the image in
question. Importantly, we do not make any assumptions
regarding the content or structure of the images and as a
result our approach is better suited at creating captions for
open-domain images. In their work, images are parsed into
<object, action, scene> triples and represent 20 categories
(taken from the PASCAL 2008 dataset). In contrast, our
abstractive models are able to generate new sentences (e.g.,
by reusing and recombining phrases and words from the
news article) as opposed to retrieving the best matching ones.

3 PROBLEM FORMULATION

We formulate the image caption generation task as follows:
Given a news image I and its associated documentD, create a
natural language captionC that captures the image’s content
givenD. The training data thus consists of document-image-
caption tuples like the ones shown in Fig. 1. During testing,
we are given a document and an associated image for which
we must generate a caption.

3.1 BBC News Database

Our experiments used news articles accompanied by
captioned images. Most image-related datasets used in
computer vision and image retrieval are not suitable for
caption generation since they have been developed with
different tasks in mind. Examples include image annotation
and segmentation, object recognition, scene analysis, or
image parsing [14], [33], [34], [35], [36], [37], [38], [39].
Existing datasets often contain images (depicting one or two
prominent objects against a relatively simple background)
and annotation keywords (in the range of ½20; 300� words)
rather than captions. The datasets created by Farhadi et al.
[16] and Hodosh et al. [40] contain image descriptions;
however, as mentioned above, they are limited to specific
object categories and scene types (e.g., actions).

For these reasons, we created our own dataset4 by
downloading articles (3,361 in total) from the BBC News5

website. The dataset covers a wide range of topics including
national and international politics, technology, sports,
education, and so on. News articles normally use color
images which are around 200 pixels wide and 150 pixels
high. The average caption length is 9.5 words, the average
sentence length is 20.5 words, and the average document
length 421.5 words. The caption vocabulary is 6,180 words
and the document vocabulary is 26,795. The vocabulary
shared between captions and documents is 5,921 words. The
captions tend to use half as many words as the document
sentences, and more than 50 percent of the time contain
words that are not attested in the document (even though
they may be attested in the collection).

This dataset differs from more typical image collections
both in form and content. Besides images and words
describing them, it also contains documents whose im-
portance in our case is twofold: First, the document contains
the necessary background information which the image
depicts or supplements. Second, we can exploit the rich
linguistic information inherent in the text and address
caption generation with methods akin to text summariza-
tion without extensive knowledge engineering. The images
and captions in this collection also deviate from more
traditional datasets. News images are occasionally cluttered,
they display several objects (not only a few prominent ones)
and complex scenes, and are often rendered in low
resolution. As explained earlier, captions also differ from
canonical image descriptions; although they can be denota-
tive (describe some of the objects the image depicts), they
can also express connotative meanings (i.e., describe socio-
logical, political, or economic attitudes reflected in the
image, or the accompanying document). Image captions
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may be easy to obtain and cost free, but are admittedly noisy
and far from ideal. Although performed by experts (i.e.,
journalists), the caption generation task is not constrained in
any way—words and syntactic structures are chosen with
the aim of creating a good caption rather than rendering the
task amenable to current vision and language generation
techniques. Luckily, the images are accompanied with
collateral text, which we argue can be informative and
make up for the noise.

3.2 Data Validation

The dataset just described will serve two purposes. First, we
will use the images, captions, and associated articles as
training data to learn an image annotation model that will
provide description keywords for the picture. These key-
words will be then used to guide our caption generation
model. Second, the human authored captions will function
as a gold standard for the image annotation model and for
the end-to-end caption generation task. In the former case,
we will remove stopwords and treat the caption as a bag of
content words (i.e., nouns, adjectives, and verbs). As the
image annotation model plays a key role in our generation
process, it is important to assess the quality of the captions
as labels and whether they do indeed capture some of the
image’s content. There is no point in learning an image
annotation model on labels that are extremely noisy or
plainly wrong.

To assess the level of noise in the dataset, we therefore
randomly selected 240 image-caption pairs and manually
examined whether the content words (nouns, verbs, and
adjectives) present in the captions could in principle describe
the image. We found out that the captions expressed the
picture’s content 90 percent of the time. Furthermore,
approximately 88 percent of the nouns in subject or object
position described salient objects in the pictures. We also
conducted a larger scale study to assess the quality of the
caption words as annotation labels. In our experiment,
participants were presented with a news picture followed by
a set of annotation keywords and an associated news
document. They were asked to rate these keywords by how
well they described the news image given the accompanying
document. Participants used a seven-point rating scale
where high ratings indicate that words are closely related
to both the image anddocument.We randomly selected from
our dataset 30 documents, together with their images and
captions. We collected ratings from 26 unpaid volunteers, all
self-reported native English speakers. The experiment was
conducted remotely over the Internet using WebExp [41], an
interactive software package for administering Web-based
experiments. Our experimental instructions are given in
Appendix A, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.
1109/TPAMI.2012.118.

Fig. 2 shows theproportionof captionwordsgiven a rating
of 1, 2, 3, and so on. As can be seen, the majority of words
(more than 71.5 percent) were given a rating of 4 or higher.
The mean rating was 4.41, suggesting that participants
perceived the caption words as a reasonable approximation
of the image’s content (given the associated document). We
further assessed how well participants agreed in their
judgments. We calculated intersubject agreement as the

mean pairwise correlation (Pearson’s r) between the ratings
they produced. The mean correlation coefficient was 0.514
(with a standard deviation of 0.053, a maximum of 0.598, and
aminimumof 0.412). This indicates that there is a fair amount
of agreement with respect to the keywords in question, i.e.,
participants agree that these are mostly appropriate descrip-
tors of the images. In the following sections, we present our
modeling approach, focusing first on content selection
(Section 4.1) and then moving on to discuss surface
realization (Sections 4.2 and 4.3).

4 MODELING

Our model consists of two stages. Content selection
identifies what the image and accompanying article are
about, whereas surface realization determines how to
verbalize the chosen content. Before describing our model
in detail, we summarize our assumptions regarding the
caption generation task and the nature of the data on which
it is being modeled.

1. The caption describes the content of the image
directly or indirectly. Unlike traditional image
annotation where keywords describe salient objects,
captions supply more detailed information, not only
about objects and their attributes, but also events.
For example, in Fig. 1a the caption mentions King
Tupou shown in the picture but also his age and the
fact that he died a week ago.

2. The accompanying document describes the content
of the image. This is trivially true for news
documents where the images conventionally depict
events, objects or people mentioned in the article.

3. Since our images are implicitly rather than explicitly
labeled, we do not assume that we can enumerate all
objects present in the image nor that we can create a
detailed description of them. Instead, we hope to
model event-related information such as “what
happened,” “who did it,” and “where” with the
help of the news document.

4.1 Image Content Selection

We define a probabilistic image annotation model based on
the assumption that images and their surrounding text are
generated by a shared set of latent variables or topics.
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The rating task involved assessing how well the caption words captured

the image’s content in relation to the accompanying article.



Specifically, we describe documents and images by a
common multimodal vocabulary consisting of textual
words and visual terms. Due to polysemy and synonymy,
many words in this vocabulary will refer to the same
underlying concept. Using Latent Dirichlet Allocation
(LDA [4]), a probabilistic model of text generation, we
represent visual and textual meaning jointly as a prob-
ability distribution over a set of topics. Our annotation
model takes these topic distributions into account while
finding the most likely keywords for an image and its
associated document.

4.1.1 Image and Document Representation

Words and images represent distinct modalities; images live
in a continuous feature space, whereas words are discrete.
Yet, both modalities on some level capture the same
underlying concepts as they are used to describe the same
objects. A common first step in previous image annotation
methods is the segmentation of the picture into regions,
using either a fixed-grid layout or an image segmentation
algorithm. Regions are then described by a standard set of
features, including color, texture, and shape, and subse-
quently treated as continuous vectors (e.g., [5], [42]) or in
quantized form (e.g., [3], [22]). Through this process, the low-
level image features are made to resemble word-like units.

In our work, visual features receive a discrete represen-
tation and each image is treated as a bag of visual words. In
order to do this we use the Scale Invariant Feature
Transform (SIFT) algorithm [43], [44]. The general idea
behind the algorithm is to first sample an image with the
difference-of-Gaussians point detector at different scales
and locations. Each detected region is represented with the
SIFT descriptor, which is a histogram of directions at
different locations in the detected region and scale.
Importantly, this descriptor is, to some extent, invariant to
translation, scale, rotation, and illumination changes. SIFT
features have been shown to be superior to other
descriptors [45] and are considered state of the art in object
recognition [46]. We further quantize the SIFT descriptors
using the K-means clustering algorithm to obtain a discrete
set of visual terms which form our visual vocabulary V ocv.
Each entry in this vocabulary represents a group of image
regions which are similar in content or appearance and
assumed to originate from similar objects. More formally,
each image I is expressed in a bag-of-words format vector,
½wv1 ; wv2 ; . . . ; wvL �, where wvi ¼ n only if I has n regions
labeled with vi.

Since visual and textual modalities now have the same
status—they are both represented as bags of words—we can
also represent any image-caption-document tuple jointly as a
mixed document dMix. The underlying assumption is that
the two modalities express the same meaning, which, as we
explain below, can be operationalized as a probability
distribution over a set of topics. For ease of exposition, we
first describe the basics of LDA and then move on to discuss
our image annotation model which makes use of probabil-
ities estimated by LDA.

4.1.2 Latent Dirichlet Allocation

LDA can be represented as a three-level hierarchical
Bayesian model, shown graphically in Fig. 3. Given a

corpus consisting of D documents, each document is
modeled using a mixture over K topics (assumed to follow
a multinomial distribution � with a Dirichlet prior), which
are in turn characterized as distributions over words. The
words in the document are generated by repeatedly
sampling a topic according to the topic distribution, and
selecting a word given the chosen topic. Blei et al. [47]
describe the generative process for a document d as follows:

1. choose �j� � Dirð�Þ,
2. for n 2 1; 2; . . . ; N :

a. choose topic znj� � Multð�Þ,
b. choose a word wnjzn; �1:K � Multð�znÞ,

where each entry of �1:K is a distribution over words,
indicating a topic definition.

The mixing proportion over topics � is drawn from a
Dirichlet prior with parameters � whose role is to create a
smoothed topic distribution. Once � and � are sampled,
then each document is generated according to the topic
proportions z1:K and word probabilities over topics �. The
probability of a document d in a corpus can be obtained as

P ðdj�; �Þ ¼

Z

�

P ð�j�Þ
YN

n¼1

X

zk

P ðzkj�ÞP ðwnjzk; �Þ

 !

d�: ð1Þ

The central computational problem in LDA is to estimate
P ð�; z1:kjd; �; �Þ, the posterior distribution of the hidden
variables given a document. Although it is generally
intractable to compute this distribution directly, a variety
of approximate inference algorithms have been proposed in
literature. We follow the convexity-based variational in-
ference procedure described in Blei et al. [47], which
involves two steps: 1) introducing variational parameters
in order to find the tightest lower bound for the target
posterior distribution, and 2) obtaining the tight lower
bound through minimizing the Kullback-Leibler (KL)
divergence between the introduced variational distribution
and the true posterior distribution (we refer interested
readers to Blei et al. [47] and Blei [4] for more details on their
inference procedure).
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Fig. 3. The LDA topic model: Shaded nodes represent observed
variables, unshaded nodes indicate latent variables. Arrows indicate
conditional dependencies between variables, whereas plates (the
rectangles in the figure) refer to repetitions of sampling steps. The
variables in the lower right corner refer to the number of samples.



An LDA model trained on a document collection yields

two sets of parameters, P ðwjz1:KÞ, the word probabilities

given topics, and P ðz1:K jdÞ, the topic proportions for each

document. The latter are document-specific, whereas the

former represent the set of topics (in the form of word

conditional probabilities) learned from the document

collection. Given a trained model, it is also possible to

perform inference on an unseen document dnew, and obtain

the approximate topic proportions as

pðzjdnewÞ �
�

PK
j¼1 �j

; ð2Þ

where �1:K are variational Dirichlet parameters obtained

during inference on the new document. We can further

compute word predictive probabilities given an unseen

document as

pðwjdnewÞ �
XK

k¼1

P ðwjzkÞ
�k

PK
j¼1�j

; ð3Þ

where P ðwjz1:KÞ are word probabilities over topics z1:K
learned during model training.

4.1.3 Image Annotation Model

In a standard image annotation setting, a hypothetical

model is given an image I and a set of keywords W , and

must find the subset WI ðWI � WÞ which appropriately

describes the image I:

W �
I ¼ argmax

W
P ðW jIÞ: ð4Þ

The keywords are usually assumed to be conditionally

independent of each other, so the above equation can be

simplified as

W �
I ¼ argmax

W

Y

w2W

P ðwjIÞ: ð5Þ

Recall that each entry in our dataset is an image-caption-

document tuple ðI; C;DÞ. In this setting, our model must

find a subset of keywords WI that appropriately describe

image I with the help of the accompanying document D:

W �
I ¼ argmax

Wt

P ðWtjI;DÞ: ð6Þ

Here, Wt denotes a set of textual words (we use the

subscript t to discriminate from the visual words which are

not part of the model’s output). We also assume that

the keywords are conditionally independent of each other:

W �
I ¼ argmax

Wt

P ðWtjI;DÞ ¼ argmax
Wt

Y

wt2Wt

P ðwtjI;DÞ: ð7Þ

Since I and D are represented jointly as the concatenation of

textual and visual terms, we may intuitively simplify the

problem and use the mixed document representation dMix

directly in estimating the conditional probabilitiesP ðwtjI;DÞ:

P ðwtjI;DÞ � P ðwtjdMixÞ: ð8Þ

Substituting (8) into (7) yields

W �
I ¼ argmax

Wt

P ðWtjI;DÞ � argmax
Wt

Y

wt2Wt

P ðwtjdMixÞ: ð9Þ

As mentioned earlier, we assume that the image and its
associated text are generated by a mixture of latent topics
which we infer using LDA. Specifically, we select the
number of topics K and apply the LDA algorithm to a
corpus consisting of documents fdMixg in order to obtain
the multimodal word distributions over topics P ðwjz1:KÞ,
and the estimated posterior of the topic proportions over
documents P ðz1:K jdMixÞ.

Given an unseen image-document pair, it is also possible
to approximately infer the topic proportions P ðz1:K jdMixnewÞ
on the new document dMixnew using (2). We then substitute
(3) into (9)6:

W �
I � argmax

Wt

Y

wt2Wt

P ðwtjdMixÞ

¼ argmax
Wt

Y

wt2Wt

XK

k¼1

P ðwtjzkÞP ðzkjdMixÞ

� argmax
Wt

Y

wt2Wt

XK

k¼1

P ðwtjzkÞ
�k

PK
j¼1 �j

;

ð10Þ

where P ðwtjzkÞ are obtained during training and �1:K are
inferred on the image-document test pair.

However, note that for an unseen image dI and
accompanying document dD, the estimated topic propor-
tions are solely based on variational inference, which is an
approximate algorithm. In order to render the model more
robust, we further smooth the topic proportions
P ðz1:K jdMixÞ with probabilities based on each modality:

P �ðz1:K jdMixÞ � q1P ðz1:K jdMixÞ

þ q2P ðz1:K jdDÞ

þ q3P ðz1:K jdIÞ;

ð11Þ

where P ðz1:K jdDÞ and P ðz1:K jdIÞ are inferred on dD and dI ,
respectively, and q1, q2, q3 are smoothing parameters (which
we tune experimentally on held-out data); q3 is a shorthand
for ð1� q1 � q2Þ. We do not train three separate models for
each probability term in (11), but use the mixture document
dMix, the text document dD, and the image dI to perform
inference on the same topic model.

In sum, calculating P ðWtjI;DÞ boils down to estimating
the probabilities P ðwtjdMixÞ according to (10) and (11),
which we obtain using the LDA topic model. We first train
an LDA model on the multimodal document collection
fdMixg to learn themultimodal topic representations and use
inference to obtain the topic distributions of unseen image-
document pairs. In the end, for each unseen image-
document pair, we obtain the probability over all textual
words fwtg, the n-best of which we consider as the
annotations for image I. Note that the annotation model
just described outputs a distribution over the whole
vocabulary which can be naturally treated as a ranked word
list, but also as a unigram language model. This probabilistic
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6. During training, the model has access to all three elements ðI; C;DÞ, so
the mixed document dMix is a concatenation of the visual terms and words
present in the caption and document. During testing, the model is given an
image and its accompanying document, so dMix will contain words based
on I and D, but not C.



formulation is advantageous when generating captions for
an image as our generation model is also probabilistic and
thus the two components of content selection and surface
realization can be easily integrated.

4.2 Extractive Caption Generation

Our extractive caption generator draws inspiration from
previous work on automatic summarization, most of which
focuses on sentence extraction (see [48] and [49] for
comprehensive overviews). The idea is to create a summary
simply by identifying and subsequently concatenating the
most important sentences in a document. Without a great
deal of linguistic analysis, it is possible to create summaries
for a wide range of documents, independently of style, text
type, and subject matter. For our caption generation task,
we need only extract a single sentence. And our guiding
hypothesis is that this sentence must be maximally similar
to the description keywords generated by the annotation
model. Given the probabilistic nature of our image
annotation model, we are able to represent the content of
an image in two ways, i.e., as a ranked list of keywords and
as a distribution of topics. We discuss below different ways
of operationalizing the similarity between a sentence and
each of these representations.

4.2.1 Word Overlap-Based Sentence Selection

Perhaps the most intuitive way of measuring the similarity
between image keywords and document sentences is word
overlap:

OverlapðWI ; SdÞ ¼
jWI \ Sdj

jWI [ Sdj
; ð12Þ

where WI is the set of keywords suggested by our image
annotation model and Sd a sentence in the document. The
selected caption is then the sentence that has the highest
overlap with the image keywords.

4.2.2 Vector Space-Based Sentence Selection

Word overlap is admittedly a naive measure of similarity,
based on lexical identity. We can overcome this by
representing keywords and sentences in vector space [50]
and computing the similarity between the two vectors
representing the image keywords and document sentences,
respectively. We create a word-sentence co-occurrence
matrix where each row represents a word, each column a
sentence, and each entry the frequency with which the
word appears within the sentence (we are assuming that
image keywords also form a sentence). More precisely,
matrix cells are weighted by their tf � idf values. The
similarity of the vectors representing the keywords WI

�!
and

document sentence Sd

�!
can be quantified by measuring the

cosine of their angle:

simðWI
�!

; Sd

�!
Þ ¼

WI
�!

� Sd

�!

jWI
�!

k Sd

�!
j
: ð13Þ

4.2.3 Topic-Based Sentence Selection

Recall that the backbone of our image annotation model is a
probabilistic topic model with images and documents
rendered into a bag of visual and textual words and
represented as a probability distribution over a set of latent

topics. Under this framework, the similarity between an
image and a sentence can be broadly measured by the extent
to which they share the same topic distributions [51]. For
example, we may use the Kullback-Leibler divergence to
measure the difference between two distributions p and q:

KLðp; qÞ ¼
XK

j¼1

pj log2
pj

qj
; ð14Þ

where p and q are shorthand for the image topic distribution
PdMix

and sentence topic distribution PSd
, respectively. We

infer the image topic distribution according to the mixed
document (using both the image and the document). When
doing inference on the document sentence, we also take its
neighboring sentences into account to avoid estimating the
topic proportions on short sentences inaccurately.

The KL divergence is asymmetric and, in many
applications, it is preferable to apply a symmetric measure
such as the Jensen Shannon (JS) divergence. The latter
measures the “distance” between p and q through ðpþqÞ

2
;

the average of p and q are as follows:

JSðp; qÞ ¼
1

2
KL p;

ðpþ qÞ

2

� �

þKL q;
ðpþ qÞ

2

� �� �

: ð15Þ

4.3 Abstractive Caption Generation

Although extractive methods yield naturally grammatical
captions and require relatively little linguistic analysis, there
are a few caveats to consider. As discussed before, there is
often no single sentence in the document that uniquely
describes the image’s content. In most cases the keywords
are found in the document but interspersed across multiple
sentences. Second, the selected sentences make for long
captions (sometimes longer than the average document
sentence), which are not concise and overall not as catchy as
human-written captions. For these reasons, we turn to
abstractive caption generation and present models based
on single words but also phrases.

4.3.1 Word-Based Caption Generation

Banko et al. [32] (see also [52]) propose a bag-of-words
model for headline generation. Following the traditional
natural language generation paradigm, their model consists
of a content selection and surface realization component.
Content selection is modeled as the probability of a word
appearing in the headline given that the same word appears
in the corresponding document and is independent of other
words in the headline. The likelihood of different surface
realizations is estimated using a bigram model. They also
take the distribution of the length of the headlines into
account in an attempt to bias the model toward generating
output of reasonable length (around five words):

P ðw1; w2; . . . ; wnÞ ¼
Yn

i¼1

P ðwi 2 Hjwi 2 DÞ

� P ðlenðHÞ ¼ nÞ

�
Yn

i¼2

P ðwijwi�1Þ;

ð16Þ

where wi is a word that may appear in headline H, D the
document being summarized, and P ðlenðHÞ ¼ nÞ is a
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headline length distribution model. Specifically, Banko et al.
[32] assume that headline length follows a normal distribu-
tion which they learn from a training corpus (the 1997
Reuters News Stories).

The above model can be easily adapted to our caption
generation task. Content selection is now the probability of
a word appearing in the caption given the image and its
associated document, which we obtain from the output of
our image annotation model. In addition, we replace the
bigram language model with a trigram one:

P ðw1; w2; . . . ; wnÞ ¼
Yn

i¼1

P ðwi 2 CjI;DÞ

� P ðlenðCÞ ¼ nÞ

�
Yn

i¼3

P ðwijwi�1; wi�2Þ;

ð17Þ

where C is the caption, I the image, D the accompanying
document, and P ðwi 2 CjI;DÞ the image annotation
probability.

Despite its simplicity, the caption generation model in
(17) has a major drawback. As the image annotation model
does not take function words into account, content selection
will ignore them too, at the expense of the grammaticality of
the generated captions. In other words, there will be no
function words to glue the content words together. One
way to remedy this is to revert to a content selection model
that ignores the image and simply estimates the probability
of a word appearing in the caption given the same word
appearing in the document, while at the same time, the
model takes note of the image annotation probabilities
during surface realization. We do this by modifying the
language model responsible for surface realization so that it
prefers words that have high image annotation probabilities
and are likely to appear in a sentence according to a
background language model. We use an adaptive language
model [53] that modifies an n-gram model with local
unigram probabilities:

P ðw1; w2; . . . ; wnÞ ¼
Yn

i¼1

P ðwi 2 Cjwi 2 DÞ

� P ðlenðCÞ ¼ nÞ

�
Yn

i¼3

Padapðwijwi�1; wi�2Þ;

ð18Þ

where P ðwi 2 Cjwi 2 DÞ is the probability of wi appearing
in the caption given that it appears in the document D, and
Padapðwijwi�1; wi�2Þ is the language model adapted with
probabilities from our image annotation model:

PadapðwjhÞ ¼
�ðwÞ

zðhÞ
PwordðwjhÞ; ð19Þ

�ðwÞ �
PimageðwÞ

PwordðwÞ

� ��

; ð20Þ

zðhÞ ¼
X

w

�ðwÞ � PwordðwjhÞ; ð21Þ

where PwordðwjhÞ is the probability ofw given the history h of
preceding words (i.e., the original trigram model), PimageðwÞ
is the probability of w according to the image annotation
model, PwordðwÞ is the probability of w according to the
original background language model, and � is a scaling
parameter.

The model in (18) has three components. The conditional
probability P ðwi 2 Cjwi 2 DÞ captures the gist of the article;
the adapted languagemodelPadapðwijwi�1; wi�2Þ ensures that
the output is grammatical and consistent with the associated
image. The length component P ðlenðCÞ ¼ nÞ, modeled as a
normal distribution, modulates the caption length.

4.3.2 Phrase-Based Caption Generation

The model outlined in (18) will generate captions with
function words. However, there is no guarantee that these
will be compatible with their surrounding context or that
the captions will be globally coherent beyond the trigram
horizon. To avoid these problems, we turn our attention to
phrases which are naturally associated with function
words and may potentially capture long-range dependen-
cies. Phrases have been previously used in abstractive
summarization. For example, Zhou and Hovy [54] first
identify a list of keywords which are then used to extract
phrases from the document. The phrases are linked
together to create headlines using a set of handwritten
rules. Building on this approach, Soricut and Marcu [55]
identify a list of keywords but also use syntactic informa-
tion (extracted from parse trees) to build syntactically
driven phrases around the extracted keywords. Finally,
Wan et al. [56] extract dependencies from the input
document and glue them together using n-grams.

Although it is relatively straightforward to extend
content selection from individual words to phrases, this
poses additional difficulties for surface realization. Reali-
zers based on language models are typically built from
individual words rather than phrases and as a result they
do not take phrase adjacency constraints into account. Our
model relies on phrases which we obtain from the output of
a dependency parser. A phrase is simply a head and its
dependents (or modifiers), with the exception of verbs,
where we record only the head (otherwise, an entire
sentence could be a phrase). Fig. 4 shows the dependency
representation for the sentence “Thousands of Tongans have
attended the funeral of King Taufa’ahau Tupou IV” and the set
of phrases extracted from it. We only consider dependen-
cies whose heads are nouns, verbs, and prepositions, as
these constitute 80 percent of all dependencies attested in
our caption data.

We define a bag-of-phrases model for caption generation
by modifying the content selection and caption length
components in (18) as follows:

P ð�1; �2; . . . ; �mÞ �
Ym

j¼1

P ð�j 2 Cj�j 2 DÞ

� P lenðCÞ ¼
Xm

j¼1

lenð�jÞ

 !

�
YL

i¼3

Padapðwijwi�1; wi�2Þ;

ð22Þ
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where L ¼
Pm

j¼1 lenð�jÞ. The term P ð�j 2 Cj�j 2 DÞ models
the probability of phrase �j appearing in the caption given
that it also appears in the document and is estimated as

P ð�j 2 Cj�j 2 DÞ ¼
Y

wj2�j

P ðwj 2 Cjwj 2 DÞ; ð23Þ

where wj is a word in the phrase �j.
One problem with the models discussed thus far is that

words or phrases are independent of each other. It is up to
the trigram model to enforce coarse ordering constraints.
These may be sufficient when considering isolated words,
but phrases are longer and their combinations are subject to
structural constraints that are not captured by sequence
models. We therefore attempt to take phrase adjacency
constraints into account by estimating the probability of
phrase �j attaching to the right of phrase �i as

P ð�jj�iÞ ¼
X

wi2�i

X

wj2�j

pðwjjwiÞ

¼
1

2

X

wi2�i

X

wj2�j

fðwi; wjÞ

fðwi;�Þ
þ
fðwi; wjÞ

fð�; wjÞ

� �

;
ð24Þ

where pðwjjwiÞ is the probability of a phrase containing
word wj appearing to the right of a phrase containing word
wi, fðwi; wjÞ indicates the number of times two phrases
containing wi and wj are adjacent, fðwi;�Þ is the number of
times wi appears on the left of any phrase, and fð�; wiÞ the
number of times it appears on the right.7

After integrating the adjacency probabilities into (22), the
caption generation model becomes

P ð�1; �2; :::; �mÞ �
Ym

j¼1

P ð�j 2 Cj�j 2 DÞ

�
Ym

j¼2

P ð�jj�j�1Þ

� P ðlenðCÞ ¼
Xm

j¼1

lenð�jÞÞ

�
Y

Pm

j¼1
lenð�jÞ

i¼3

Padapðwijwi�1; wi�2Þ:

ð25Þ

The model in (25) takes long distance dependency
constraints into account and has some notion of syntactic
structure through the use of attachment probabilities. As it
has a primitive notion of caption length estimated by
P ðlenðCÞ ¼

Pm
j¼1 lenð�jÞÞ, it will invariably generate cap-

tions of similar (phrase) length. Ideally, we would like the

model to modulate the length of its output depending on
the chosen content. However, we leave this to future work.

4.3.3 Search

To generate a caption, it is necessary to find the sequence of
words that maximizes P ðw1; w2; . . . ; wnÞ for the word-based
model (18) and P ð�1; �2; . . . ; �mÞ for the phrase-based model
(25). We rewrite both probabilities as the weighted sum of
their log form components and use beam search to find a
near-optimal sequence. Note that we can make search more
efficient by reducing the size of the documentD. Using one of
our extractive generation models from Section 4.2, we may
rank its sentences in terms of their relevance to the image
content and consider only the n-best ones. Alternatively, we
could consider the single most relevant sentence together
with its surrounding context under the assumption that
neighboring sentences are about the same or similar topics.

5 EVALUATION

In this section, we evaluate the caption generation models
presented above. We give details on our training procedure,
parameter estimation, and present the baseline methods
used for comparison with our models. We first discuss
results on the performance of the image annotation model
(Section 4.1) and then evaluate the caption generation task
as a whole. The image annotation model is used as a proxy
to content selection; it highlights important objects or events
depicted in the image (and mentioned in the document) that
should also figure in the generated caption.

5.1 Image Annotation

5.1.1 Data

All our annotation experiments were conducted on the BBC
dataset described in Section 3.1. We used 2,881 image-
caption-document tuples for training, 240 tuples for devel-
opment, and 240 for testing. All documents and captions
were part-of-speech tagged and lemmatized with Tree
Tagger [57].We excluded from the vocabulary low frequency
words (appearing fewer than five times) and words other
than nouns, verbs, and adjectives. We preprocessed the
images as follows: We first extracted SIFT keypoints with
descriptors from each image (150 on average) and then used
K-means to quantize these features into a discrete set of
visual terms.WevariedK experimentally (from100 to 2,000).

5.1.2 Parameter Tuning

We trained our LDA topic model on the multimodal
document collection fdMixg, varying the number of topics
from 15 to 1,000. The hyperparameter �was set to 0.1; �, the
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Fig. 4. Example of a dependency graph for the sentence “Thousands of Tongans have attended the funeral of King Tuafa’ahau.” Directed edges
represent heads and their dependents. Phrases extracted from this graph are shown in the adjacent table.

7. Equation (24) is smoothed to avoid zero probabilities.



word-topic probability table, was initialized randomly. The
maximum number of iterations for variational inference
was set to 1,000. We tuned the smoothing parameters q1, q2,
and q3 (see (12)) on the development set. The best values
were q1 ¼ 0:84, q2 ¼ 0:12, and q3 ¼ 0:04.8 As the number of
visual terms and topics are interrelated, we exhaustively
examined all possible combinations on the development set.
We obtained the best results on image annotation with
1,000 topics and 750 visual terms.

5.1.3 Comparison Models

We compared our topic model against several baselines.
First, we trained a vanilla LDA model (TxtLDA) on the
document collection without taking the images into account.
This model estimates P ðwtjDÞ ¼

PK
k¼1 P ðwtjzkÞP ðzkjDÞ, the

probability of word wt given text document D, and assumes
that the most probable words are the best keywords for the
accompanying image. To assess the individual contribution
of the visual information, we also trained an LDA model on
image-caption keyword pairs without taking the news
articles into account. This model (ImgLDA) estimates
P ðwtjIÞ ¼

PK
k¼1 P ðwtjzkÞP ðzkjIÞ, the probability of word wt

given image I. For both models, we tuned the number of
topics on the development set; we obtained the best
performance with 500 topics for TxtLDA; the combination
of 1,000 visual words with 500 topics performed best for
ImgLDA. Our third baseline is an extension of the
continuous relevance annotation model (ContRel, [7]).
Unlike other approaches where a set of latent variables is
introduced, each defining a joint distribution on the space of
keywords and image features, this model captures the joint
probability of images and annotated words directly, without
requiring an intermediate clustering stage (i.e., each
annotated image in the training set is treated as a latent
variable). In Feng and Lapata [58], we modified this model
so as to exploit the information present in the document
with improved results. Our extensions were twofold. First,
in estimating the conditional probability of a keyword given
an image, we also considered its likelihood in the collateral
document. Second, we used an LDA model (trained on the
document collection) to prune from the model’s output
words that are not representative of the document’s topics.

We also compared our approach with two closely related
latent variable models (originally developed for image-
caption pairs), a PLSA-based model [22], and CorrLDA [42].
Following Monay and Gatica-Perez [22], we experimented
with three variants of PLSA, namely, PLSA-Words, PLSA-
Mixed, and PLSA-Features. These models vary in how they
obtain the topic proportions P ðz1:K jdÞ on the training data.
PLSA-Words and PLSA-Features are both asymmetric,
estimating the topic proportions from a single modality,
i.e., the text or the images. In both cases, the estimated topic
structure is kept fixed and the other modality (visual or
textual) is folded-in [21]. PLSA-Mixed uses both the images
and annotation keywords to infer the topic space. CorrLDA
first generates image regions from a Gaussian multinomial

distribution parameterized with Dirichlet priors. Then, for
each annotation word, it uniformly selects a region from the
image and generates a word according to the topic used to
generate that region. Although PLSA and CorrLDA were
initially developed for standard image annotation (and thus
trained on image-keyword pairs), it is straightforward to
adapt them to our setting and train on image-caption-
document tuples. We therefore report two sets of results,
with or without the document. Parameters for these models
were optimized on the development set. For CorrLDA, we
followed the mean-field variational inference strategy
proposed in Blei [4]. The optimal number of topics for
PLSA was 200 and for CorrLDA was 50. In both cases, the
optimal number of visual terms was 2,000.

Finally, as a sanity check, we compared our model
against two simple baselines. The first baseline ranks the
content words (i.e., nouns, verbs, and adjectives) appearing
in each document according to their tf � idf weight [50] and
selects the top m ones to be the final image keywords. Our
second baseline (DocTitle) simply annotates the image with
the document’s title (excluding stopwords).

5.1.4 Evaluation Method

Our evaluation followed the experimental methodology
proposed in Lavrenko et al. [7].We are given an unannotated
image I with its associated document and asked to
automatically produce suitable keywords for it. We consider
the 10-best output keywords as the annotations for image I

and compare them against the original (gold standard)
captions. Model performance is evaluated using precision,
recall, and F1. In the image annotation task, precision is the
percentage of correctly annotated words over all annotations
that the system suggested. Recall is the percentage of
correctly annotated words over the number of genuine
annotations in the test data. F1 is the harmonic mean of
precision and recall. These measures are averaged over all
items in the test set. In addition to F1, we also report Mean
Average Precision (mAP), an evaluation measure commonly
used in information retrieval. Mean average precision is
the mean of the Average Precision (AP) of a set of queries.
The AP of a query is the average of the precision scores at the
rank locations of each relevant document (or image in our
case). Intuitively, the higher the mAP value a hypothetical
query-retrieval system has, the earlier it finds the relevant
images. We refer the interested reader to Monay and Gatica-
Perez [22] and Buckley and Voorhees [59] for more details.
Note that we cannot give mAP scores for models that do not
produce a ranking over the entire vocabulary (i.e., tf � idf ,
DocTitle, and ContRel).

5.1.5 Results

Our results are summarized in Table 1. As can be seen, our
model (MixLDA) outperforms all comparison models that
consider the document alone, without the image. This is
true for tf � idf and the baseline based on document titles.
MixLDA also outperforms TxtLDA by a large margin in
terms of precision (9 percent) and recall (16.2 percent). F1
improves by 11.4 percent and the difference is statistically
significant (p < 0:01) using a stratified shuffling-based
randomization test [60]. MixLDA also achieves a significant
increase in F1 over ImgLDA. A similar pattern emerges
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dMix (the term q1) indicates that visual and textual information are most
effective when combined, rather than when being individually considered.



when considering the mAP value, which is substantially
higher for MixLDA compared to TxtLDA and ImgLDA.
Interestingly, TxtLDA and ImgLDA obtain comparable
precision, recall, and F1. It seems that visual and textual
information are complementary, and on their own are not
rich enough to represent the semantics of the images.
MixLDA achieves this to a greater extent as it uses a
concatenated representation of words and visual features
dMix. It thus assumes that the two modalities have equal
importance in defining the latent space, which, as our
results suggest, is beneficial.

The continuous relevance model (ContRel) improves
considerably upon TxtLDA, ImgLDA, CorrLDA, and PLSA,
but is significantly worse (p < 0:01) than MixLDA. On the
surface, MixLDA seems similar to ContRel; both models
take advantage of visual and textual information. ContRel
smooths the conditional probability of a word given an
image with the conditional probability of the same word
given the document and uses an LDA model (trained on the
news document collection) to remove nontopical keywords
from the model’s output. MixLDA is conceptually simpler,
but, importantly, LDA is the actual model rather than a
postprocessing step, thus exploiting the synergy between
visual and textual information more directly. Topics are
created based on both modalities, which are treated on an
equal footing. Compared to ContRel, MixLDA improves
precision by 1.6 percent, recall by 5.2 percent, and the
overall F1 by 1.8 percent.

All variants of PLSA significantly (p < 0:01) improve
upon TxtLDA and ImgLDA in terms of F1. Models trained
on image-caption pairs tend to perform worse compared
to those additionally using the accompanying document.
Note that F1 variations in performance among the
different PLSA models are small. Interestingly, we observe
the opposite when considering mAP. PLSA-words trained
on image-caption tuples is by far the best model. A similar
result is reported in Monay and Gatica-Perez [22], who use
mAP to evaluate their PLSA models on the Corel dataset.
CorrLDA performs significantly (p < 0:01) worse than
PLSA, TxtLDA, and ImgLDA using both F1 and mAP.

Recall that in CorrLDA word topic assignments are drawn
from the image regions which are in turn drawn from a
Gaussian distribution. Although this modeling choice
delivers better results on the simpler Corel dataset, it
does not seem able to capture the characteristics of our
images which are noisier and more complex. Moreover,
CorrLDA assumes that annotation keywords must corre-
spond to image regions. This assumption is too restrictive
in our setting, where a single keyword may refer to many
objects or people in an image (e.g., the word badminton is
used to collectively describe an image depicting players,
shuttlecocks, and rackets).

In sum, we observe that the proposed annotation model
(MixLDA) is robust to inherent noise and improves upon
competitive image annotation approaches. Table 2 shows
examples of keywords generated by TxtLDA, ImgLDA,
PLSA-Words, and MixLDA for the images in Fig. 1 (the
first row corresponds to Fig. 1a, the second row to Fig. 1b,
and so on).

5.2 Image Caption Generation

5.2.1 Data

Our caption generation experiments were conducted on the
same BBC News dataset used for image annotation and
using the same training, development, and test set partitions.
In addition, documents and captions were parsed with the
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TABLE 1
Automatic Image Annotation Results

on the BBC News Dataset

All scores are reported as percentages. PLSA and CorrLDA models
trained on image-caption-document tuples are indicated with the
subscript D.

TABLE 2
Image Annotations Generated by

TxtLDA, ImgLDA, PLSA-Words, and MixLDA

Words in boldface indicate an exact match with the gold standard
caption shown in Fig. 1.



Stanford parser [61] in order to obtain dependencies for the
phrase-based abstractive model.

5.2.2 Parameter Tuning

Both extractive and abstractive generation models used
MixLDA for content selection with the set of parameters
found optimal on the image annotation task (750 visual
terms, 1,000 topics). The abstractive models rely on a trigram
model for creating coherent output which we trained using
the SRI language modeling toolkit9 on a newswire corpus
consisting of BBC and Yahoo! news documents (6.9M
words). The attachment probabilities (see (24)) were esti-
mated from the same corpus. We tuned the caption length
parameter on the development set using a range of ½5; 14�
tokens for the word-based model and ½2; 5� phrases for the
phrase-based model. Following Banko et al. [32], we
approximated the length distribution with Gaussian dis-
tribution. The scaling parameter � for the adaptive language
model was also tuned on the development set using a range
of ½0:5; 0:9�. We report results with � set to 0.5.

For the abstractive models the beam size was set to 500
(with at least 50 states for the word-based model). For the
phrase-based model, we also experimented with reducing
the search scope, either by considering only the n most
similar sentences to the keywords (range ½2; 10�), or simply
the single most similar sentence and its neighbors. The
former method delivered better results with five sentences
(and the KL divergence similarity function).

5.2.3 Evaluation Method

We evaluated the performance of our captions automati-
cally and also by eliciting human judgments. Our automatic
evaluation was based on Translation Edit Rate (TER, [62]), a
measure commonly used to evaluate the quality of machine
translation output. TER is defined as the minimum number
of edits a human would have to perform to change the
system output so that it exactly matches a reference
translation. In our case, the original captions written by
the BBC journalists were used as reference:

TERðE;ErÞ ¼
InsþDelþ Subþ Shft

Nr

; ð26Þ

where E is the hypothetical system output, Er the reference
caption, and Nr the reference length. The number of
possible edits include insertions (Ins), deletions (Del),
substitutions (Sub), and shifts (Shft). TER is similar to word
error rate, the only difference being that it allows shifts. A
shift moves a contiguous sequence to a different location
within the same system output and is counted as a single
edit. The perfect TER score is 0; however, note that it can be
higher than 1 due to insertions. The minimum translation
edit alignment is usually found through beam search. We
used TER to compare the output of our extractive and
abstractive models with the original captions and also for
parameter tuning (see the discussion above).

In our human evaluation study, participants were
presented with a document, an associated image, and its
caption, and asked to rate the latter on two dimensions:
grammaticality (Is the sentence fluent or word salad?) and

relevance (Does it succinctly describe the content of the
image and document?). We used a seven-point rating scale;
participants were encouraged to give high ratings to
captions that were grammatical and appropriate descrip-
tions of the image given the accompanying document. Our
experimental instructions are given in Appendix B, which is
available in the online supplemental material. We randomly
selected 12 document-image pairs from the test set and
generated captions for them using the best extractive system
(based on KL-divergence) and two abstractive systems
(word based and phrase based). We also included the
original human-authored caption as an upper bound. We
collected ratings from 23 unpaid volunteers, all self-reported
native English speakers. The study was conducted over the
Internet using the WebExp [41] experimental software.

5.2.4 Results

Table 3 reports our results on the test set using TER. We
compare four extractive models based on word overlap,
cosine similarity, and two probabilistic similarity measures,
namely, KL and JS divergence, and two abstractive models
based on words (see (18)) and phrases (see (25)). We also
include a simple baseline that selects the first document
sentence as a caption and show the average caption length
(AvgLen) for each model. We examined whether perfor-
mance differences amongmodels are statistically significant,
using the Wilcoxon test.

As can be seen, the probabilistic extractive models (KL
and JS divergence) outperform word overlap and cosine
similarity (all differences are statistically significant,
p < 0:01).10 They make use of the same topic model as the
image annotation model, and are thus able to select
sentences that cover common content. They are also
significantly better than the lead sentence, which is a
competitive baseline. It is well known that news articles are
written so that the lead contains the most important
information in a story.11 This is an encouraging result as
it highlights the importance of the visual information for
the caption generation task. In general, word overlap is the
worst performing model, which is not unexpected as it does
not take any lexical variation into account. Cosine is slightly
better but not significantly different from the lead sentence.
The abstractive models obtain the best TER scores overall;

FENG AND LAPATA: AUTOMATIC CAPTION GENERATION FOR NEWS IMAGES 809

TABLE 3
TER Results for Extractive, Abstractive Models,

and Lead Sentence Baseline

�: significantly different from lead sentence baseline; y: significantly
different from KL divergence; .: significantly different from JS

9. http://www.speech.sri.com/projects/srilm/.

10. We also note that mean length differences are not significant among
these models.

11. As a rule of thumb, the lead should answer most or all of the five Ws
(who, what, when, where, why).



however, they generate shorter captions in comparison to
the other models (closer to the length of the gold standard)
and as a result TER treats them favorably simply because
the number of edits is less. For this reason, we turn to the
results of our judgment elicitation study, which assesses in
more detail the quality of the generated captions.

Recall that participants judge the system output on two
dimensions, grammaticality and relevance. Table 4 reports
mean ratings for the output of the extractive system (based
on the KL divergence), the two abstractive systems, and the
human-authored gold standard caption. We performed an
Analysis of Variance (ANOVA) to examine the effect of
system type on the generation task. Post-hot Tukey testswere
carried out on the mean of the ratings shown in Table 4 (for
grammaticality and relevance).

The word-based system yields the least grammatical
output. It is significantly worse than the phrase-based
abstractive system (� < 0:01), the extractive system (� <

0:01), and the gold standard (� < 0:01). Unsurprisingly, the
phrase-based system is significantly less grammatical than
the gold standard and the extractive system, whereas the
latter is perceived as equally grammatical as the gold
standard (the difference in the means is not significant).
With regard to relevance, the word-based system is sig-
nificantly worse than the phrase-based system, the extractive
system, and the gold standard. Interestingly, the phrase-
based system performs on the same level as the human gold
standard (the difference in the means is not significant) and
significantly better than the extractive system. Overall, the
captions generated by the phrase-based system capture
almost the same content as the human-authored captions,
even though they tend to be less grammatical. Table 5 shows
examples of system output for the image-document pairs in
Fig. 1 (the first row corresponds to Fig. 1a, the second row to
Fig. 1b, and so on). More detailed analysis and examples of
system output are provided in Appendix C, which is
available in the online supplemental material.

6 CONCLUSIONS

In this paper, we introduced the novel task of automatic
caption generation for news images. The task fuses insights
from computer vision and natural language processing and
holds promise for various multimedia applications, such as
image and video retrieval, development of tools supporting
news media management, and for individuals with visual
impairment. As a departure from previous work, we have
approached this task in a knowledge-lean fashion by
leveraging the vast resource of images available on the
Internet and exploiting the fact that many of these co-occur

with textual information (i.e., captions and associated
documents). Our results show that it is possible to learn a
caption generation model from weakly labeled data without
costly manual involvement.

The dataset we employed contains real-world images
and exhibits a large vocabulary including both concrete
object names and abstract keywords; instead of manually
creating annotations, image captions are treated as labels
for the image. Although the caption words are admittedly
noisy compared to traditional human-created keywords, we
show that they can be used to learn the correspondences
between visual and textual modalities, and also serve as a
gold standard for the caption generation task. Moreover,
this news dataset contains a unique component, the news
document, which provides both information regarding to
the image’s content and rich linguistic information required
for the generation procedure.

Inspired by recent work in summarization, we have
presented extractive and abstractive caption generation
models. A key aspect of our approach is to allow both the
visual and textual modalities to influence the generation
task. This is achieved through an image annotation model
that characterizes pictures in terms of description keywords
that are subsequently used to guide the caption generation
process. Our results show that the visual information plays
an important role in content selection. Simply extracting a
sentence from the document often yields an inferior caption.
Our experiments also show that a probabilistic abstractive
model defined over phrases yields promising results. It
generates captions that are more grammatical than a closely
related word-based system and manages to capture the gist
of the image (and document) as well as the captions written
by journalists.

We have primarily explored the feasibility of caption
generation in the news domain. However, the proposed
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TABLE 4
Mean Ratings on Caption Output Elicited by Humans

�: significantly different from the word-based abstractive system, y:
significantly different from the phrase-based abstractive system.

TABLE 5
Captions Written by Humans (G) and

Generated by Our Systems

KL: Extractive Model Based on KL-Divergence AW : word-based
abstractive model; AP phrase-based abstractive model.



framework can be applied to other types of data, including
photo sharing sites and life-science publications, which
conventionally contain graphical illustrations with detailed
textual descriptions [63]. The uses of the image annotation
model discussed in this paper are many and varied. An
interesting future direction concerns the application of the
proposed model in a semi-supervised setting where the
annotation output is iteratively refined with some manual
intervention [64]. We also believe that the annotation model
can be usefully employed in an information retrieval setting
where the goal is to find the image most relevant for a given
query or document.

The model presented here could be further improved in
several ways. First, we could allow an infinite number of
topics and develop a nonparametric version that learns how
many topics are optimal. Second, our model is based on
word unigrams, and in this sense takes very little linguistic
knowledge into account. Recent developments in topic
modeling could potentially rectify this, e.g., by assuming
that each word is generated by a distribution that combines
document-specific topics and parse-tree specific syntactic
transitions [65]. Third, our model considers mostly local
features for representing the images. A better representa-
tion would also take global feature dependencies into
account (e.g., the spatial relationships among different
image regions).

Our caption generation model adopts a two-stage
approach where the image processing and surface realiza-
tion are carried out sequentially. A more general model
should integrate the two steps in a unified framework.
Indeed, an avenue for future work would be to define a
phrase-based model for both image annotation and caption
generation, e.g., by exploiting recentwork in detecting visual
phrases (e.g., [66]). We also believe that our approach would
benefit from more detailed linguistic and nonlinguistic
information. For instance,we could experimentwith features
related to document structure such as titles, headings, and
sections of articles, and also exploit syntactic information
more directly. The latter is currently used in the phrase-
basedmodel by taking attachment probabilities into account.
We could, however, improve grammaticality more globally
by generating a well-formed tree (or dependency graph).
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