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Automatic Channel Network Extraction
From Remotely Sensed Images

by Singularity Analysis
Furkan Isikdogan, Alan Bovik, and Paola Passalacqua

Abstract—The quantitative analysis of channel networks plays
an important role in river studies. To provide a quantitative
representation of channel networks, we propose a new method that
extracts channels from remotely sensed images and estimates their
widths. Our fully automated method is based on a recently pro-
posed multiscale singularity index that strongly responds to curvi-
linear structures but weakly responds to edges. The algorithm
produces a channel map using a single image where water and
nonwater pixels have contrast, such as a Landsat near-infrared
band image or a water index defined on multiple bands. The pro-
posed method provides a robust alternative to the procedures that
are used in the remote sensing of fluvial geomorphology and makes
the classification and analysis of channel networks easier. The
source code of the algorithm is available at http://live.ece.utexas.
edu/research/cne/.

Index Terms—Channel network extraction, deltas, image pro-
cessing, remote sensing, river width.

I. INTRODUCTION

AMETHOD for the completely automatic extraction of
channel networks from satellite imagery could greatly

facilitate the monitoring of water resources by eliminating the
laborious process of manual inspection. Such a method could
be used for creating quantitative representations of channel
networks, which would be useful in a wide variety of studies.
The automatic extraction of channel networks is particularly
challenging in coastal areas due to low topographic gradients,
the presence of features such as sediment plumes, and the
wide range of scales over which channel features are present.
A robust channel extraction method would ease monitoring
coastal areas and analyzing deltaic response to anthropogenic
forcing and natural forcing over large spatial areas and long
temporal intervals.

Several approaches have been suggested to extract curvi-
linear structures from remotely sensed images, with many of
them focusing on road network extraction [1]–[6]. Based on
the road network extraction in [2] and [3], a method has been
proposed to detect rivers as linear structures, imposing con-
straints on the river length, the curvature, and the confluences
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for connectivity [7]. A software tool, i.e., RivWidth [8], has been
proposed for calculating river centerlines and widths. RivWidth
(v0.4) requires the availability of a previously defined binary
mask that indicates water and nonwater pixels. Although such
a mask could be extracted from remotely sensed images by
thresholding and using shape-correcting operations, the manual
cleaning of the mask would be often necessary to separate the
true water mask from spurious responses [9]. Our new method
can estimate the channel centerline, width, and orientation,
and it can create a map of a channel network in a purely
automatic manner only using remotely sensed data. To the best
of our knowledge, this is the first fully automatic approach that
provides these outputs.

II. MODIFIED MULTISCALE SINGULARITY INDEX

The multiscale singularity index [10], [11] is a useful
method for detecting singular curvilinear structures over mul-
tiple scales. The algorithm is useful for locating channels in
satellite images. However, the presence of channels over a
wide range of scales creates some artifacts in the singularity
index response. Our work modifies and extends the multiscale
singularity index to address the multiscale nature of channel
networks. The multiscale singularity index algorithm and our
modifications are briefly explained in the following sections.

A. Multiscale Singularity Index

At each pixel, the multiscale singularity index algorithm first
estimates direction θ orthogonal to the curvilinear mass using
the second-order derivatives of an input image along evenly
spaced directions. Then, it computes the singularity index at
each scale as

(ψf)(x, y, σ) =
|f0,θ,σ(x, y)f2,θ,σ(x, y)|

1 + |f1,θ,aσ(x, y)|
(1)

where f0,θ,σ(x, y), f1,θ,σ(x, y), and f2,θ,σ(x, y) are the zero-,
first-, and second-order Gaussian derivatives at scale σ and
along direction θ(x, y). In the denominator, a is a constant
with a recommended value of 1.7754. This value results in the
maximum attenuation of the sidelobe response of the index
[10]. Index (ψf)(x, y, σ) is computed over N scales σn =

σ1

√
2
(n−1)

for n = 1, 2, . . . , N . The window sizes for the
image filters are determined to be �6σ�. Since a channel with
a width larger than the image dimensions cannot be detected
by the algorithm, an upper bound for the number of scales
N can be determined by having the filter dimensions smaller
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Fig. 1. Comparison of the original and modified multiscale singularity index
responses. Full-sized images: (a) original response and (b) modified response.
Zoomed images: (c) original response and (d) modified response.

than image dimensions M ×M so that 6σ1

√
2
(N−1) ≤ M as

follows:

N =

⌈
2 log M

6σ1

log 2
+ 1

⌉
. (2)

After computing the singularity index at each scale, the
algorithm finds the maximum response across all scales at each
pixel location.

Fig. 2. Typical results of centerline extraction.

The singularity index retains the polarity, which is useful for
discriminating between the channel and island responses since
channels and islands have opposite polarities. By discarding the
negative polarity, we remove the island response.

B. Debiasing Input Images

An input image should be debiased before computing the
singularity index in order to achieve invariance to the local
direct-current offset. The multiscale singularity index algorithm
debiases an input image by subtracting a large Gaussian filter
from the original image, which essentially performs local mean
subtraction. This approach works well for a small range of
scales. For a large range of scales, however, a large Gaussian
filter fails to debias finer scales and results in a loss of detail
at fine scales [see Fig. 1(a)]. To address this problem, we
debias the input image at every scale. Instead of using one
large Gaussian filter over all scales, our modified version of
the multiscale singularity index uses a Gaussian filter with a
standard deviation of σn at each scale as

Iσ = I − Gσ ∗ I (3)

where Iσ is the debiased image at scale σ, I is the input image,
and Gσ is the Gaussian filter.

C. Width Estimation

The channel width is estimated by interpolating between the
scale that has the highest singularity index response ψ and its
neighbor scales as follows:

w(x, y) = k

+1∑
i=−1

σm+i(ψf)(x, y, σm+i)

+1∑
i=−1

(ψf)(x, y, σm+i)

(4)

where m = argmaxn(ψf)(x, y, σn) at spatial coordinate x, y,
and k is a scalar variable that scales the output.
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Fig. 3. Comparison of the (a) regrown channel maps with the (b) input and (c) ground-truth images. First column: Mississippi River near Memphis, TN.
Second column: Mississippi, Missouri, and Illinois Rivers near St. Louis, MO. Third column: a portion of the GBJ Delta. Landsat IDs of the scenes:
LC80230362015045LGN00, LC80240332014305LGN00, and LC81380452014304LGN00, respectively.

D. Adaptive Smoothing

The multiscale singularity index creates ripples near the
banks of wide rivers when a large range of scales is processed
[see Fig. 1(c)]. The ripples occur after finding the maximum
response over all the scales at each spatial coordinate. To atten-
uate the ripples, we employ an adaptive smoothing algorithm
that adjusts the strength of smoothing based on the estimated
scale for each pixel so that coarse scales can be smoothed
more than fine scales. To implement the adaptive smoothing
algorithm in a computationally efficient way, we first compute
an integral image over the singularity index response, which
enables the fast computation of summations over regions of
an arbitrary size. Then, we smooth the response using a box
filter with a variable window size that is determined by the
estimated scale. Since the integral image is only computed

once, the algorithm only needs to perform two additions and
one subtraction per pixel. We iteratively apply the adaptive box
filter to approximate a Gaussian filter.

The typical results delivered by the multiscale singularity
index and by our modified version are compared in Fig. 1.

E. Centerline Extraction

To determine the channel centerlines, the maximum re-
sponse across all the scales is computed at each coordinate, and
the orientation value at the maximum-response scale is taken
to be the dominant centerline direction. A process of nonmax-
ima suppression is applied along the dominant direction, as
explained in [10]. Then, a threshold level T is determined on
the nonmaxima suppressed (NMS) image using Otsu’s method
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[12]. To preserve the channel connectivity, a hysteresis thresh-
old is applied to binarize the NMS image as follows.

1) Set the pixels above an error threshold ε to one and the
rest to zero.

2) Find the connected components in the image.
3) Find and remove the connected components that do not

have at least one pixel above threshold T .

Error threshold ε is empirically chosen as 0.1× T . The
extracted centerlines for an example input image are illustrated
in Fig. 2. This figure is inverted for better visualization.

F. Creating Map of Channels

To show the computed channel width at each spatial co-
ordinate along a centerline, a map of channels is created by
regrowing the channels. The channels are regrown by drawing
a line of length w(x, y) and orientation θ(x, y) at each spatial
location (x, y). The algorithm estimates the width of any water
body with a width smaller than the largest scale. Therefore, the
resultant map includes ponds and other small water bodies, as
well as channels. The results of the channel map creation are
presented in Section III.

III. EXPERIMENTS AND RESULTS

We tested our model on three different regions having dif-
ferent characteristics: the Mississippi River near Memphis, TN
(I1); the Mississippi, Missouri, and Illinois Rivers near
St. Louis, MO (I2); and a portion of the Ganges–Brahmaputra–
Jamuna (GBJ) Delta (I3). We used Landsat-8 images, which
were downloaded at http://earthexplorer.usgs.gov/, to create the
input images for our algorithm. The algorithm requires input
images to have a contrast between water and nonwater pixels.
An example input could be a near-infrared image or a water
index that uses multiple bands. In our experiments, the input
images were created using the modified normalized difference
water index [13], which is an effective way to extract water
information from remote sensing imagery.

The ground truth for I1 and I2 are obtained by aligning,
cropping, and rasterizing the river data from the National Hy-
drography Dataset (http://nhd.usgs.gov/). For I3, the GBJ Delta
network extracted by the work in [9] is used as the ground truth.
The extraction performed by the work in [9] included manual
cleaning and a comparison with Google Earth imagery. Both the
ground truth and the input images have rivers close to the mean
discharge, making the results of our algorithm comparable with
the ground truth.

We fixed the minimum scale σ1 to its default value [10], i.e.,
1.5 pixels, which is the smallest width for a channel to be cap-
tured by the algorithm. The number of scales is automatically
determined using the upper bound that is described earlier. To
reduce the computation time, a smaller number of scales could
be also chosen if all channels of interest are known to be smaller
than a certain width. In the experiments reported here, we set
the number of scales N to 16.

The regrown channel maps, showing the estimated location,
width, and orientation of the channels, are compared with the
ground truth and input images in Fig. 3. The ground-truth
images did not include nonchannel water bodies. Therefore, we

also removed the nonchannel water bodies from the regrown
channel maps by discarding the connected components that
constitute less than 0.1% of the maps. Given the ground-
truth images, the accuracy values ((TP + TN)/(TP + TN +
FP + FN)) of the regrown channel network images were
found to be 96.77%, 97.86%, and 91.13% for I1, I2, and I3,
respectively.

IV. CONCLUSION AND FUTURE WORK

We have described an automatic channel network extraction
algorithm that inputs remotely sensed images and produces
maps of the estimated channel centerline, width, and orienta-
tion. We modified a multiscale singularity index to extract a
network of channels over a wide range of scales. The algorithm
automatically works without any user intervention.

Our method can be used to analyze channel networks in
different environments and over time to capture the effect of
environmental forcing and natural and anthropogenic changes
on a network structure. One of our future research directions is
to analyze the deltaic response to anthropogenic forcing and
natural forcing in coastal areas. We also plan to extend our
work toward automatically creating topological maps, which
will provide the graph representations of channel networks.

REFERENCES

[1] A. K. Shackelford and C. H. Davis, “Fully automated road network
extraction from high-resolution satellite multispectral imagery,” in Proc.
IEEE IGARSS, Jul. 2003, vol. 1, pp. 461– 463.

[2] F. Tupin, H. Maitre, J. F. Mangin, J. M. Nicolas, and E. Pechersky,
“Detection of linear features in SAR images: Application to road network
extraction,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 2, pp. 434–
453, Mar. 1998.

[3] M. Negri, P. Gamba, G. Lisini, and F. Tupin, “Junction-aware extrac-
tion and regularization of urban road networks in high-resolution SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2962–
2971, Oct. 2006.

[4] C. Lacoste, X. Descombes, and J. Zerubia, “Point processes for unsu-
pervised line network extraction in remote sensing,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, no. 10, pp. 1568– 1579, Oct. 2005.

[5] C. Poullis and S. You, “Delineation and geometric modeling of road
networks,” ISPRS J. Photogramm. Remote Sens., vol. 65, no. 2, pp. 165–
181, Mar. 2010.

[6] S. Valero, J. Chanussot, J. A. Benediktsson, H. Talbot, and B. Waske,
“Advanced directional mathematical morphology for the detection of the
road network in very high resolution remote sensing images,” Pattern
Recognit. Lett., vol. 31, no. 10, pp. 1120– 1127, Jul. 2010.

[7] F. Cao, F. Tupin, J. Nicolas, R. Fjortoft, and N. Pourthie, “Extraction of
water surfaces in simulated Ka-band SAR images of kaRIn on SWOT,” in
Proc. IEEE IGARSS, Jul. 2011, pp. 3562– 3565.

[8] T. Pavelsky and L. Smith, “RivWidth: A software tool for the calculation
of river widths from remotely sensed imagery,” IEEE Geosci. Remote
Sens. Lett., vol. 5, no. 1, pp. 70– 73, Jan. 2008.

[9] P. Passalacqua, S. Lanzoni, C. Paola, and A. Rinaldo, “Geomorphic
signatures of deltaic processes and vegetation: The Ganges-Brahmaputra–
Jamuna case study,” J. Geophys. Res., Earth Surf., vol. 118, no. 3,
pp. 1838– 1849, Sep. 2013.

[10] G. S. Muralidhar, A. C. Bovik, and M. K. Markey, “A steerable, multi-
scale singularity index,” IEEE Signal Process. Lett., vol. 20, no. 1, pp. 7–
10, Jan. 2013.

[11] G. Muralidhar, A. Bovik, and M. Markey, “Noise analysis of a new
singularity index,” IEEE Trans. Signal Process., vol. 61, no. 24, pp. 6150–
6163, Dec. 2013.

[12] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, no. 285–296, pp. 23– 27, 1975.

[13] H. Xu, “Modification of Normalized Difference Water Index (NDWI) to
enhance open water features in remotely sensed imagery,” Int. J. Remote
Sens., vol. 27, no. 14, pp. 3025– 3033, 2006.


