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Abstract Coronary computed tomographic angiog-

raphy (CCTA) is a non-invasive imaging modality for

the visualization of the heart and coronary arteries. To

fully exploit the potential of the CCTA datasets and

apply it in clinical practice, an automated coronary

artery extraction approach is needed. The purpose of

this paper is to present and validate a fully automatic

centerline extraction algorithm for coronary arteries in

CCTA images. The algorithm is based on an improved

version of Frangi’s vesselness filter which removes

unwanted step-edge responses at the boundaries of the

cardiac chambers. Building upon this new vesselness

filter, the coronary artery extraction pipeline extracts

the centerlines of main branches as well as side-

branches automatically. This algorithm was first

evaluated with a standardized evaluation framework

named Rotterdam Coronary Artery Algorithm Evalu-

ation Framework used in the MICCAI Coronary

Artery Tracking challenge 2008 (CAT08). It includes

128 reference centerlines which were manually delin-

eated. The average overlap and accuracy measures of

our method were 93.7% and 0.30 mm, respectively,

which ranked at the 1st and 3rd place compared to five

other automatic methods presented in the CAT08.

Secondly, in 50 clinical datasets, a total of 100

reference centerlines were generated from lumen

contours in the transversal planes which were manu-

ally corrected by an expert from the cardiology

department. In this evaluation, the average overlap

and accuracy were 96.1% and 0.33 mm, respectively.

The entire processing time for one dataset is less than

2 min on a standard desktop computer. In conclusion,

our newly developed automatic approach can extract

coronary arteries in CCTA images with excellent

performances in extraction ability and accuracy.
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arteries. It can provide not only anatomical informa-

tion on the coronary arteries, but also pathological

information such as presence and extent of calcifica-

tions, plaque burden, stenoses and occlusions, which

are useful in the diagnosis and treatment of coronary

artery disease (CAD) [1, 2]. As each CCTA dataset is

built up by a stack of 2D images, typically more than

200 slices, post-processing tools are required to

facilitate the image interpretation by cardiologists

and radiologists. For example, the multi-planar

reformatted (MPR) image in transversal direction

along the vessel allows observing the plaque mor-

phology and its effect on the vessel lumen diameter.

A curved multi-planar reformatted (curved MPR)

image can display a tortuous branch in a single 2D

image which enables the examination of a lesion and

calcified spots along the course of the branch [3].

Since those post-processing tools rely on the avail-

ability of accurate centerlines, a robust coronary

artery extraction algorithm is an essential part of

these processing tools. Furthermore, centerline

extraction of the coronary arteries is also one of the

prerequisite steps in subsequent analysis steps, such

as detection of lesions [4], vascular shear stress

estimation [5] and image fusion [6].

A significant amount of research has been done on

vessel segmentation in medical images, including

coronary artery extraction [7]. However, in most

solutions of coronary artery extraction in CCTA

images, user interactions were required. For instance,

initializing the vessel of interest by means of the

manual definition of the start and end points, or adding

intermediate points to bridge gaps [8–12]. These

manipulations require anatomical and pathological

knowledge and increase the processing time. If these

tools are to be used in clinical practice, further

automation towards a robust solution is required.

Several approaches were dedicated to the auto-

matic centerline extraction of the coronary tree in

CCTA images, which were mainly based on mor-

phological operators [13], model-fitting [14], medial-

ness filter [15] and fuzzy connectedness [16]. These

methods all had some difficulties to extract the distal

parts of coronary arteries or the segments with

narrowings, calcifications and motion artifacts. An

inaccurate extraction or a premature termination of

the algorithm may occur if, for example, the intensity

distribution or morphology differs from the normal

vessel. Bauer et al. [17] presented another method

which combined the gradient vector flow (GVF) [18]

with Frangi’s vesselness measure [19] to avoid

isotropic diffusion in Gaussian scale space. It

obtained a better vessel enhancement especially

when the structures near a coronary artery, such as

cardiac chambers and calcifications, had the same or

higher gray level. However, the extracted centerlines

only had voxel-accuracy at most and the accuracy of

centerlines was decreased at vessel junctions because

of the small gaps generated by vesselness filter at

vessel junctions.

In our previous work [20], an automatic method

was presented based on connected component anal-

ysis and wave propagation. The evaluation results

showed that the intensity-based thresholding used in

this method should be improved for better perfor-

mance of extraction ability.

Therefore, in this paper, we present a novel fully

automatic coronary artery extraction method for

CCTA images mainly relying on an improved Frangi’s

vesselness filter. The new vesselness filter adopts a

discriminator based on local geometric features to

decrease the false positive responses acquired in

Frangi’s vesselness filter. Automatic ostium detection,

branch searching and centerline refinement steps

followed by the extraction of the centerlines of the

whole coronary tree. This method was validated in two

ways: first using the Rotterdam Coronary Artery

Algorithm (RCAA) Evaluation Framework [21], and

secondly by comparing our results with reference data

obtained from 50 clinical CCTA datasets with various

vessel pathologies and image qualities.

Methods

According to the processing pipeline displayed in

Fig. 1, our automatic coronary tree extraction algo-

rithm can be divided into several successive steps, i.e.

pre-processing, improved Frangi’s vesselness filter-

ing, centerline extraction, branch searching and

centerline refinement. These steps will be described

in the next paragraphs.

Pre-processing

In order to achieve better computational efficiency,

CCTA images are interpolated linearly and down-
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sampled to acquire isotropic volumes with the axial

image size equal to 256 9 256 pixels. Pulmonary

vessels are removed by a morphological closing

operator. A spherical kernel with a radius of 8 voxels

is applied to the pulmonary region with image

intensities lower than -224HU. A threshold of

676HU as adopted in [8] is used to replace the

extreme high image intensity caused by the presence

of calcifications, stent or pacemaker, etc.

Improved Frangi’s vesselness filter

Frangi’s vesselness filter [19] measures the similarity

to a tubular structure with a Hessian matrix, which

has been widely used for the vessel enhancement in

medical images. However, as reported in [22], a

major drawback of this filter is that a step-edge

response is obtained at the boundary of a non-vessel

structure. This step-edge response becomes more

pronounced in CCTA images, since cardiac chambers

have the same intensity as coronary arteries, which

can easily lead to a false extraction result. For

example, in Fig. 2a, the boundary of the right atrium

was extracted erroneously with Frangi’s vesselness

filter in which a threshold of 80 was used to remove

low filter responses. Increasing this threshold could

alleviate this false extraction. Unfortunately, this

came at the expense of the extraction of distal parts

and side branches as shown in Fig. 2b. In addition,

this threshold could not be fixed for different datasets

as the value of vesselness response depends on the

contrast of coronary arteries. In Fig. 2c, when our

improved Frangi’s vesselness filter was used, the

erroneous extraction was removed and meanwhile the

coronary tree could be extracted completely.

We present a novel method to discriminate

between the false step-edge responses and the

positive vessel responses in Frangi’s vesselness

measurement by adding local geometric features.

These features are obtained by performing ray-

casting in a local sphere S at a voxel x with radius

R. A total number of NS rays are uniformly distrib-

uted cast from the center x to the sphere’s surface.

For each ray, the casting stops when it reaches the

boundary of the sphere or when it encounters the

boundary of a local structure. This boundary is

measured by comparing the image intensity at the

current position p on the ray and at the spherical

center x. When jIðpÞ � IðxÞ =IðxÞj [ e, this indicates

a local boundary (e is the threshold that controls the

sensitivity of local boundary detection). After casting

in all directions, only the rays whose lengths are

longer than 0.8 R are preserved. Figure 3a shows ray-

casting results in 4 different synthetic shapes; a tube,

a tube junction, a plane and a sphere. In the tube and

the tube junction, the rays are oriented towards the

tube directions. While, in the plane and the sphere,

Original 
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Fig. 1 Processing pipeline of the coronary tree extraction algorithm
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the rays are scattered without giving any explicit

direction. Figure 3b illustrates the ray-casting results

at four points in a CCTA image. Three points are

located in the coronary arteries and one at the

boundary of cardiac cavity. The rays displayed in the

image show that points A and B are a trifurcation and

a bifurcation, respectively. Point C is located in a

vessel where the rays give two opposite directions.

Point D is at the boundary of a large structure and the

rays do not have any clear direction. The distribution

of these rays describes the geometric features of the

local shape, which is then measured to discriminate

between the false step-edge responses of cardiac

cavities and the desired responses of coronary

arteries.

To quantify the distribution of the rays, connected

component labeling on the sphere is performed to

cluster the rays oriented in the same local direction

into M groups. Figure 3c shows the results of

connected component labeling at points A and D

from Fig. 3b. The distribution of the rays at voxel x is

then measured as follows

GðxÞ ¼
Y

M

j¼1

FðrjÞjjvjjj ð1Þ

in which, j is the group index. rj equals to Nj/NS (Nj is

the number of rays in the j-th group). vj is the average

vector of the normalized direction vectors of the rays

in the j-th group and ||�|| is the Euclidean norm. The

term ||vj|| is introduced into G(x) to decrease the

response when the rays in one group located in a

plane-like structure (bottom-left figure in Fig. 3a).

The function F(r) is designed to penalize groups with

a large number of rays and is based on a sigmoid

function. This function is defined as,

FðrÞ ¼ 1�
1

1þ e�qðr�cÞ
; r 2 ð0; 1� ð2Þ

in which q controls the sharpness of the curve at the

threshold of c (c [ (0, 1]). Since the voxels located in

the cardiac cavities have relatively large values of r, c

is set to be a relatively small value to let F(r)

approach 0.0 rapidly when the number of rays in one

group is larger than c�NS. Thus, G(x) can discriminate

the voxels located in the coronary arteries (e.g. points

A, B and C in Fig. 3b) and the large structure such as

cardiac chamber (e.g. point D in Fig. 3b). For

example, if we set q = 40 and c = 0.1, the value

of G(x) at points A, B, C and D in Fig. 3b were 0.71,

0.85, 0.94 and 2.2 9 10-7 respectively. This geo-

metric measure serves as a weighting factor to derive

our novel vesselness measurement by multiplying it

with Frangi’s vesselness result.

Frangi’s vesselness filter is calculated at several

scales to adapt for different vessel sizes, so the

maximum response at the optimal scale is kept. As

the step-edge responses of heart chambers are

obtained at large scales in the multi-scale strategy,

the calculation of geometric feature measurement

G(x) only needs to be performed when the Frangi’s

vesselness response VF(x) and the optimal scale r(x)

are above thresholds TF and rF respectively. Thus,

Right atrium

RCA

LAD

RCA

LAD

RCA

LAD

(a) (b) (c)

Fig. 2 Coronary tree extraction results by Frangi’s vesselness

filter with the thresholds of 80 (a) and 140 (b) respectively, and

with our improved Frangi’s vesselness filter (c). The aorta was

extracted by the aorta detection algorithm. The red circle

marks the false extraction of the right atrium. Increasing the

threshold could alleviate the false extraction. But the distal

parts and side branches were not extracted at the threshold of

140 as shown in (b). The result of Frangi’s vesselness filter was

rescaled to [0, 1024]
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the improved vesselness response VI (x) can be

written as

VIðxÞ ¼
GðxÞVFðxÞ; VFðxÞ� TF; rðxÞ� rF
VFðxÞ; VFðxÞ� TF ; rðxÞ\rF
0; VFðxÞ\TF

8

<

:

ð3Þ

TF is used to ignore very small responses to improve

computational efficiency. rF only includes the large

scales used in the Frangi’s vesselness filter.

Aorta and ostium detection

In order to find the coronary tree correctly, its

origins from the ascending aorta should be detected.

Therefore, the ascending aorta is segmented first. It

is identified based on the Hough circle transform in

the first several axial slices. Then the estimated

center and radius are used for the initialization of the

aorta detection in the next axial section. Aorta

detection is performed slice by slice until the

relative difference of the average intensity inside

the circle or the distance of the circle centers

between two successive slices is larger than the

threshold TC or dC respectively. In this paper, TC
and dC were fixed at 5% and 7 mm respectively.

These detected circles define a region of interest in

which the aorta is segmented by intensity-based

region growing in each 2D slice. Next, a 3D

morphological opening operator using a spherical

kernel with the radius of 6 voxels is applied to

remove possible leaks in 2D slices and to generate

the 3D segmentation of the aorta. Once the aorta

region is obtained, two voxels with the maximum

vesselness responses are detected around the aorta

region to initialize the ostia of the left and right

coronary trees. The angle h defined in the polar

coordinate system shown in Fig. 4 is used to

distinguish between the ostia of the left and right

coronary trees. Based on the normal anatomy of the

coronary arteries, the range of h for the left ostium

is hL [ [-90�, 45�] and for the right ostium is hR [

(45�, 135�].

Centerline extraction

As a first step in the centerline extraction, a binary

vessel enhanced image is created by removing those

voxels with very low responses (VI (x)\ TI) from the

vesselness result. Connected component labeling

follows to remove small components which only

Point D

Point A

Point B

C

B

A
D

Point A

Point D

(a)                           (b) (c)

Fig. 3 a Ray-casting results in 4 synthetic datasets. b Ray-

casting results in a CCTA image. Points A, B, C are located in

the coronary arteries and point D is located at the boundary of

cardiac cavity. c shows connected component labeling results

at points A and D with different colors. Each preserved ray was

mapped to a point on the spherical surface. Gray lines

represent the neighborhood relationship of the points on the

spherical surface. Lines from sphere center are the average

directions of each group
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consist of a few voxels. Then, skeletonization by

successively eroding border voxels is done to gener-

ate the central axes of the structures in the binary

image. The tree-like skeletons originating from the

positions closest to the detected ostium points are

extracted as the ‘initial tree’. The ostium points are

then updated to the beginning points of these

extracted tree-like skeletons.

Branch searching

In CCTA images, the intensity along a coronary

artery may vary because of artifacts and the presence

of stenoses and calcifications, which can result in

gaps in the binary vessel enhanced image. In order to

bridge these gaps, branch searching is applied to

connect the separated distal parts to the ‘initial tree’.

Figure 5 illustrates the strategy of branch search-

ing. The search starts from the points with large

curvature changes (e.g. point B) and the end points

(e.g. points A and C) on the ‘initial tree’. If an

unconnected branch (Branch I to IV) is found within

a rectangular searching region, a connection (dot

lines) with this branch is found by a wave propaga-

tion algorithm [12]. It could be that connections to

the same unconnected branch are found from differ-

ent starting points (for example connections c2 and c5
with Branch IV in Fig. 5). In this case, only the

connection with the minimum cost is selected as the

optimal connection. The connection cost is calculated

by combining the arrival time of the wave propaga-

tion and the angle differences between the parent and

child branches. It is defined as,

CðtSE; dS; dE; dSEÞ ¼ tSE=t
max
SE þ ð dS � dEk k

þ dS � dSEk k þ dE � dSEk kÞ=6

ð4Þ

in which tSE is the arrival time of the wave

propagation from the start to the end points. dS and

dE are the normalized tangential directions at the start

and end points, dSE is the normalized direction of the

found connection. Finally, tmax
SE is the maximum tSE of

all the found connections to the same unconnected

branch. ||�|| is the Euclidean norm. The branch

C

Aorta

OL

OR

L

R

Fig. 4 Illustration of ostia detection step. Two voxels with the

maxima vesselness responses, OL and OR, are detected to be

the ostia of the left and right coronary trees respectively. The

angular search regions for the left and right ostium are hL [

[-90�, 45�] and hR [ (45�, 135�] respectively. h = 90�

indicates the anterior side of the patient

Searching RegionInitial Tree

Branch I

Branch II

Branch III

Branch IV
c1

c5

c2

c3

c4

A

C

B

c2>c5

Fig. 5 Illustration of the branch searching. The bold lines

represent the extracted ‘initial tree’. The thin lines are

unconnected branches, and the dotted lines are connections

between the ‘initial tree’ and the unconnected branches found

within the rectangular searching regions
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extension continues until no more parts are found or

when the number of found parts reaches a user-

defined maximum.

Centerline refinement

Although the down-sampled images used in the

previous steps allow our method to be computational

efficiency, they decrease the centerline accuracy. In

addition, the intensities of calcifications are changed

to avoid extreme high image intensities in the pre-

processing step, and in consequence, centerlines

obtained by skeletonization within these calcified

regions may not be the real lumen centerlines. For

these reasons, a centerline refinement step using the

original images is included to improve the accuracy

of centerlines.

Straightened multi-planar reformatted (MPR)

images are constructed from the initial centerlines

for the refinement. Lumen contours are automatically

detected in 4 longitudinal cuts (Fig. 6a). The lumen

contour detector is based on a minimum cost path

method [12] and excludes calcified regions to provide

a better delineation of vessel lumen. The calcified

regions are avoided by detecting large deviations

from the expected lumen intensity based on the

average intensity in the center of the stretched MPR

images. Finally, the refined centerline is generated as

the average of these detected lumen contours

(Fig. 6b).

Results

The whole coronary tree extraction algorithm was

implemented in C?? within the MeVisLab platform

(http://www.mevislab.de). The method was first

evaluated with the RCAA evaluation framework used

in the MICCAI Coronary Artery Tracking challenge

2008 (CAT08) [21], which also allows us to compare

our algorithm with other published algorithms. In this

framework, 32 CCTA datasets were acquired by two

CT scanners (Siemens Sensation 64 and Siemens

Somatom Definition) and graded according to their

image qualities and calcium scores. In each dataset,

four coronary branches (LAD, LCx, RCA and one

large side-branch) were manually annotated by three

experts. The reference centerlines of 8 datasets (No.

0–7) are publicly available as training datasets;

leaving the other 24 datasets (No.8–31) for testing.

The evaluation results in this paper were obtained by

uploading our extraction results through the website

of the RCAA evaluation framework (http://coronary.

bigr.nl).

The parameters a, b and c in Frangi’s vesselness

filter [19] were set to be 0.5, 0.5 and 300 respectively.

The scale range for multi-scale strategy in Frangi’s

vesselness filter [19] was from 1 to 3 voxels with 1

voxel step. The results of Frangi’s vesselness filter

were normalized to [0, 1024]. The raycasting param-

eters R and e varied with the optimal scale rF (x):

R(x) = 3(rF(x) ? 1), e = 0.10 if rF(x) = 2 and

e = 0.15 if rF(x) = 3. The other parameters used

were NS = 429, q = 40, c = 0.1, TF = 50, rF = 2,

TI = 20. These parameters were determined by

comparing the extracted centerlines with the refer-

ence standard of the training datasets to obtain the

highest scores in the RCAA evaluation framework.

Later, these parameters were fixed for all the other

datasets. In all of the datasets, the aortas and ostium

points were detected correctly. Figure 7 displays the

extraction results in 2 datasets (No. 11 and 21).

Aortas were segmented first and cropped automati-

cally based on cutting planes defined by two detected

ostium points and aorta center. As the results show,

most coronary arteries were extracted as the ‘initial

tree’ (red solid lines) and then the distal parts where

0° 45° 90° 135°

(a)

(b)

Fig. 6 a Lumen contour detection in 4 longitudinal cuts

through a straighten MPR image. b Refined centerline (red) is

the average of the detected lumen contours transformed back to

the original 3D space (white)
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added after branch searching (yellow dashed lines).

In dataset 11 (left figure in Fig. 7) the separated LAD

artery and its side-branches were successfully recon-

nected to the ‘initial tree’ by branch searching.

RCAA evaluation

Four centerlines for evaluation were selected auto-

matically by reference points provided by the RCAA

evaluation framework. The algorithm was evaluated

by comparing the extracted centerlines with the

reference standard in two aspects: extraction ability

and accuracy. The extraction ability is measured by

three overlap values, which are overall overlap (OV),

overlap until first error (OF) and overlap with the

clinically relevant part of the vessel (OT). The

accuracy is measured by the average distance to the

reference centerlines. More details about these mea-

surements can be found in [21].

The evaluation results of the testing datasets

(No.8–31) are summarized in Fig. 8. The average

overlap measurements are OV = 93.7%, OF =

74.2% and OT = 95.9%. The high OV and OT

values demonstrate good extraction capability of our

method. The lower values of OF obtained in some

datasets are caused by severe calcifications or

artifacts in the proximal parts, where vessel lumen

sometimes is difficult to delineate in the refinement

step. If we only consider the datasets with good

image quality and low calcium score (No. 9, 16, 21,

22, 28 and 30), the average OF is 92.4% which

approximates the average OV of 95.3%. The overall

average centerline accuracy is 0.30 mm which is

smaller than the mean voxel size of the datasets,

0.32 9 0.32 9 0.4 mm3. Table 1 shows the compar-

ison with the 5 automatic methods presented at the

CAT08 workshop. The results show that overlap

measurements of our method are the highest.

Our accuracy is ranked at the 3rd position, and only

has a slightly difference with the best one. Compared

with our previous method ‘CocomoBeach’ (in

Table 1), the extraction ability has improved

significantly.

Clinical evaluation

In the secondary evaluation phase, additional analyses

were performed with another 50 clinical datasets to

test our method with various vessel pathologies and

image qualities. These datasets originate from patients

who had sequentially undergone CCTA imaging and

conventional invasive coronary. Patients were derived

from ongoing clinical registry if they met the follow-

ing selection criteria: (1) presence of both CCTA and

invasive coronary angiography, (2) diagnostic image

quality of both CCTA and invasive coronary angiog-

raphy, (3) presence of sinus rhythm and (4) absence of

atrial fibrillation, renal dysfunction (glomerular

LAD

Fig. 7 Coronary tree extraction results in 2 datasets from the

RCAA evaluation framework (No. 11 and 21). Red solid lines

represent the ‘initial tree’ and yellow dashed lines are branches

which have been found in the branch searching step. The aortas

were segmented automatically in the aorta detection step. The

blue points indicate the ostia of the left and right coronary trees

928 Int J Cardiovasc Imaging (2012) 28:921–933

123



filtration rate\30 ml/min), documented iodine-con-

taining contrast allergy and pregnancy. CCTA was

performed clinically for non-invasive assessment of

known or suspected coronary atherosclerosis. Subse-

quently, patients were referred for invasive coronary

angiography because of imaging results or clinical

presentation to provide further information on the

extent and severity of CAD. Ten images were acquired

by a 320-slice CT scanner (Toshiba Aquilion One) and

the other 40 were acquired by a 64-slice CT scanner

(Toshiba Aquilion 64). The average voxel size is

0.37 9 0.37 9 0.34 mm3. In each image, the

reference centerlines were obtained with the following

steps:

(1) An initial path line of a vessel with clinical

interest was extracted between user-defined start

and end points using the wave propagation

method [12].

(2) Based on this path line, lumen contours in

transversal planes along the vessel were initial-

ized by a dedicated lumen contour detector [12].

(3) An expert from the cardiology department

manually corrected the lumen contours if

required.
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Fig. 8 Results of the average overlap (top) and accuracy (bottom) from the RCAA evaluation framework per dataset

Table 1 Comparison to five automatic extraction algorithms evaluated in the CAT08 [21]

OV (%) OF (%) OT (%) Acc. (mm) Time

DepthFirstModelFit 84.7 65.3 87.0 0.28 4–8 min

AutoCoronaryTree 84.7 59.5 86.2 0.34 \30 s

GVFTube’n’linkage 92.7 71.9 95.3 0.37 10 min

CocomoBeach 78.8 64.4 81.2 0.29 70 s

VirtualContrast 75.6 56.1 78.7 0.39 5 min

Our method 93.7 74.2 95.9 0.30 2 min
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(4) The reference centerline was defined as the

linear interpolation of the centers of gravity of

lumen contours in successive transversal planes

along the vessel.

In total 100 reference centerlines were generated

with an average length of 113 mm. Quantitative

analysis on the generated lumen contours [23]

showed that the average area stenosis in these vessels

is 44% (±20%) and the average diameter stenosis is

27% (±14%). The maximum lumen area stenosis is

92% and the maximum diameter stenosis is 73%.

After applying our new coronary artery extraction

algorithm, the overlap and accuracy were measured

in the same way as in the framework of the RCAA.

Since the reference centerlines were limited to the

proximal parts with clinical interest, any additional

distal parts extracted by our new method were

discarded in the evaluation. For example, Fig. 9

illustrates one coronary artery extraction result in this

evaluation phase. The centerline in green was auto-

matically selected from the extracted coronary tree

and compared with the reference which was defined

by the lumen contours in red. The distal part of the

green centerline which was longer than the reference

centerline was discarded in the evaluation. The

centerline is correctly extracted when the green line

travels within the region defined by the red lumen

contours.

Our coronary extraction algorithm was applied to

these 50 datasets with the same parameters as used

for the datasets of the RCAA evaluation framework.

The aorta in each dataset was detected successfully;

while ostium detection failed in four datasets because

of the anomalous origins of coronary trees. Two user-

Fig. 9 A centerline extraction result of one dataset used in the

secondary evaluation phase. The blue lines are extracted

centerlines of the coronary arteries. The LCx in green is

selected to compare with the reference centerline which is

defined by the centers of gravity of the lumen contours in red

Fig. 10 Examples of four curved MPR images generated from centerlines (in red) extracted successfully in the coronary arteries

with a lesion (a), severe calcifications (b), a stent (c) and a dataset with significant image noise (d)
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defined points to locate the ostia were used to extract

the coronary tree in these four datasets. The average

centerline overlap and accuracy of these 100 vessels

is 96.1% and 0.33 mm, respectively. The high

overlap value demonstrates the centerlines extracted

by our automatic method are in high accordance with

the reference centerlines. The accuracy is still smaller

than the average voxel size as shown in the RCAA

evaluation framework.

With the datasets in these two evaluation phases,

different pathologies and image qualities were eval-

uated intensively. In Fig. 10, curved MPR images

display the centerlines extracted successfully in the

coronary arteries with lesions, severe calcifications,

stents and datasets with significant image noise.

It is worth mentioning that our method has a

competitive computation time which is less than

2 min for one dataset on a computer with CPU Core2

Q9550 and 4G RAM using four CPU threads in the

lung vessel removal and vesselness filter

computation.

Conclusions and discussions

In this paper, we have presented a new method for

fully automatic coronary tree extraction which is

needed for clinical practice and related research of

CCTA images. We first presented an improvement to

Frangi’s vesselness filter by a response discriminator

which can decrease the step-edge responses at cardiac

cavities based on local geometric features. The

presented extraction scheme based on this improved

vesselness filter allows coronary arteries to be

extracted with a fixed set of parameters in all of the

82 evaluated CCTA images.

Quantitative evaluations were performed in two

phases. The first phase with the RCAA evaluation

framework demonstrated good extraction ability and

accuracy of our method in comparison with the other

automatic methods. Worth mentioning is that the

95.9% overlap in clinical relevant parts approximates

the highest measurement, 98.7%, obtained by an

interactive method in the CAT08. The secondary

phase with additional clinical datasets gave similar

results, and at the same time showed that our method

could be a reliable alternative of the user-interactive

method in clinical practice. In addition, the robust-

ness of our method was evaluated as well, since the

images acquired by different CT scanners (Siemens

and Toshiba scanners) and different image acquisi-

tion settings, such as contrast injection protocols,

scanning parameters and reconstruction kernels, etc.

Benefiting from the improvements of Frangi’s

vesselness filter and newly developed branch search-

ing step, this new centerline extraction method has a

higher extraction ability than our previous method

[20], e.g. 93.7% vs. 78.8% for the overall overlap.

The other steps except centerline refinement in this

new method were also re-implemented to obtain

better performance. For example, in the RCAA

evaluation framework, aorta detection was successful

in all the datasets with our new method while it failed

for dataset No. 15 and 16 with the previous method.

The response discriminator presented is based on

ray-casting which in general is considered to be a

time-consuming operation. However, it is only per-

formed for those voxels where Frangi’s vesselness

response and the optimal scale are both larger than

their respective thresholds. According to our statis-

tics, only 5% of the voxels in a CCTA image are

candidates for this discriminator. Furthermore the

calculation of vesselness filter was performed in

parallel by a multi-threading technique. As a conse-

quence, the whole processing pipeline takes 2 min for

one dataset on a standard desktop computer. The

computational efficiency can be improved even

further by a GPU-accelerated strategy.

As emphasized, a major advantage of our approach

is that user interaction is unnecessary in most of the

datasets. For example, ostium points were defined

manually in only 4 of the 82 datasets. Benefiting from

this automatic pipeline, the extraction can be per-

formed as an offline pre-processing program on a

server before cardiologists or radiologists begin their

diagnosis. Even in those cases where the ostium

detection failed, this pre-processing strategy can

greatly reduce the time for coronary tree extraction

because the most time-consuming part, i.e. vesselness

filter, is already calculated beforehand. In these cases

the coronary tree can be extracted almost in real-time

after some simple mouse clicks through a user-

friendly interface on the client computer.

Another advantage of our method is that the whole

coronary tree can be retrieved simultaneously includ-

ing the main branches and side branches. Using a

user-interactive method to extract such a complete

coronary tree would require a lot of user interactions.
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The anatomical and pathological information pro-

vided by this coronary tree is helpful in the diagnosis

of CAD or the planning of cardiac interventions.

Furthermore, it can reduce the processing time or

improve the results of other related research work,

such as vascular shear stress estimation [5], image

fusion between CCTA and IVUS datasets [6] and

optimal angle estimation for X-ray angiography [24].

A remark can be made that the semi-automatic

method used for generating reference centerlines in

the second evaluation phase resembled the centerline

refinement in our centerline extraction algorithm.

This might introduce a possible bias into the refer-

ence centerlines and the results. In addition, the

evaluation in the second phase was limited to the

parts of coronary arteries with clinical interest. Thus,

the distal part extracted by our automatic method was

not evaluated. However, it does show that our new

fully automated method performs at least as good as

our old semi-automated method.

With respect to the centerline refinement step it is

seen that the accuracy of the centerlines is in general

improved by using the detected lumen contours.

However, sometimes the boundary of vessel lumen

cannot be detected precisely especially in the region

with lesions or severe calcifications. In these situa-

tions, the measurements of centerline accuracy, and

sometimes even the overlap measurements,

decreases. Future improvements to the contour

detection could alleviate this problem.

In conclusion, we present a fully automatic

centerline extraction algorithm for coronary arteries

in CCTA image which is mainly based on an

improved Frangi’s vesselness filter. Quantitative

evaluations show that our method is able to extract

the coronary arteries with high overlap and accuracy

measurements. This automatic extraction algorithm

has promising potential for both the clinical practice

and the related research work.
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