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Abstract We propose a fully automated method for

segmenting the cardiac right ventricle (RV) from magnetic

resonance (MR) images. Given a MR test image, it is first

oversegmented into superpixels and each superpixel is ana-

lyzed to detect the presence of RVregions using random forest

(RF) classifiers. The superpixels containing RV regions con-

stitute the region of interest (ROI) which is used to segment

the actual RV. Probability maps are generated for each ROI

pixel using a second set of RF classifiers which give the

probabilities of each pixel belonging to RV or background.

The negative log-likelihood of these maps are used as penalty

costs in a graph cut segmentation framework. Low-level fea-

tures like intensity statistics, texture anisotropy and curvature

asymmetry, and high level context features are used at differ-

ent stages. Smoothness constraints are imposed based on

semantic information (importance of each feature to the clas-

sification task) derived from the second set of learned RF

classifiers. Experimental results show that compared to con-

ventional method our algorithm achieves superior perfor-

mance due to the inclusion of semantic knowledge and con-

text information.

Keywords Automatic segmentation .MRI . Right ventricle .

Graph cut . Semantic information

Introduction

The leading cause of death in the Western world is attributed

to cardiovascular diseases [1]. Numerous medical imaging

modalities are being used for their diagnosis and treatment,

like echocardiography, computed tomography (CT), coronary

angiography and magnetic resonance imaging (MRI). MRI

has emerged as the preferred diagnostic modality because of

its non-invasive nature. It also provides reliable information

on morphology, muscle perfusion, tissue viability, and blood

flow. These parameters are obtained by segmenting the left

ventricle (LV) and right ventricle (RV) from cardiac MR

images.

Majority of the works on cardiac segmentation deal with

the LV because of its importance in determining physiological

parameters. However, segmentation of the RV has recently

gained attention because of new findings that confirm the

relationship between RV function and a number of cardiac

diseases such as heart failure and RV myocardial infarction

[2]. Shors et al. [3] show that MRI can provide an accurate

quantification of RV mass. In this work we propose a fully

automated cardiac RV segmentation method that combines

learned image statistics with graph cut optimization to seg-

ment the RVendocardium and epicardium.

Manual segmentation of the RV is tedious and prone to

intra- and inter-observer variability. This has necessitated the

development of computer-aided segmentation algorithms.

Although cardiac RV segmentation methods are few, an ex-

cellent review of cardiac LV segmentation algorithms is given

in [4]. Any automated/semiautomated RV segmentation algo-

rithm has to overcome the challenges of: (1) its complex

crescent shape; (2) low resolution and noisy MRI; (3) thinner

structure than LV; and (4) presence of papillary muscles.

Previous Work on MRI RV Segmentation

Lapp et al. [5] combine active appearance models (AAMs)

and deformable registration for RV segmentation. However,

such an approach has difficulty in defining a proper energy

function to drive the curve evolution to the boundary because
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of the complex and variable RV shape [6]. Other works have

used registration based approaches [7] and active shape

models (ASM) with inter profile modeling [8] for RV

segmentation.

Ou et al. in [9] used mutual saliency in a multi-atlas based

registration method. Zuluaga et al. [10] used a coarse to fine

segmentation and label propagation in a multi-label fusion

framework. Graph cut (GC)-based methods were used with

convex relaxation and distribution matching [11], statistical

principal components as shape priors [12] and region merging

[13].

Knowledge-Based Cardiac Segmentation

Most cardiac MR images show poor contrast between

RV blood pool and the surrounding myocardium wall,

thus giving minimal edge information. Additionally,

similar intensity distributions in different regions make

segmentation of the RV a very challenging task when

using only low-level information (e.g., intensity, gradi-

ent, etc.). In such a scenario, high level knowledge

(e.g., shape priors) is included for segmentation.

Paragios et al. [14] used a signed distance map to incorpo-

rate prior shape knowledge in a level set framework for LV

segmentation. A probability density function of the shape or

appearance from training data was used in level sets [15] and

graph cuts [16], while orientation histograms were used as

shape priors for graphcut segmentation of the LV [17, 18] and

registration information [19, 20]. Ayed et al. employed level

sets to match overlap priors of myocardium and blood pool.

Mutual context information from the LVand RV was used to

segment each other in [21]. Some of the works on LV seg-

mentation also show results for RV segmentation using de-

formable models [22, 23] and atlas-based methods [24].

Our Contribution

While shape priors significantly increase the segmenta-

tion accuracy of cardiac images, they fail when the RV

(or LV) has complex deformations that cannot be han-

dled by the shape prior. To overcome such challenges,

we propose to use a machine-learning approach which

learns image statistics of the object of interest (OOI),

e.g., RV blood pool, and the surrounding myocardial

wall. This enables us to distinguish the OOI from the

non-interesting regions.

Our approach has two stages. First, we identify a

region of interest (ROI) that contains the RV and sec-

ond, differentiate between the RV blood pool, myocar-

dium, and background within this ROI. A given image

is first oversegmented into superpixels and each

supervoxel is classified using random forest (RF) clas-

sifiers for the presence of the RV. The superpixels

containing parts of the RV constitute the ROI. A second

set of RF classifiers output probability maps for every

ROI pixel indicating its likelihood of belonging to

blood pool, myocardium or background. The probability

maps are integrated into a second order Markov random

field (MRF) cost function and the final labels are ob-

tained using graph cut optimization.

RF classifiers are used because: (i) they allow us to

extract semantic information after the training step in

the form of relative importance of different features to

the classification task. This is important in the segmen-

tation of the RV. (ii) RF classifiers allow for a proba-

bilistic interpretation of the classification of test samples

which aids in designing an appropriate cost function for

segmentation.

This paper makes the following contributions in

terms of technical novelty. First, we develop a hierar-

chical framework using superpixel segmentation and

trained RF classifiers to define a ROI containing the

RV region. The RF classifiers also discard medically

irrelevant regions away from the RV. Our second con-

tribution lies in the use of semantic information to guide

the segmentation process. We derive semantic informa-

tion from the trained RF classifiers of the second stage

to quantify the importance of different features in gen-

erating probability maps. The importance measures are

used to weigh features in the smoothness cost function

for greater segmentation accuracy. The rest of the paper

is structured as follows: “Methods” describes different

parts of our method. We describe our dataset and dis-

cuss our results in “Experiments and Results” and con-

clude with “Conclusion and Future Work”.

Methods

Method Overview

An overview of our method is given in Algorithm 1. A

ROI containing the RV is automatically determined by

superpixel segmentation and their classification by RF

classifiers. Probability values of each pixel within the

ROI are calculated using a second set of RF classifiers.

Intensity information is not used directly as regions in

the RV neighborhood have similar intensity. The nega-

tive log-likelihood of the probability map is used as the

penalty cost in a second-order MRF cost function.

Furthermore, the second set of trained RF classifiers

provides semantic information about the importance of

different features in the classification task. These impor-

tance measures are used to weigh each image feature

differently in the smoothness cost. The final class labels
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are obtained by optimizing the cost function using graph cuts

to obtain a regularized solution.

Algorithm 1 MR Cardiac RV Segmentation

Input Image with N pixels.

Output Segmented RVendocardium and epicardium

Sequence of Steps:

Superpixel segmentation

Classification of superpixels to get ROI

Generate probability maps of ROI pixels

Calculate penalty cost and smoothness cost of pixels

Obtain final segmentation labels using graph cuts

Random Forest Classifiers

Random forests [25] are increasingly used by many medical

applications like cancer classification, tissue segmentation,

[26–28], to detect abnormalities in mammograms [29], iden-

tify coronary artery stenoses [30], and analyze Crohn’s disease

[31–33]. They are computationally efficient for large training

data, can solve multiclass classification problems, and the

learned knowledge can be extracted and interpreted to get a

deeper insight into the training procedure. An RF is an en-

semble of decision trees, where each tree is typically trained

with a different subset of the training set (“bagging”), thereby

improving the generalization ability of the classifier. Samples

are processed along a path from the root to a leaf in each tree

by performing a binary test at each internal node along this

path. A test compares a certain feature with a threshold.

Training a forest amounts to identifying the set of tests that

best separate the data into the different training classes. At

each internal node, the feature space is searched for a test that

maximizes the reduction of class impurity, typically measured

with the class entropy.

Rather than inspecting the full space of features at each

node, a random subset is probed, and the best one is selected.

Even if this choice renders the individual trees weaker, it

decreases the correlation between their outputs, increasing

the performance of the forest as a whole. Each training sample

is sent to the corresponding child depending on the result of

the test, and the process is recursively repeated until the

number of samples in a node falls below a threshold, a

predefined maximum tree depth is reached, or all the samples

belong to the same class. In that case, the node becomes a leaf,

and the most frequent class of the training data at the node is

stored for testing.

During testing, a new sample is processed by applying

respective tests according to the path from the root node to

the leaf it traverses. When a leaf node is reached, the tree casts

a vote corresponding to the class assigned to this node in the

training stage. The final decision for a test sample is obtained

by selecting the class with the majority of votes. The class

probability of a test sample is estimated as the fraction of votes

for that class cast by all trees.

Image Features

This section describes the features used in our method—

intensity statistics, texture and curvature anisotropy, and spa-

tial context features. Context features are a combination of

intensity, texture, and curvature values sampled using a tem-

plate. ROI identification requires classification of superpixels

for which we use intensity, texture and curvature features,

(excluding context information) to ensure fast feature extrac-

tion and subsequent classification, as well as good generali-

zation of the classifier. For generating ROI probability maps,

we employ the complete set of features (including context

information).

Intensity Statistics

It is not always easy to identify the edges of the RV blood pool

and surrounding myocardium wall. Psychophysical experi-

ments have established that the human visual system (HVS)

is sensitive only to image features of the first and second order

(mean and variance) [34–38]. However, MR images common-

ly contain regions that do not form distinct spatial patterns but

differ in their higher order statistics, e.g. boundaries of some

malignant tumors are diffuse and invisible to the naked eye

[39]. Therefore, in addition to features processed by the HVS,

we propose to investigate features that are not discernible by

the human eye but may provide discriminating information for

our task. For every sub-region (superpixel or pixel neighbor-

hood) we calculate the mean, variance, skewness, and kurtosis

of the intensity values.

Texture Anisotropy

Texture is modeled as patterns distinguished by a high con-

centration of localized spatial frequencies. 2D Gabor filter

banks are used to generate texture maps for each image.

Gabor filters have optimal joint localization in the spatial

and frequency domains. Their multi-scale and multi orienta-

tion structure conforms to the receptive field profiles of simple

cortical cells [40], and captures rich visual properties such as

spatial localization, orientation selection and spatial frequency

characteristics. Since Gabor filters incorporate Gaussian

smoothing, they are robust to noise.

Texture maps are partitioned into nine equal parts corre-

sponding to nine sectors of a circle, and the entropy of texture

values is calculated for each sector. Figure 1a shows a tem-

plate of the sectors. More sectors led to fewer samples per

sector which jeopardizes estimation of stable higher order

statistics. Too few sectors reduce the discriminative power as
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many different texture profiles are grouped in one sector. A

high entropy value indicates wide distribution of texture

values (hence higher asymmetry or anisotropy), while low

entropy indicates low asymmetry or anisotropy. The texture

anisotropy for sector r is

χr
ani ¼ −

X

tex

prtexlogp
r
tex ð1Þ

ptex
r denotes the probability distribution of texture values in

sector r. This procedure is repeated for all the eight texture

maps (four orientations and two scales) to extract a (8×9=) 72

dimensional feature vector.

Curvature Anisotropy

We extend the concept of anisotropy to 2D curvature features.

Curvature anisotropy is calculated in a similar manner as

texture anisotropy. The entropy of curvature values is

determined from nine sectors of an image. If the curvature

values have a wide distribution it indicates greater anisotropy,

leading to a higher entropy value. On the other hand, low

entropy values indicates less anisotropy. The anisotropy mea-

sure for a sector r is given by

Curvrani ¼ −
X

θ

prθlogp
r
θ ð2Þ

pθ
r denotes the probability distribution of curvature values

in sector r, θ denotes the curvature values. Similar to texture

anisotropy, the curvature asymmetry measure is also a nine-

dimensional feature vector for a region. The curvature asym-

metry vector is denoted as Curv. Intensity, texture and curva-

ture features combined give a 85 dimensional feature vector.

Spatial Context Features

Since the human anatomy displays a high degree of regularity

with only moderate variations, presence of one organ provides

Fig. 1 a Sectors of circle for calculating texture and curvature anisotropy; b sample locations for deriving context information
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a strong cue about the presence of another organ in medical

images. Through appropriately designed features we aim to

capture the contextual relationship between RV and other

tissues in the image. Context features have been used to

segment brain structures in MRI [41], prostate from CT and

MR images [42, 43], cardiac structures from MRI [21], local-

izing anatomical structures [44] and segmenting the cardiac

chamber [45]. Basically, context features derive information

of one set of objects from another set of objects.

Since contextual information depends on relative orienta-

tion and distance we sample regions at fixed positions from a

pixel. Figure 1b shows an illustration of the sampling scheme

where the circle center is the pixel in question and the sampled

points are identified by a red “X”. At each point corresponding

to a “X”, we extract a 5×5 region and calculate the mean

intensity, texture and curvature values. The texture values

were derived from the texture maps at 90° orientation and

scale 1. The “X”s are located at distances of 3, 8, 15, 22 pixels

from the center, and the angle between consecutive rays is 45°.

The values from the 32 regions are concatenated into a 96

dimensional feature vector.

Region of Interest Identification

ROI identification is an important part of our method because:

(1) it reduces the total computation time since we need not

classify each pixel; and (2) the ROI gives an initial selection of

likely RV pixels and reduces false positives in subsequent

analysis. Intensity inhomogeneity correction was performed

using the nonparametric nonuniform intensity normalization

(N3) method of [46]. This method performs well without

requiring a model of the tissue classes present. The intensities

were normalized using the method in [47]. First a “standard”

intensity histogram is learnt from a subset of the training

images. The training intensity histograms are roughly bimodal

and parameters such as minimum and maximum percentile

intensities (p1, p2), and the second mode of the histogram (μ)

are determined. For a given test image, the intensities are

rescaled using the following formula

x
0

¼ s1 þ
x − p1
p2 − p1

s2 − s1ð Þ ð3Þ

where x′ is the new intensity obtained from the original

intensity value x; s1, s2 are the minimum and maximum

intensities of the test image. This approach leads to good

contrast of the different images.

The normalized images are oversegmented into superpixels

using the simple linear iterative clustering (SLIC) superpixel

algorithm [48]. The desired number of superpixels is speci-

fied, which is the number of initial superpixel centers assigned

in the image. These centers are initially equally spaced, and

then moved to the lowest gradient position. The pixels are

clustered based on intensity similarity and spatial proximity to

the nearest supervoxel centers. After every iteration, the clus-

ter centers are updated based on the pixels assigned to that

cluster. The iterative procedure continues till the superpixel

centers do not change.

Superpixel classification for ROI identification needs to be

fast and accurate. From the training images, we identify

superpixels that contain RV and background voxels, and ex-

tract relevant features from them. For every superpixel class,

we train RF classifiers with 50 trees. Each superpixel of the

test image is labeled by the RF classifier as “RV” or “back-

ground” with “RV” superpixels making up the ROI. In “ROI

identification”, we discuss our strategy of removing false

positives.

Probability Maps and Graph Cut Segmentation

Probability maps are generated for all ROI pixels using a

second set of RF classifiers. An approximately equal number

of samples from RVand background pixels are taken from the

training datasets. Intensity, texture, curvature, and context

features derived from these samples were used to train a RF

classifier (different from the one trained on superpixel fea-

tures). The features were extracted from a 31×31 neighbor-

hood of each pixel. The training set varies with each round of

cross-validation. The trained classifier is used to generate

probability maps for every pixel within the identified ROI.

Each pixel has three probability values corresponding to the

bloodpool, myocardium, and background. The probability

maps serve as penalty costs in a second-order MRF cost

function. Figure 2a–b show the probability maps of the RV

blood pool and myocardium region, and the final segmenta-

tion output is shown in Fig. 2c.

The final segmentation is obtained by optimizing a second-

order MRF energy function which is written as

E Lð Þ ¼
X

s∈P

D Lsð Þþλ
X

s;tð Þ∈N

V Ls; Ltð Þ; ð4Þ

where P denotes the set of pixels, N is the set of neighboring

pixels for pixel s Ls is the label of s, and L is the set of all

labels. The cost function is optimized using graph cuts [49]. λ

is a weight that determines the relative contribution of penalty

cost (D) and smoothness cost (V). D(Ls) is given by

D Lsð Þ ¼ −log Pr Lsð Þ þ ∈ð Þ; ð5Þ

where P r is the likelihood (from probability maps) previously

obtained using RF classifiers and =0.00001 is a very small

value to ensure that the cost is a real number. The higher the

probability for a class, the lower is the corresponding data

penalty for that class.

V ensures a smooth solution by penalizing spatial disconti-

nuities. The RF classifier returns a measure of the importance
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of each dimension in the feature vector to the classification

task. In spite of the multiple dimensional feature vector, the

features can be classified into three types—intensity, texture,

and curvature. The context information is a combination of the

three. By aggregating the importance values of each feature

category and normalizing them we obtain the relative impor-

tance of each feature in the classification task. This provides

the necessary semantic information by quantifying the impor-

tance of each feature in classifying a pixel into different

categories. Let the weight of the different features be wI

(intensity), wT (texture) and wC (curvature), where wI+wT+

wC=1. The smoothness cost V is given by

V Ls; Ltð Þ ¼
wI V I þ wT V T þ wC VC;

0

Ls≠Lt;

Ls ¼ Lt

� �

ð6Þ

where VI, VT, VC are the individual contributions to the

smoothness by intensity, texture and curvature. VI is

defined as

V I Ls; Ltð Þ ¼ e
−

Is−I tð Þ2

2σ2 ⋅
1

s−tk k
; ð7Þ

I is the intensity. VT and VC are similarly defined using

texture and curvature. Note that the weights (or importance

measures) depend upon the training set. Since we use different

volumes for training (as in a cross-validation setting) we

obtain different weight values. However, after training the

weights take the following values wI=0.19–0.22,wT=0.3–

0.33, and wC=0.43–0.48. This indicates that the relative im-

portance of the different features is the same in all cases.

Fig. 2 a RVendocardium; b RV

epicardium; c final segmentation.

Higher values indicate greater

likelihood of belonging to that

region. Red indicates maximum

probability while blue indicates

zero probability
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With the help of Table 1, we illustrate how the weights are

derived from semantic information. Table 1 shows the impor-

tance measures of different features after training. For conve-

nience, we have grouped the measures under two categories—

“Low-level” and “Context” features. Low-level features indi-

cate intensity, texture and curvature features, while context

features are a combination of the three values sampled at fixed

points from a pixel. Note that there are four columns for

texture under “low-level” features corresponding to the four

orientations of Gabor filters, while “context” has only one

value for texture.

The importance measures are not normalized. First we sum

up all the values under respective feature categories namely

intensity, texture and curvature. Therefore the importance

measure of intensity is 343 (Col 1+Col 7). Similarly,

the importance measure of Tex is 488 (Col 2+Col 3+

Col 4+Col 5+Col 8) and for Curv is 701 (Col 6+Col

9). The sum of all the importance measures is 1532.

Dividing the individual importance measures with the

sum gives the final normalized importance measures as

follows: Int—0.22(wI), Tex—0.32(wT) and Curv—0.46(wC).

For the particular round of cross-validation these are the

values for the weights.

Experiments and Results

Cardiac MR examinations were performed at 1.5 T

(Symphony Tim, Siemens Medical Systems, Erlangen,

Germany) using a eight-element phased-array cardiac coil

and repeated breath-holds of 10–15 s. A total of 8–12

contiguous cine short axis slices were performed.

Sequence parameters were as follows: TR=50 ms; TE=

1.7 ms; flip angle=55; slice thickness=7 mm; matrix

size=256×216; field of view=360–420 mm; 20 images

per cardiac cycle; spatial resolution of 0.75 mm/pixel.

There were 32 datasets and we use a leave-one-out strat-

egy to evaluate our method.

MRF Regularization Strength λ (Eq. 4)

To choose the MRF regularization strength λ we adopt the

following steps. We choose a separate group of seven patient

volumes, and perform segmentation using our method but

with λ taking different values from 10 to 0.001. The results

are summarized in Table 2. The maximum average dice metric

(DM) was obtained for λ=0.02 and this parameter value was

chosen for the subsequent parameter λ=0.02. Note that these

seven datasets were not part of the test dataset used for

evaluating our algorithm.

ROI Identification

Errors in ROI identification lead to inaccurate RV segmenta-

tion. ROI detection is a classification problem where we need

to identify those superpixels that contain RV regions. If a

superpixel has even one RV pixel, it is denoted as RV, while

background superpixels have all background pixels. Table 3

summarizes the superpixel classification performance for dif-

ferent feature combinations using fivefold cross-validation.

Over the 32 patients we have 630 RV blood pool superpixels,

612 myocardium superpixels and 653 background

superpixels. All Features indicates the combination of inten-

sity, texture and curvature features. Note that context features

were not derived from superpixels.

As expected the accuracy for the individual features are

lower than their combinations. The combination of texture and

curvature features produces results closest to AllFeat.

However, this does not indicate that intensity information is

unimportant. Conducting a t test on the values for Tex+Curv

Table 1 Illustration of calculating importance measures

Low level Context

Int Tex0 Tex45 Tex90 Tex135 Curv Int Tex90 Curv

147 98 81 94 85 212 196 130 489

Table 2 Change in segmentation accuracy with different values of λ

(Eq. 4)

λ 10 5 1 0.5 0.1 0.01 0.02 0.001

DM 74.2 74.8 77.2 80.8 83.7 84.6 89.6 89.7

Table 3 Quantitative measures for superpixel classification under different feature combinations

Int Tex Curv Tex+Int Curv+Int Curv+Tex AllFeatures

AccBP (%) 71.6±2.4 75.7±2.5 76.1±2.3 77.9±1.6 78.6±2.7 81.9±1.7 89.9±2.2

AccMyo (%) 70.8±1.7 72.8±2.7 73.8±2.3 75.9±2.5 76.2±2.9 79.7±2.2 87.9±2.7

AccB (%) 70.6±1.9 72.9±2.0 73.5±2.7 75.1±2.2 75.7±1.9 78.9±2.4 87.5±3.1

AccBP classification accuracy for blood pool superpixels, AccMyo, classification accuracy for myocardium superpixels, AccB classification accuracy for

background superpixels, Int intensity, Tex texture, Curv curvature

800 J Digit Imaging (2014) 27:794–804



and AllFeat gives p<0.017 which indicates statistically dif-

ferent results. Further, we also conduct t tests for features Tex

versus Tex–Int, and Curv versus Curv–Int. In all cases, we

find that p<0.025, thus clearly showing that inclusion of

intensity statistics improves classification accuracy without

much extra computational cost.

In any classification scheme, it is difficult to get 100 %

classification/detection accuracy. Misclassification of RV

superpixels occurs when the number of RV pixels in a

superpixel is very low. Hence, the extracted features are

more representative of the background. Note that by RV

superpixels we mean both blood pool and myocardium

superpixels. To overcome this shortcoming, we adopt the

following strategy. After classification, we choose the larg-

est cluster of superpixels, thus obtaining “RV” superpixels

and avoiding false positives. Then, we change the labels

of all their neighboring superpixels (irrespective of their

originally assigned labels). This allows us to include some

“RV” superpixels that may have been missed in the initial

classification.

Figure 3 shows an example where this strategy is particu-

larly effective. The first column shows images from a patient

where the RV segmentation is shown in red and the

superpixels are shown in green. The second column shows

the detected ROI in each slice (shown by the yellow

superpixels) overlaid on the manually annotated RV (in red).

Small RV regions are missed by the superpixel classification

scheme. However, when we include all the neighboring

superpixels, the ROI encompasses all possible RV pixels

(third column).

Table 3 (AllFeat) gives quantitative measures for

superpixel classification before changing the labels of neigh-

boring superpixels. With the change of labels of neighboring

superpixels, the following values are obtained: AccBP=

98.5 %, AccMyo=97.9.4 % and AccB=80.5 %. The labeling

of neighboring superpixels increases “false positives” (back-

ground superpixels labeled RV). Correspondingly, it also re-

duces the classification accuracy of background superpixels.

However, it also reduces the false negatives (RV superpixels

labeled background) and hence the “sensitivity” (RV labeled

as RV) also increases. The overall accuracy increases due to a

higher improvement in AccBP and AccMyo than decrease in

AccB.

Effect of Superpixel Size

Smaller superpixels are more homogeneous and the

extracted features are representative of a single class.

However, they may not always provide sufficient num-

ber of pixels to estimate stable features. Larger

superpixels contain more pixels to calculate features

but may contain pixels from more than one class.

Consequently, the extracted features may not be repre-

sentative of one class. Table 4 summarizes the perfor-

mance for different superpixel sizes in terms of AccBP,

AccMyo, and AccB. Our experiments show that a good

trade-off between accuracy and homogeneous samples is

achieved when the number of pixels in a superpixel is

in the range 600–900. Depending upon the image di-

mensions, we set superpixel parameters to get a

superpixel of appropriate size.

Fig. 3 ROI detection. First column shows the superpixels (green) and

manually annotated RV region (red). Second column shows the identified

RV superpixels (in yellow), and third column shows the final ROI after

neighboring superpixels of Column 2 are changed labels. Results are

shown for different slices of the same patient

Table 4 Quantitative measures for different superpixel sizes

N 300–600 600–900 900–1,200

AccBP (%) 77.9±1.6 89.8±2.9 83.5±2.7

AccMyo (%) 75.1±2.8 88.5±2.3 80.8±3.2

AccB (%) 74.7±2.8 89.3±2.8 80.0±2.7

N number of pixels in a superpixel
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Segmentation Results

Table 5 summarizes the performance of our method under

different conditions. RF: Our proposed method using RF

classifiers. RFnC: RF without context information from im-

ages for training the RF classifier; RFnV: RF without semantic

context in V. wI=wT=wC=0.33; RFnVI: RF with wI=0;

RFnVT: RF with wT=0; RFnVC: RF with wC=0; MAH: the

shape prior based LV segmentation method in [17] applied to

our RV datasets. Quantitative evaluation of segmentation

performance is given in terms of DM and Hausdorff distance

(HD) measures. DM gives a measure of overlap between the

reference manual segmentations and the algorithm segmenta-

tions. HD gives an idea on the distance between the bound-

aries of the two segmentations.

RF performs better than MAH. The mean DM values by

RF are higher and the mean HD values are lower than other

methods. This indicates a more consistent segmentation of

images from different phases. The consistently better perfor-

mance of RF can be attributed to two factors: (1) use of

machine learning techniques to identify most discriminant

features; and (2) incorporating semantic information into the

smoothness cost.

RFnC gives the worst result out of all methods due to

exclusion of context information. A t test between the values

of RF and RFnC gives pRF–RFnC<0.001 indicating a large drop

in performance without context information. pRF−RFnV<0.02

indicates that semantic information is also an important con-

tributor to the segmentation accuracy. Comparing all the other

methods with RF gives 0.028<p<0.04. This shows that while

different components of the smoothness cost (like curvature,

texture, intensity) are important, semantic information is the

most important aspect. The p values also show that among the

feature maps the most important is curvature followed by

texture and intensity.

Figure 4 shows segmentation results for Patients 18, 11, 4

obtained by RF, RFnC, RFnVC, and RFnVT. To ensure clarity,

we show only the results for endocardium (or the blood pool).

The results reflect the values in Table 5. The low DM values

for RFnC highlights the fact that context plays a very important

role in our method. Although all the low-level features are

used, without context information it is very difficult to dis-

criminate between RVendocardium and epicardium.

Computational Cost

Our method basically consists of the following steps:

superpixel segmentation and classification to get the ROI,

analyzing every pixel within the ROI to identify RV pixels

by generating probability maps and graphcut segmentation.

The average computation time for our entire method on a

256×216 image was 528 s. The automatic ROI identification

stage including sub sampling, feature extraction, classifica-

tion, segmentation, and upsampling to get the ROI took 224 s

on an average. Further segmentation of the ROI took 304 s on

Fig. 4 RV segmentation results:

a RF; b RFnC; c RFnVC; and d

RFnVT. The manual

segmentations are in redwhile the

algorithm segmentations are in

green. Areas of inaccurate

segmentation are highlighted by

yellow arrows. The three rows

show results for patients 18, 11,

and 4

Table 6 Effect of number of trees in RF classifiers (NT) on segmentation

accuracy and training time

NT 5 7 10 20 50 70 100 150

DM 79.3 81.0 83.4 85.2 90.4 90.5 90.7 90.7

HD 0.1 T 0.1 T 0.3 T 0.5 T T 1.4 T 2.1 T 3.4 T

Table 5 Quantitative measures for RV (blood pool and myocardium)

segmentation accuracy

RF RFnV RFnC RFnVI RFnVT RFnVC MAH

DM 93.2 84.1 81.2 89.7 87.2 89.9 87.4

HD 6.7 11.3 13.2 8.1 9.2 7.9 9.0

DM dice metric in percent, HD is Hausdorff distance millimeters
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an average, inclusive of the time taken for classification and

segmentation.

Influence of Number of Trees

We examine the effect of varying number of trees (NT) in the

second RF classifier (used for generating probability maps) on

overall performance. The results for RFSem are summarized in

Table 6 in terms of DMvalues.WhenNT<10DM<0.71.With

increasing NT DM increases alongwith the time taken for

training. Table 6 shows the training time (TTr) for different

NT as a multiple of the training time for NT=50. For NT>50

there is no significant increase in DM (p>0.1) but the training

time increases significantly. The best trade-off betweenNTand

DM is achieved for 50 trees and is the reason we have 50 trees

for our RF ensemble.

Conclusion and Future Work

In this work, we have proposed a fully automated to segment

the cardiac right ventricle from MR images. Given a test

image we first oversegment it using superpixel segmentation,

and classify each superpixel with random forests classifiers

and intensity, texture and curvature features. These steps yield

an approximate ROI encompassing the RV. Each pixel within

the ROI is further analyzed to segment the RV blood pool and

myocardium wall. Probability maps are first generated for

each ROI pixel using intensity, texture, curvature, and context

features. These maps give the probability of a pixel belonging

to RV blood pool, myocardium or the background, and are

obtained by a second set of random forest classifiers. The

negative log-likelihood of the probability values is the penalty

cost for a graph cut segmentation framework.

For spatial smoothness constraints, we make use of seman-

tic information from the second set of trained RF classifiers.

The RF classifiers give a measure of the importance of each

feature in the classification task. The importance measures are

aggregated for different feature types and normalized to get a

set of weights for intensity, texture, and curvature. The

smoothness cost is designed to incorporate this semantic

information where intensity, texture and curvature differences

of neighboring pixels are weighted by the values obtained

from semantic information.

Experimental results on 32 patient datasets show that se-

mantic information helps us achieve a high level of segmen-

tation accuracy compared to the shape prior based segmenta-

tion method of [17]. We also analyze the importance of

individual features, and conclude that context information is

the most important feature followed by curvature features.
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