

 1

Automatic Choice of Scheduling Heuristics for
Parallel/Distributed Computing

Clayton S. Ferner† and Robert G. Babb II‡

Abstract

Task mapping and scheduling are two very difficult problems that must be addressed

when a sequential program is transformed into a parallel program. Since these problems are

NP-hard, compiler writers have opted to concentrate their efforts on optimizations that produce

immediate gains in performance. As a result, current parallelizing compilers either use very

simple methods to deal with task scheduling or they simply ignore it altogether. Unfortunately,

the programmer does not have this luxury. The burden of repartitioning or rescheduling, should

the compiler produce inefficient parallel code, lies entirely with the programmer.

We were able to create an algorithm (called a metaheuristic), which automatically

chooses a scheduling heuristic for each input program. The metaheuristic produces better

schedules in general than the heuristics upon which it is based. This technique was tested on a

suite of real scientific programs written in SISAL and simulated on four different network

configurations. Averaged over all of the test cases, the metaheuristic out-performed all eight

underlying scheduling algorithms; beating the best one by 2%, 12%, 13%, and 3% on the four

separate network configurations. It is able to do this, not always by picking the best heuristic,

but rather by avoiding the heuristics when they would produce very poor schedules. For

example, while the metaheuristic only picked the best algorithm about 50% of the time for the

† Lucent Technologies Inc., 11900 N. Pecos St., Westminster, CO 80234, cferner@lucent.com.
‡ Dept. Of Mathematics and Computer Science, University of Denver, Denver, CO 80208, babb@cs.du.edu.

 2

100 Gbps Ethernet, its worst decision was only 49% away from optimal. In contrast, the best of

the eight scheduling algorithms was optimal 30% of the time, but its worst decision was 844%

away from optimal.

1. Introduction

The difficulty with obtaining high performance from a scientific program on a parallel computer

arises because several very difficult problems must be addressed simultaneously: (1) how to divide

a program into individual tasks that can (potentially) be executed by different processors, which is

known as the task partitioning problem, (2) how those tasks will be assigned to processors, which

is known as the mapping problem, and (3) in what order will the tasks be executed, which is

known as the scheduling problem. All three of these problems are NP-hard. Unfortunately, the

only practical means by which compilers can address such difficult problems automatically is

through the application of heuristics.

Over the past forty years, the computer science research community has produced a

plethora of scheduling heuristics for parallel computing. As if this were not enough,

Ieumwananonthachai et al. [25 and 26] show how to automatically generate new scheduling

heuristics using Yan’s “Post-game Analysis” [52]. This suggests that the number of possible

heuristics for static scheduling is essentially unlimited. Ideally, a compiler would be able to

choose from among any of a large set of scheduling heuristics to employ when producing

executable code for a parallel application. However, it is not clear how a compiler would go

about choosing the best scheduling heuristic for a given program. One obvious solution would be

for a compiler to generate all possible schedules from all available schedulers and choose the one

 3

with the best predicted performance. However, there are at least two problems with this brute

force approach:

(1) Many of the best known heuristics take a significant amount of time to compute a

schedule.

(2) Predicted best schedule performance does not always correspond to actual best

performance due to communication delays and conflicts, unknown or variable task

execution times, I/O, etc.

Problem (1) implies that a compiler may need to make the decision of which scheduler to

use without knowing what the resulting schedules will look like. Solving (2) could require

executing the same program multiple times to determine the optimal schedule, which is obviously

not very attractive.

As it turns out, most production compilers do not address all three of these problems. An

example is the Fx compiler from Carnegie Mellon University [45, 46, 47], which does mapping

but assumes a one-to-one mapping of tasks to sets of processors and therefore ignores scheduling.

Even compilers that deal with scheduling, such as the Paradign compiler [38], use a single simple

heuristic (e.g. list-scheduling). Part of the reason for this is that the majority of heuristics in the

literature are academic research projects that are not industrial strength. Yet, even with more

sophisticated scheduling techniques, compiler writers are most likely to implement a single

heuristic which will be used on all input.

The goal of this research is to answer the question of: How does one make the choice of

which scheduling approach to apply to any given program executed on any given machine? The

literature on parallel computing indicates that the choice of a scheduling heuristic can have a

significant effect on the parallel speed-up (or slow-down) that is achieved for a given application

 4

on a particular machine configuration. Being able to select the best heuristic for a given situation

is therefore a very important step. If there exists a single superior scheduling heuristic, it is not

apparent from reading the literature on scheduling techniques. A few papers have made

comparisons of different approaches; although some perform better than others, there appears to

be no consistent winner. Nonetheless, if an almost universally superior heuristic could be found, it

would likely be a significant contribution to the current state-of-the-art in scheduling theory.

In this paper, we present one method by which a parallelizing compiler might

automatically make the choice of a suitable scheduling heuristic on a per-program basis. The

approach we have taken in this research relies on statistical methods. A variety of metrics were

taken from sample programs and compared against the performance of the resulting schedules of

a particular scheduler. If such correlations exist, then the execution times of schedules produced

by a particular heuristic can be predicted to some level of accuracy. If several heuristics can be

predicted with good accuracy, then the regression analysis may be used to choose the best

heuristic for a particular program based on the metrics.

One major difference between our approach and the methods used in the past is that we

treat the scheduling heuristics as black boxes. Previous researchers have used theoretical models

based on their analysis of the heuristic algorithms involved. Our model is based solely on the

performance of the resulting program code.

The rest of this paper is organized as follows: Section 2 summarizes the related research in

this area, Section 3 describes the experiment, Section 4 discusses the results of the experiments,

and Section 5 presents conclusions.

 5

2. Related Research

There are many areas of scheduling theory. This research is focused on static scheduling of task

graphs onto distributed systems. Table 1 lists many of the static scheduling heuristics from the

literature. For a more complete survey of the various scheduling areas, including static

scheduling, see [11], [10], [3], [31], [49], and [15].

Table 1: Table of Static Scheduling Heuristics.

Scheduler Heuristic Abbr. Reference
List Scheduling

Hu’s Algorithm HU [23]
Yu’s Algorithm YU [56]
Insertion Scheduling Heuristic ISH [30]
Earliest Task First ETF [24]
Duplication Scheduling Heuristic DSH [30]
The Mapping Heuristic MH [14], [32]
Dynamic Level Scheduling DLS [44]
Prioritized Scheduling Algorithm PSA [38]
Selvakumar and Murthy’s Algorithm — [41]
Preferred Path Selection PPS [33]

Critical Path
Modified Critical Path MCP [50]
Mobility-Directed MD [50]
Kim & Browne’s Algorithm — [29]
Sarkar’s Algorithm — [39], [40]
Heavy Node First HNF [42], [43]
Weighted Length WL [42], [43]
Dominant Sequence Clustering DSC [53], [54], [55]
Change Critical Tasks CCT [38]
Task Clustering/Reassignment Algorithm TCA/TRA [51]
Cluster-M — [9]
Palis et al. Algorithm — [36]

Annealing
Simulated Annealing (SA) [12]
Mean Field Annealing (MFA) [6]

Miscellaneous
McCreary et. al. Algorithm CLANS [34]
Chaudhary and Aggarwal Algorithm — [8]
Hou, Ansari, and Ren Algorithm — [22]

One area of scheduling research that has not received a great deal of attention is in the

comparison of different static scheduling strategies. Comparisons of static scheduling heuristics

 6

can be found in these references: [1], [37], [26], [19], [20], [21], [48], [4], [44], [35], [28], [13],

[15], [33], [9], and [2]. Several of these works ([48], [35], [27], [28], and [2]) have suggested

that various heuristics will perform better in some situations than others. These papers have

attempted to discover under which circumstances one particular heuristic should be used over

another.

This survey of the literature on static scheduling suggests several things:

(1) There are many heuristics (not all industrial strength) from which to choose, but there

have only been a handful of comparisons of static scheduling heuristics done.

(2) Most of the comparisons have been done with the intention of demonstrating the

effectiveness of a particular scheduling heuristic by showing its (supposed) superiority

to other heuristics.

(3) Most of these comparison papers used either a small sample of application programs

or did not use real applications (i.e., generated task graphs).

(4) There have been only a few papers suggesting that the choice of which scheduler to

use can be done automatically.

We designed an experiment to determine if statistical methods can be used to predict the

results of various static scheduling heuristics well enough to make a good choice for which

heuristic to use for a particular program. We attempted a balance between realism and sample

size. The input programs for our experiments were based on real programs and not on randomly

generated task graphs.

3. Experimental Plan

This section describes the experiment that was used to verify how well the idea proposed in

 7

Section 1 for automatically choosing a scheduling heuristic will work. This was a preliminary

experiment designed to verify how well this approach might work. We used simulation as a

means of obtaining estimates of the run-times of the resulting schedules. Our results todate

indicate that this approach could be useful in a production compiler sometime in the near future.

3.1 Task Graph Metrics

Ferner [17] proposed a collection of 41 different task graph metrics that could potentially be

predictors of schedule lengths. The majority of these metrics were only marginally related to the

quality of the resulting schedules. The two most important metrics (which are used throughout

the rest of this paper) are the number edges in the task graph (denoted e) and the total graph

weight of the node weights only (denoted TGW-w) or the sum of the nodes weights.

Both of these metrics are easy to calculate in terms of the complexity. Once the task

graph is computed, TGW-w can be computed in O(v + e) (where v is the number of nodes), and e

obviously can be calculated in O(e). However, it is trivial to maintain these metrics as the task

graph is being built, in which case the complexity of both is O(1). Nonetheless, the amount of

work needed to derive both metrics is insignificant compared to the amount of work already

performed by a typical compiler.

3.2 Library of Scheduling Heuristics

Table 2 shows the set of scheduling heuristics used in the experiment. Although this list is not

long, it includes several of the more important heuristics known. The choice of which heuristics

to include was determined by the availability. Specifically, the authors were willing to provide an

implementation.

 8

Table 2: Scheduler Heuristic Approaches Considered in this Project.

Scheduler Type Reference
CLANS graph decomposition [34]
DSC critical path [54]
MH modified list scheduling [14]
HU list scheduling [23]
ISH list scheduling [30]
RAN1 random list scheduling —
RAN2 random list scheduling —
SEQ sequential —

The two random schedulers are both list schedulers but use a random number generator to

assign priorities to nodes in the ready queue. Successive runs of these schedulers on the same

input may result in different outputs. The SEQ scheduler is actually not a parallel scheduler. It

assigns all tasks to the same processor and therefore provides a sequential version of the program.

This scheduler (and the random schedulers) is included in this study to serve as a control. It is

very interesting that occasionally more sophisticated algorithms do not fair well against these

simpler ones.

3.3 The Metaheuristic

Figure 1 presents an algorithm for choosing which scheduler should be used based on the

predicted values of the schedule lengths. This algorithm is referred to as the metaheuristic,

because it is a heuristic for choosing a heuristic.

Input: Task graph representing a program
Output: Choice of which scheduling heuristic to apply

Method: 1. Compute the appropriate metrics on the task graph
 2. Plug the metrics into the regression model for each scheduler to derive a predicted schedule

length
 3. Choose the scheduler with the smallest predicted schedule length

Figure 1: Algorithm of the Metaheuristic.

 9

Although the scheduling heuristics need to be run and the resulting schedules executed in

order to create the initial regression models, this is no longer the case once the models have been

derived. In fact, none of the scheduling heuristics needs to be executed to derive the suggestion.

The metrics are relatively inexpensive (in terms of complexity) to obtain from the task graph and

the regression model used in the next section can be calculated in constant time. The complexity

of this algorithm is linear with respect to the number of scheduling heuristics in the library.

3.4 Overview

Figure 2 shows a schematic of the main steps for the experiment. These steps are described in

more detail below. The two factors to emphasize in this approach are the importance of a large

sample space and a reasonable level of realism. To address this difficulty, the input used in this

research are examples of scientific applications written in SISAL (see [16] and [7] for more

information about SISAL). The SISAL compiler front-end was used to generate large, realistic

task graphs called IF1 graphs.

Unfortunately, IF1 graphs are hierarchical, which means that nodes may be complex or

simple. Complex nodes are used to represent such constructs as loops. Not all of the schedulers

have been designed to deal with this more abstract graph. Therefore, the IF1 must be converted

into a simple task graph using a program called Flatten. Flatten takes as input an IF1 graph,

unrolls the loops to specified depths, converts the complex nodes into simple nodes (i.e., removes

the graph hierarchy), and assigns weights to the edges and nodes. Each node corresponds to a

single instruction. The node weights were assigned from a table of known weights for each

instruction. This table was constructed by timing these instructions on a Sun SparcServer

690MP. The edge weight values are the number of bytes associated with the

 10

Sc
he

du
le

s

R
ec

om
m

en
de

d
Sc

he
du

le
r

C
L

A
N

S

SI
SA

L
Pr

ep
ro

ce
ss

or

SI
SA

L
 P

ro
gr

am
s

IF
1

G
ra

ph
s

In
st

ru
ct

io
n

W
ei

gh
ts

Si
m

pl
e

T
as

k
G

ra
ph

s

Pr
ed

ic
tio

n
M

od
el M

et
a-

he
ur

is
tic

Sc
he

du
le

L
en

gt
hs

Sc
he

du
lin

g
H

eu
ri

st
ic

s

L
oo

p
It

er
at

io
ns

 &
A

rr
ay

 S
iz

es

H
os

t P
ar

am
et

er
s

H
U

IS
H

M
H

D
SC

SE
Q

Fl
at

te
n

T
im

eO
ps

H
os

t M
ac

hi
ne

C
om

pi
le

r

A
na

ly
si

s

Si
m

ul
at

or

Fi
gu

re
 2

: E
xp

er
im

en
ta

l P
la

n

R
A

N
1

R
A

N
2

 11

data-dependence between instructions, and arrays are assumed to be fixed in size. Since the loops

had to be unrolled in order to create a simple task graph, some realism has been lost. Forcing the

loop bounds to be static is a rather restrictive requirement. However, various loop-unrolling

schemes were tried and their effect on the scheduler performance was investigated (see Section

4.4).

Once the task graphs which represent the scientific programs were produced, they were

provided to each of the various schedulers as input to produce different schedules. The metric

that was used in this experiment to compare each schedule to determine the best one was the

wall-clock execution time, or makespan, of the schedule. However, this measurement can vary

from execution to execution, even for the same executable program. This is especially true in a

multi-user environment. In order to make a fair comparison of the schedules produced

by the eight schedulers (and therefore keep the experiment a controlled experiment) simulation

was required. Two distributed-memory architectures were implemented in the simulation:

Ethernet and Mesh.

The simulation produced the total execution time of the schedule taking into account

processor speeds, network topology, bandwidths, message overhead, and channel contention. All

processors were considered to be homogeneous with a scaling factor of 1. Since CLANS

assumed an infinite number of available processors, the maximum number of available processors

was 256 for all scheduling heuristics. This value was large enough that each heuristic was able to

provide a schedule with as many processors as it needed. Unfortunately, we do not know how

this approach will perform with a limited number of processors. We plan to investigate the issue

of limiting the number of processors later.

Three models of bandwidth were considered: 10 Mbps, 1 Gbps, and 100 Gbps. The

 12

communication overhead for the 10 Mbps bandwidth was approximately 800 microseconds. This

value was calculated by transmitting messages on a 10Base500 shared Ethernet. The overhead

was decreased by a factor of 100 as the bandwidth increased.

Although the 10Mbps bandwidth was studied in this research, the results are not presented

in this paper. The reason for this is because the communication costs were too large to make

parallel computation practical. All of the parallel schedulers produced worse schedules than

sequential execution for this bandwidth on all input. Therefore, only the results of the 1 Gbps and

100 Gbps bandwidth models are presented. The next subsection discusses this issue further.

3.5 Input Data Sets

Two separate data sets were used in the experiments. The first data set was used to determine

whether there are any significant correlations between the proposed metrics and schedule length

and, if so, to derive the regression models.

A second data set was needed to verify the results. The metaheuristic provided

suggestions for which scheduling heuristic should be used for each input in this second set.

However, in order to verify the success of the metaheuristic, each input still needed to be run

through each heuristic and each schedule simulated. Nonetheless, the metaheuristic made its

choices based solely on the analysis done on the first set and not on the results of the simulation of

the second set.

The SISAL programs used in this research were provided by the SISAL group at

Lawrence Livermore National Lab, and are listed in Table 3. Several of these programs were

taken from a test suite described in [7]. Fifteen of the smallest programs in the set of

Table 3: Input Application Programs Written in SISAL.

 13

Subject Area Program Subject Area Program
Approximation Parpi1 Parsing Cyk
of Pi Parpi2 Matrix Arithmetic Inverse
 Parpi_Babb Matmult
Fourier Transform Dft Mmult2
 Badfft Transpose
 Cfft Conv
Game of Life Life1 Primes Arsieve
 Life2 Random Num. Gen. Ranf
Gauss-Jordan Gauss Scientific Kernels Loops
Elimination Gaussdata Searching Minmax
 Gaussjnew Sorting Batcher
 Lu Bubble
 Lunpiv Insertion1
 Lupiv Insertion2
 Stand_Alone_Gauss Mesort
Gel Chromatography Ricard Pinsert
Gel Electrophoresis Kin16 Pinsertdata
Hamming Ham Simplebatcher
Hilbert Data Sparse Matrix Sp
Integration Area Spinit
Laplace Laplace Square Root Sqrt
Pattern Matching Noise Test
 Noisedump Text processing Wordcount
 Vector Arithmetic Vectest

scientific kernels called LOOPS were used as the first data set. These programs were unrolled

using six different unrolling schemes shown in Table 4, resulting in a total of ninety input task

graphs. Array sizes were fixed at 100 for all programs. The remaining programs1 were used in

Data Set 2 with unrolling schemes one and two.

The values in the table are the number of iterations that the loops at each nesting level

were unrolled, and the maximum loop nesting for both suites of programs was 10 levels. For

example, with scheme 6, the outermost loops were unrolled 6 iterations, the next level loops were

unrolled 5 iterations, and the inner-most loops were unrolled 1 iteration. These values are much

1 The choice of data sets was somewhat arbitrary. The LOOPS kernels were available from Lawrence
Livermore’s library of SISAL programs at the beginning of this experiment. Most of the remaining programs only
became available later.

 14

smaller than the number of iterations each loop would likely be executed when run on a real

problem. Unfortunately, full unrolling of the loops would create an explosion of task nodes in the

task graph. Therefore, these limited unrolling schemes were chosen for practical reasons.

Furthermore, many of the scheduling heuristics require a large amount of time to compute a

schedule from the task graphs produced in the experiment.

Table 4: Loop Unrolling Schemes.

 Scheme
Loop Level 1 2 3 4 5 6
1 1 2 3 2 5 6
2 1 2 3 2 5 5
3 1 2 3 5 5 4
4 1 2 3 5 5 3
5 1 2 3 5 10 2
6 1 2 3 5 10 1
7 1 2 3 5 10 1
8 1 2 3 5 10 1
9 1 2 3 5 10 1
10 1 2 3 5 10 1

Since the number of iterations was fixed, an important question that arises is whether this

had a significant impact on the results. We investigated the influence of the different unrolling

schemes on the prediction model that is presented in the next section and found that the model

was fairly insensitive to the schemes (see Section 4.4.)

The method used to derive these task graphs automatically yields extremely fine-grained

graphs (i.e. each node is a single instruction). One result of this was that the parallel schedulers

produced schedules that were slower than sequential execution on a single processors for all input

for the 10 Mbps bandwidth. We omitted those results from the next section because we did not

learn anything substantial. It is apparent that the input programs need to be re-partitioned into

coarser-grained task graphs in order to reduce the amount of interprocessor communication for

this slower network. However, partitioning was specifically left out of the scope of this research

 15

so that the experiment would be a more manageable size.

One way to increase the effective granularity would have been to increase the weights of

the nodes in the task graphs across the board. However, an equivalent solution is to increase the

communication speeds of the topologies. This was the path taken in this experiment, since 1

Gbps is almost available with today’s technology and 100 Gbps is approximately the latency of

shared memory.

Unfortunately, partitioning and scheduling are inter-related problems. Had we chosen a

different partitioning scheme, we likely would have produced completely different results.

Regardless of how we chose to partition we would not be able to determine if it was the most

efficient partitioning short of trying every known scheme. This simple partitioning we used to

create input task graphs is a starting point for more experiments of this sort.

4. Results

In this section, the results of the experiment are presented. First, the performance of the eight

schedulers on data set 1 are shown. Then the derivation of the prediction model is provided. The

predictions on the second data set are presented against the actual results. The last two

subsections present two sanity checks.

4.1 Scheduler Performance (Data Set 1)

Figure 3 and Figure 4 compare the performance of the eight scheduling heuristics relative to each

other on data set 1. Figure 3 shows the frequency that each scheduler produced an optimal

schedule, and Figure 4 shows how far from optimal these schedules were. The term optimal is

used here to mean relatively optimal and refers to the schedule that provided the shortest total

execution time from among the eight produced by the scheduling heuristics (OPTi = minj {X i,j} ,

 16

where X i,j is the schedule length for task graph i of the schedule produced by heuristic j). It is not

necessarily the true optimal schedule over all possible schedules, which is unknown in general.

32

10

22

1

16

31

20 20

6

23

44

21

8

12

30

2 2

23 24

0 1 0 01

16

10

17

42

12

0 0

48

0

5

10

15

20

25

30

35

40

45

50

Ethernet 1 Gbps Mesh 1 Gbps Ethernet 100 Gbps Mesh 100 Gbps

Fr
eq

ue
nc

y
(%

)

CLANS DSC MH HU ISH RAN1 RAN2 SEQ

Figure 3: Number of Optimal Schedules for Data Set 1. Since more than one scheduling heuristic can create
schedules that are equivalent in length to the best schedule, the percentages can sum to more than 100 percent.

The slowdown from optimal factor is calculated as:

 +

X -

N

i,j i

ii=

N

1 1

OPT

OPT
∑

This value indicates how much worse the schedules were for each heuristic than the optimal

schedules. A factor of 1.0 means the scheduler produced the best schedules for all input.

 17

1.
83

1.
52

1.
17 1.

551.
81

1.
20

1.
10 1.
19

1.
88

1.
35

1.
08

1.
12

1.
93

1.
27

1.
15

1.
05

1.
94

1.
43

1.
15

1.
16

2.
57

4.
66

1.
40

2.
90

1.
99

1.
27

1.
18

1.
14

1.
11

1.
73

4.
14

7.
08

1

2

3

4

5

6

7

8

Ethernet 1 Gbps Mesh 1 Gbps Ethernet 100 Gbps Mesh 100 Gbps

Sl
ow

do
w

n
Fa

ct
or

 f
ro

m
 O

pt
im

al

CLANS DSC MH HU ISH RAN1 RAN2 SEQ

Figure 4: Slowdown Factors From Optimal for Data Set 1.

The RAN1 heuristic was the clear looser. In only one case did it produce a schedule that

was equivalent to the optimal schedule. However, for this one input, several of the other

heuristics also produced a schedule equivalent to the optimal one. The slowdown factors for

RAN1 clearly demonstrate that this heuristic should probably be avoided.

The sequential scheduler does well for the 1 Gbps bandwidths and poorly for the 100

Gbps bandwidths, and even worse for Mesh than for Ethernet. It should not be surprising that the

faster bandwidth allows for greater potential speedup for parallel execution, which gives the

parallel heuristics an advantage over sequential. The Mesh also provides additional potential

speedup due to a greater number of communication links in the topology.

The remaining parallel schedulers (other than RAN1) are fairly competitive relative to

each other. In other words, the relative gain in performance of using one of these remaining

 18

parallel schedulers over another is fairly small. More importantly, there appears to be no clear

winner. Although several heuristics perform well in general (e.g. DSC), the best scheduling

heuristic varies from environment to environment (even when ignoring RAN1 and SEQ).

4.2 Prediction Model

This section provides a sample (due to lack of space) of the correlations found between some of

the task graph metrics and the schedule lengths produced by the various heuristics. Also

presented in this subsection is the model used to predict the schedule lengths on data set 2.

4.2.1 Correlation Coefficients

Each of the 41 metrics was compared to the schedule lengths for each scheduler on each topology

for all 90 input programs. Only several of the stronger correlations are shown in Figure 5 for the

1 Gbps Ethernet. For a complete list of these correlation coefficients see [17].

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CLANS DSC MH HU ISH RAN1 RAN2 SEQ

Number of Nodes (v) Number of Edges (e) TGW-w

Figure 5: Correlation Coefficients. These are several of the stronger correlated metrics for 1 Gbps Ethernet.

 19

The number of edges is a very good predictor for most of the parallel scheduling

heuristics. The strength of these correlations exceeded expectation. In fact, it is very surprising

that both random schedulers have correlations very close to 1.0 (although this is not the case for

RAN1 on the Mesh).

Notice that the lengths of the sequential schedules are exactly the sum of the node

weights. This should not be surprising since there is assumed to be no communication overhead

associated with single processor execution, and the node weights are a representation of the

amount of work that needs to be done. It is not likely that any other model would be necessary to

predict the sequential execution.

Figure 6 shows the scatter graph of the CLANS heuristic on the 1 Gbps bandwidth

Ethernet. This graph is typical of the scatter graphs for the other environments and heuristics.

y = 0.0064x - 0.0544

R2 = 0.977

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500 3000 3500

Number of Edges (e)

Sc
he

du
le

 L
en

gt
h

(m
se

c)

Figure 6: Scatter Graph of CLANS Heuristic for 1 Gbps Bandwidth Ethernet. The line is the least-squares
regression line.

 20

The remaining scatter graphs can be found in [17]. This graph is presented here to further

emphasize the strength of the correlation between the schedule lengths and the number of edges.

4.2.2 Regression Model

Although several different regression models were tried, only the simplest one will be discussed in

detail in this paper, because more complex models (e.g., multivariate) did not offer significant

improvement in choosing schedulers. Since the number of edges appears to have the strongest

correlations overall for the parallel scheduler, it was chosen as the metric to be used to attempt to

predict the schedule lengths. However, the sequential scheduler was predicted by using the sum

of the node weights, since the correlation coefficient is 1.

The equations of the least-squares regression lines (between the appropriate metric and

the schedule lengths) and resulting R2 values are shown in Table 5. The purpose of showing this

table here is not to provide the equations for predicting these heuristics in general (further

research is probably needed to fine tune them), but rather to emphasize of the simplicity of the

metaheuristic. Both the number of edges (e) and the sum of the task graph (TGW-w) weights are

very easy to calculate. In fact, since a compiler will need to create the task graph in the first

place, these two metrics are essentially free. The complexity of the metaheuristic is therefore

linearly proportional to the number of heuristics available in the library.

As we continue our research, we expect the regression models to change for different

categories of input. New categories (other than topology) that we think may be useful (although

we do not know at this point) are:

(1) the partitioning algorithm used and/or the granularity,

(2) the problem domain (i.e. Gaussian elimination, weather, Hilbert spaces, etc.),

(3) the general shape of the task graph,

 21

(4) the time of the day (i.e. how loaded the system is),

(5) the programming style of the programmer.

Table 5: Regression Equations and R2 Values. e represents the number of edges and TGW-w represents the sum of
the node weights.

Scheduling Ethernet Mesh
Heuristic R2 Equation (µsec) R2 Equation (µsec)

1 Gbps
CLANS 0.977 6.37 × e - 54.40 0.885 2.98 × e + 181.23
DSC 0.995 6.31 × e - 48.33 0.940 2.28 × e + 178.31
MH 0.986 6.42 × e + 11.08 0.848 2.68 × e + 146.17
HU 0.987 6.59 × e + 4.78 0.882 2.52 × e + 136.23
ISH 0.989 6.67 × e - 18.26 0.943 3.00 × e + 66.13
RAN1 0.998 8.78 × e + 8.19 0.748 7.72 × e - 384.67
RAN2 0.994 6.87 × e - 30.25 0.855 2.30 × e + 243.19
SEQ 1.000 0.10 × TGW-w + 0.17 1.000 0.10 × TGW-w + 0.17

100 Gbps
CLANS 0.871 0.97 × e + 54.40 0.750 0.64 × e + 92.10
DSC 0.933 0.96 × e + 20.78 0.819 0.47 × e + 83.94
MH 0.957 0.99 × e - 1.55 0.882 0.53 × e + 36.97
HU 0.970 1.02 × e + 19.68 0.872 0.45 × e + 53.51
ISH 0.978 0.99 × e + 29.28 0.908 0.51 × e + 52.01
RAN1 0.973 1.19 × e + 46.91 0.631 1.14 × e - 36.79
RAN2 0.977 1.06 × e + 12.59 0.841 0.52 × e + 42.43
SEQ 1.000 0.10 × TGW-w + 0.17 1.000 0.10 × TGW-w + 0.17

4.3 Prediction Results (Data Set 2)

The regression equations from the previous subsection were used by the metaheuristic to attempt

to predict the schedule lengths of the programs in the second data set for each of the eight

schedulers. The metaheuristic made its choices for the best scheduler, then these choices were

compared to the actual schedule lengths. The metaheuristic is presented in the following sections

as though it were just another scheduler. Figure 7 and Figure 8 present the results of the

metaheuristic choices for the best scheduling heuristic on Data Set 2.

 22

17 16

26
25

22

16

30
32

29

36
33

31

12

24
26

45

12 11

25

19

0 0 0 0

8

16

11
13

75

56

37

26

81

35

55
51

0

10

20

30

40

50

60

70

80

90

Ethernet 1 Gbps Mesh 1 Gbps Ethernet 100 Gbps Mesh 100 Gbps

Fr
eq

ue
nc

y
(%

)

CLANS DSC MH HU ISH RAN1 RAN2 SEQ Meta

Figure 7: Number of Optimal Schedules for Data Set 2. Since more than one scheduling heuristic can create
schedules that are equivalent in length to the best schedule, the percentages can sum to more than 100 percent.

6.
48

3.
57

1.
64

1.
49

6.
30

3.
12

1.
47

1.
22

4.
49

2.
27

1.
61

1.
19

8.
01

2.
82

1.
66

1.
13

7.
98

3.
42

1.
73

1.
29

12
.4

3

9.
35

2.
33

2.
36

8.
58

3.
41

1.
80

1.
31

1.
15 1.

50

2.
62

3.
35

1.
07

4.
35

1.
05

1.
04

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Ethernet 1 Gbps Mesh 1 Gbps Ethernet 100 Gbps Mesh 100 Gbps

Sl
ow

do
w

n
Fa

ct
or

 f
ro

m
 O

pt
im

al

CLANS DSC MH HU ISH RAN1 RAN2 SEQ Meta

Figure 8: Slowdown Factors From Optimal for Data Set 2.

 23

The metaheuristic provided overall better schedules than all of the other scheduling

heuristics, with the exception of the 1 Gbps Mesh topology. The reason the metaheuristic did

poorly for that environment is because it chose the RAN1 scheduling heuristic about 35 percent of

the time. However, this makes no sense, since the RAN1 scheduler produced such poor

schedules for data set 1. A closer examination of the regression for RAN1 revealed the cause of

this. The steepness of the least-squares line produced a large negative y-intercept of the

regression line (see appendix B of [17]), which in turn produced negative prediction values for

RAN1. This brings up an interesting point: What do negative predictions for run-time mean?

Nonetheless, it is clear that the RAN1 scheduler should not be used.

Figure 9 shows the results for the 1 Gbps Mesh if the RAN1 scheduling heuristic is

removed from the library of available schedulers. Once again, the metaheuristic provided better

schedules overall. Perhaps a more sophisticated prediction model should be used to deal with

cases like the RAN1 scheduling heuristic. However, the simpler model still does an effective job

of choosing the best scheduling heuristic for the most part. Certainly for the other three

environments, the metaheuristic produced more optimal schedules and better performance than all

the other heuristics. In fact, being able to know what the optimal schedule would be beforehand

is only marginally better than using the metaheuristic.

Figure 10 shows the average normalized percent improvement of the metaheuristic over

the eight scheduling heuristics upon which it is based. The formula used for this data is:

X -

X

N

i,j i

i ji=

N META

,1
∑

.

Instead of using the optimal schedule as the base, the schedule produced by each heuristic is the

base.

 24

16 16

36

24

11

0

16

56 55

0

10

20

30

40

50

60

Number of Best Schedules

Fr
eq

ue
nc

y
(%

)

CLANS DSC MH HU ISH RAN1 RAN2 SEQ Meta

3.
57

3.
12

2.
27 2.

82 3.
42

9.
35

3.
41

1.
101.
50

0

2

4

6

8

10

12

14

16

18

20

Slowdown Factor from Optimal

Sl
ow

do
w

n
Fa

ct
or

Figure 9: Metaheuristic Results on Mesh 1 Gbps with RAN1 Removed from the Library of Available Heuristics.

42
.7

2

34
.7

7

18
.6

0

18
.5

7

43
.1

0

29
.4

1

13
.5

4

9.
95

29
.8

7

15
.4

4

13
.1

6

7.
25

46
.0

4

24
.1

4

14
.7

2

3.
31

46
.1

7

31
.6

9

18
.5

6

12
.8

9

68
.8

1

65
.7

2

40
.4

6 45
.6

251
.2

7

32
.0

7

20
.9

9

13
.8

7

1.
85

12
.1

9

29
.9

3 36
.6

9

0

10

20

30

40

50

60

70

80

Ethernet 1 Gbps Mesh 1 Gbps Ethernet 100 Gbps Mesh 100 Gbps

N
or

m
al

iz
ed

 P
er

ce
nt

 I
m

pr
ov

em
en

t o
f

M
et

ah
eu

ri
st

ic

CLANS DSC MH HU ISH RAN1 RAN2 SEQ

Figure 10: Normalized Percent Improvement of the Metaheuristic over the Other Scheduling Heuristics.

 25

For the 100 Gbps bandwidth, the metaheuristic is correct about which scheduling heuristic

will produce the best schedule about half of the time. Although this is more often than the other

heuristics, it is not known whether this is a large or small percentage. Figure 11 shows the

performance losses of each heuristic for each input in data set 2.

0

2

4

6

8

10

12

14

16

CLANS DSC MH HU ISH RAN1 RAN2 SEQ Meta

N
or

m
al

iz
ed

 D
if

fe
re

nc
e

fr
om

 O
pt

im
al

Figure 11: Normalized Differences from Optimal for each Scheduling Heuristic on 100 Gbps Ethernet. The
normalized difference from optimal is (Xi,j - OPTi) / OPTi for each input i for each scheduling heuristic j.

This discussion so far has demonstrated that the metaheuristic is providing good choices

for which scheduling heuristic to use. It may be surprising that such a simple algorithm would be

successful in doing this. However, when one takes a closer look into the data, it is not as

surprising. Figure 11 shows that all of the original eight heuristics produced some poor

schedules. However, the metaheuristic does not. Even though the metaheuristic is correct in

choosing the best only half of the time, where it gains ground over the other heuristics is by

avoiding the bad schedules. Furthermore, it does this for the large task graphs as well as the

 26

small ones.

4.4 Loop Unrolling

This section, as well as the next, provides results of two sanity checks. The task graphs that were

used in this experiment were created from the IF1 graphs produced by the SISAL compiler.

These graphs are hierarchical graphs. In other words, many of the complex nodes of the IF1

graphs represent loops, where the internal nodes represent the parts of the loops. The internal

nodes may also be complex nodes as well as simple nodes. Since many of the scheduling

heuristics for static scheduling do not handle loops (i.e., require a flattened task graph), the

hierarchical graphs were converted into simple task graphs by unrolling the loops to pre-defined

numbers of iterations.

The arbitrary unrolling of the loops could have an impact on the results of this research.

To investigate this, the correlation coefficients were recomputed for each group of programs

unrolled for each scheme, as was described in Section 3. The maximum correlation coefficients

across the 41 metrics for each scheduling heuristic for each loop-unrolling scheme were

computed. The strengths of the correlations fluctuated only slightly across the schemes. For the

most part, the correlation coefficients were just as strong as the overall correlations. Although

the particular metric that produced the highest correlation varies slightly from scheme to scheme,

the number of edges still appears to be the best overall predictor.

Figure 12 shows the scatter graph for CLANS heuristic for 1 Gbps bandwidth Ethernet for

the two extreme cases of the six unrolling schemes. (All six graphs for each heuristic are shown

in [17].) One can see from these figures that some of the input programs exploded in size as the

loops were unrolled to more iterations (due to nested loops), while others did not

 27

CLANS
Unrolling Scheme 1
y = 4.9073x + 13.017

R2 = 0.9627

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Number of Edges (e)

Sc
he

du
le

 L
en

gt
h

(m
se

c)

(a) Unrolling Scheme 1

CLANS
Unrolling Scheme 5

y = 6.2755x + 40.759

R2 = 0.9683

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 500 1000 1500 2000 2500 3000 3500

Number of Edges (e)

Sc
he

du
le

 L
en

gt
h

(m
se

c)

(b) Unrolling Scheme 5

Figure 12: Scatter Graphs of the CLANS Heuristic on 1 Gbps Bandwidth Ethernet for Two Loop Unrolling
Schemes.

 28

increase in size by much at all. More importantly, it appears that the correlations, and therefore

the predictability, of the heuristics scale quite well. The predicted runtimes of these programs

vary, but the regression model will not change significantly for larger loop-iteration sizes.

4.5 Simulation Sanity Check

Since the results of this work are entirely based on having fairly accurate estimations of

the schedule lengths, one might ask, How good is the simulation? To test the accuracy, one of

the schedules was implemented and run on a real Ethernet based network, using PVM 3.3 [see 5

and 18] as the communication medium. Figure 13 shows the results of timing the program during

several different trial runs during different times of the day with different numbers of users on the

system. Figure 13 also shows the predicted run-time provided by the simulation.

0 10 20 30 40 50 60 70 80

Pr
ed

ic
te

d
E

xe
cu

tio
n

A
ct

ua
l

E
xe

cu
tio

n

Time (msec)

Figure 13: Sanity Check of the Simulation. The schedule produced by the HU heuristic of loop10 using unrolling
scheme 1 was implemented using PVM 3.3 and run on a network of workstations connected by a 10Base500

shared Ethernet. The variations in the actual execution times reflect the different loads from other users on the
system. The simulation did not model background traffic from other applications or users.

 29

The actual execution times reflect the traffic associated with a multi-user environment.

Although the simulation models channel contention (i.e., only one processor may transmit data at

one time), it does not model background traffic from other processes. The goal of this

experiment was to verify that the predicted execution time of the simulation was a reasonable

estimation of the true running time.

5. Conclusions

The first conclusion that can be drawn from this work is that it does indeed matter which

scheduling heuristic is used for a particular application and parallel system. The choice of which

heuristic is used for any particular situation can have a significant impact on the run-times of the

resulting schedules. In fact, using the wrong scheduling heuristic can have a devastating impact

on performance.

Second, it appears that there is no clear best scheduler in general, at least not among these

eight. With the exception of RAN1, each scheduling heuristic produced some optimal schedules.

Furthermore, the slowdown factor from optimal for the schedulers are, for the most part,

consistent across the heuristics. This means that the loss in performance of using one heuristic for

all input would be approximately the same for most of the heuristics. In other words, there would

not be any great performance benefit of using one of the seven parallel scheduling heuristic versus

another for all input.

The correlations proposed at the outset of this work did indeed exist. In fact, the

strengths of these correlations greatly exceeded expectations. Not only were the more successful

heuristics predictable, but so too were the less successful ones such as the random schedulers.

The estimates of the schedule lengths for these heuristics were good enough that a very simple

 30

regression model sufficed to make an automatic choice of the best candidate to use. The fact that

these models were so simple and were still successful in obtaining better schedules makes a very

strong statement about how predictable the heuristics were. After viewing the results of the

previous chapter, it appears to be likely that other scheduling heuristics would be at least

somewhat predictable. One would expect that as more improved scheduling heuristics are added

to the library of heuristics, the quality of the schedules chosen by the metaheuristic will improve.

Although there were more sophisticated models considered in this research, only the

simplest one was presented, in order to limit the scope of this paper and because of the fact that

the simplest model still worked. However, one would expect that better models would produce

better results in the long run. There is significant future research needed to determine which

models would be best to use, what the exact parameters of those models should be, and under

which circumstances to use them.

Perhaps the most interesting conclusion is not that the metaheuristic was successful in

choosing better schedules overall, but why it was better. The metaheuristic did not choose the

best heuristic most of the time. However, it was successful in avoiding the really bad schedules,

which is how it was able to gain ground against the other schedulers.

We have demonstrated through the experiments presented in this paper that statistical

methods can be used to choose among scheduling heuristics on a per-program basis with

encouraging results. This is especially true when one considers that the analysis, in the cases we

studied, essentially comes for free. The cost of deriving the predictions is very small because it

uses variables such as the number of edges and node weights; metrics that are already available

when the task graphs are created. Although all of the heuristics except RAN1 produced an

occasional best schedule, they also occasionally produced very poor schedules as well. By

 31

avoiding the heuristics that would produce poor schedules, the metaheuristic was able to improve

the overall quality of the schedules.

We have listed below several of the open problems that need to be addressed in the future:

(1) How does the program partitioning affect the prediction models?

(2) Can the metaheuristic approach be used to automatically choose a good partitioning

heuristics on a per-program basis?

(3) How are the prediction models affected by limited resources (e.g. number of processors)?

(4) Are there better prediction models or new metrics that can be used to improve the

approach further?

(5) Can this approach be used to solve the combined problems of partitioning, mapping, and

scheduling?

6. References

[1] T. L. Adam, K. M. Chandy, and J. R. Dickson. “A comparison of list schedules for parallel
processing systems,” Communications of the ACM, 17(12):685-690, December 1974.

[2] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. “A static performance estimator to guide data
partitioning decisions.” In the Proceedings of the Third ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, Williamsburg, VA, Apr. 21-24, 1991.

[3] K. M. Baumgartner and B. W. Wah. “Computer scheduling algorithms: past, present, and future.”
Information Sciences, 57:319-345, 1991.

[4] M. A. Blumrich, C. J. Brownhill, K. Li, and A. Nicolau.”An Empirical Comparison of Loop
Scheduling Algorithms on a Shared Memory Multiprocessor.” Technical Report TR-360-92,
Princeton University, January 1992.

[5] Arndt Bode, ed. Proceedings of the Parallel virtual machine, EuroPVM ’96: third European PVM
conference, Munich, Germany, October 7-9, 1996.

[6] Tevfik Bultan and Cevdet Aykanat. “A new mapping heuristic based on mean field annealing.”
Journal of Parallel and Distributed Computing, 16(4):292-305, December 1992.

[7] D. Cann. “Retire FORTRAN? A debate rekindled.” Communication of the ACM, 35(8):81-89,

 32

August 1992.

[8] Vipin Chaudhary and J. K. Aggarwal. “A generalized scheme for mapping parallel algorithms.”
IEEE Transactions on Parallel and Distributed Systems, 4(3):328-346, March 1993.

[9] Song Chen, Mary M. Eshaghian, and Ying-Chieh Wu. “Mapping arbitrary non-uniform task graphs
onto arbitrary non-uniform system graphs.” In 1995 International Conference on Parallel Processing,
II:191-195, 1995.

[10] Philippe Chretienne, Edward G. Coffman, Jr., Jan Karel Lenstra, and Zhen Liu, ed. Scheduling
Theory and its Applications. John Wiley & Sons, New York, 1995.

[11] E.G. Coffman, Jr., ed. Computer and Job-Shop Scheduling Theory. John Wiley & Sons, New York,
1976.

[12] E. H. D’Hollander, Y. Devis, “Directed taskgraph scheduling using simulated annealing,” In
Proceedings of the 1991 International Conference on Parallel Processing, VII-Software:180-185,
1991.

[13] M. D. Dikaiakos, A. Rogers, and K. Steiglitz. “A Comparison Study of Heuristics for Mapping
Parallel Algorithms to Message-Passing Multiprocessors.” Technical Report TR-446-94, Princeton
University, February 1994.

[14] Hesham El-Rewini and T. G. Lewis. “Scheduling parallel program tasks onto arbitrary target
machines.” Journal of Parallel and Distributed Computing, 9:138-153, 1990.

[15] H. El-Rewini, T. G. Lewis, and H. H. Ali. Task Scheduling Parallel and Distributed Systems.
Prentice Hall, Englewood Cliffs, NJ, 1994.

[16] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. “A report on the SISAL language project.” Journal of
Parallel and Distributed Computing, 10:349-366, 1990.

[17] Clayton S. Ferner “Automatic Choice of Scheduling Heuristics for Parallel/Distributed Computing.”
Ph.D. Thesis, Department of Mathematics and Computer Science, University of Denver, 1997.

[18] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam.
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing.
MIT Press, Cambridge, MA, 1996.

[19] A. Gerasoulis, S. Venugopal, and T. Yang. “Clustering task grpahs for message passing
architectures.” In Proceedings of the 4th ACM International Conference on Supercomputing, 447-
456, 1990.

[20] Apostolos Gerasoulis and Tao Yang. “A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors.” Journal of Parallel and Distributed Computing, 16(4):276-291,
December 1992.

[21] Apostolos Gerasoulis and Tao Yang. “On the granularity and clustering of directed acyclic task
graphs.” IEEE Transactions on Parallel and Distributed Systems, 4(6):686-701, June 1993.

[22] Edwin S.H. Hou, Nirwan Ansari, and Hong Ren. “A Genetic Algorithm for Multiprocessor
Scheduling.” IEEE Transactions on Parallel and Distributed Systems, 5(2):113-120, February 1994.

[23] T. Hu. “Parallel sequencing and assembly line problems.” Operations Research, 9(6):841-848, 1961.

 33

[24] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Angers, and Chung-Yee Lee. “Scheduling
precedence graphs in systems with interprocessor communicaton times.” SIAM Journal of
Computing, 18(2):244-257, 1989.

[25] A. Ieumwananonthachai, A. N. Aizawa, S. R.. Schwarz, B. W. Wah, and J. C. Yan. “Intelligent
mapping of communication processes in distributed computing systems.” In Proceedings of
Supercomputing ‘91, 1991.

[26] Authur Ieumwananonthachai, Akiko N. Aizawa, Steven R. Schwartz, Benjamin W. Wah, and Jerry
C. Yan. “Intelligent process mapping through systematic improvement of heuristics.” Journal of
Parallel and Distributed Computing, 15(2):118-142, June 1992.

[27] A. A. Khan, C. L. McCreary, and Y. Gong. “A Numerical Comparative Analysis of Partitioning
Heuristics for Scheduling Task Graphs on Multiprocessors.” Technical Report CSE93-12. Dept. of
Computer Science and Engineering, Auburn University, 1993.

[28] A. A. Khan, C. L. McCreary, and M. S. Jones, “A comparison of multiprocessor scheduling
heuristics.” In Proceedings of the 23rd International Conference on Parallel Processing, Aug. 1994.

[29] S. J. Kim and J. C. Browne. “A general approach to mapping of parallel computations upon
multiprocessor architectures.” In Proceedings of the 1988 International Conference on Parallel
Processing, 3:1-8, 1988.

[30] B. Kruatrachue. “Static Task Scheduling and Grain Packing in Parallel Processing Systems.” Ph.D.
Thesis, Department of Computer Science, Oregon State University, 1987.

[31] J. K. Lenstra and A. H. G. Rinnooy Kan. “Complexity of scheduling under precedence constraints.”
Operations Research, 26(1):22-35, January-February 1978.

[32] Ted Lewis and Hesham El-Rewini. “Parallax: A tool for parallel program scheduling.” IEEE Parallel
& Distributed Technology, 1(2):62-72, May 1993.

[33] Brian A. Malloy, Errol L. Lloyd, and Mary Lou Soffa. “Scheduling DAG’s for asynchronous
multiprocessor execution.” IEEE Transactions on Parallel and Distributed Systems, 5(5):498-508,
May 1994.

[34] C. McCreary and H. Gill. “Automatic determination of grain size for efficient parallel processing.”
IEEE Transactions on Software Engineering, SE-2(4):308-320, September 1989.

[35] C. L. McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle. “A comparison of heuristics for
scheduling DAGS on multiprocessors.” In Proceedings of the 8th International Parallel Processing
Symposium, 446-451, April 1994.

[36] Michael A. Palis, Jing-Chiou Liou, and David S.L. Wei. “Task clustering and scheduling for
distributed memory parallel architectures.” IEEE Transactions on Parallel and Distributed Systems,
7(1):46-55, January 1996.

[37] Douglas M. Pase, “A Comparative Analysis of Static Parallel Schedulers Where Communication
Costs Are Significant.” Ph.D. Thesis, Department of Computer Science and Engineering, Oregon
Graduate Center (now Oregon Graduate Institute), July 1989.

[38] Shankar Ramaswamy and Prithviraj Banerjee. “Processor allocation and scheduling of macro

 34

dataflow graphs on distributed memory multicomputers by the PARADIGM compiler.” In
Proceedings of the 22nd International Conference on Parallel Processing, VII:134-138, St. Charles,
IL, 1993.

[39] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
Cambridge, MA, 1989.

[40] V. Sarkar. “Automatic partitioning of a program dependence graph into parallel tasks.” IBM Journal
of Research and Development, 35(5/6): 779-804, September 1991.

[41] S. Selvakumar and C. Siva Ram Murthy. “Scheduling precedence constrined task graphs with non-
negligible intertask communication onto multiprocessors.” IEEE Transactions on Parallel and
Distributed Systems, 5(3):328-336, March 1994.

[42] Behrooz Shirazi and A. R. Hurson. “Special issue on scheduling and load balancing.” Journal of
Parallel and Distributed Computing, 16(4):271-275, December 1992.

[43] B. Shirazi and M. Wang, “Analysis and evaluation of heuristic methods for static task scheduling.”
Journal of Parallel and Distributed Computing, 10:222-232, 1992.

[44] Gilbert C. Sih and Edward A. Lee. “A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures.” IEEE Transactions on Parallel and Distributed
Systems, 4(2):175-187, February 1993.

[45] Jaspal Subhlok. “Automatic mapping of Task and Data Parallel Programs for Efficient Execution on
Multicomputers.” Technical Report CMU-CS-93-212. School of Computer Science, Carnegie Mellon
University, 1993.

[46] Jaspal Subhlok, James M. Stichnoth, David R. O’Hallaron, and Thomas Gross. “Exploiting task and
data parallelism on a mutlicomputer.” In Fourth ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, San Diego, CA, May 1993.

[47] Jaspal Subhlok, David R. O’Hallaron, Thomas Gross, Peter A. Dinda, and Jon Webb.
“Communication and memory requirements as the basis for mapping task and data parallel
programs.” In Proceedings Supercomputing ‘94, 330-339, 1994.

[48] A. Sussman. “Model-driven mapping onto distributed memory parallel computers.” In Proceedings
Supercomputing ‘92, 818-829, November 1992.

[49] J. D. Ullman. “NP-complete scheduling problems.” Journal of Computer and System Sciences,
10:384-393, 1975.

[50] Min-You Wu and Daniel D. Gajski. “A programming aid for hypercube architectures.” The Journal
of Supercomputing, 2:349-372, 1988.

[51] Shen Shen Wu and David Sweeting. “Heuristic algorithms for task assignment and scheduling in a
processor network.” Parallel Computing, 20:1-14, 1994.

[52] J. C. Yan. “New ‘post-game analysis’ heuristics for mapping parallel computations to hypercubes.” In
Proceedings of the 1991 International Conference on Parallel Processing, VII-Software: 236-242,
1991.

 35

[53] Tao Yang and Apostolos Gerasoulis. “PYRROS: static task scheduling and code generation for
message passing multiprocessors.” In Proceedings of the 6th ACM International Conference on
supercomputing, Washington, D. C., 428-437, July 1992.

[54] Tao Yang and Apostolos Gerasoulis. “DSC: Scheduling parallel tasks on an unbounded number of
processors.” IEEE Transactions on Parallel and Distributed Systems, v5(9):951-967, 1993.

[55] Tao Yang and Apostolos Gerasoulis. “List scheduling with and without communication delays.”
Parallel Computing, 19(12):1321-1344, December 1993.

[56] Wang Ho Yu. “LU Decomposition on a Multiprocessing System with Communications Delay.” Ph.D.
Thesis, Department of Engineering, University of California, Berkeley, 1984.

