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Abstract: Plant diseases are a major cause of reduction in agricultural output, which leads to severe
economic losses and unstable food supply. The citrus plant is an economically important fruit crop
grown and produced worldwide. However, citrus plants are easily affected by various factors, such
as climate change, pests, and diseases, resulting in reduced yield and quality. Advances in computer
vision in recent years have been widely used for plant disease detection and classification, providing
opportunities for early disease detection, and resulting in improvements in agriculture. Particularly,
the early and accurate detection of citrus diseases, which are vulnerable to pests, is very important
to prevent the spread of pests and reduce crop damage. Research on citrus pest disease is ongoing,
but it is difficult to apply research results to cultivation owing to a lack of datasets for research and
limited types of pests. In this study, we built a dataset by self-collecting a total of 20,000 citrus pest
images, including fruits and leaves, from actual cultivation sites. The constructed dataset was trained,
verified, and tested using a model that had undergone five transfer learning steps. All models used in
the experiment had an average accuracy of 97% or more and an average f1 score of 96% or more. We
built a web application server using the EfficientNet-b0 model, which exhibited the best performance
among the five learning models. The built web application tested citrus pest disease using image
samples collected from websites other than the self-collected image samples and prepared data, and
both samples correctly classified the disease. The citrus pest automatic diagnosis web system using
the model proposed in this study plays a useful auxiliary role in recognizing and classifying citrus
diseases. This can, in turn, help improve the overall quality of citrus fruits.

Keywords: agriculture; citrus disease classification; deep learning; web application

1. Introduction

Agriculture is a pivotal component of the global economy. Through digital innovations
and technological development, the agriculture industry is developing into a fast-growing
future and is a core industry of the Fourth Industrial Revolution. However, climate change,
growing conditions in arable land, old and new plant diseases, and pests are important
obstacles to growing crops, despite advances in agricultural technology. In particular,
according to the 21st Century Guidebook to Fungi [1], approximately 16% of crops
worldwide are losing value due to plant pests, and not only wheat and rice, but also
fruit crops are severely damaged by pests. Fruits are crops grown and traded around the
world, accounting for a huge proportion of the agriculture industry. In particular, the most
consumed and traded fruit crop is citrus [2]. It is generally produced and cultivated in
approximately 140 countries, and includes varieties such as mandarin, orange, citron, and
lime, depending on the location and climate of the plantation [3]. The citrus yield is easily
affected by the weather, and the plant is very vulnerable to plant pests. For example, in
citrus fruits, diseases such as melanin, canker, and scab often occur after rain. As a result,
citrus production and cultivation cause significant economic losses in all growing regions of
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the world and continue to be threatened by many factors, such as pathogens and pests [4].
The state of Florida in the USA spent USD 1 billion on the eradication of citrus pests for ten
years from 1995 to 2005, and the state of Queensland in Australia spent AUD 18.5 million
for the same goal [5]. In addition, in Jeju, Korea, tangerine crops are damaged by various
pests, such as citrus canker and Panonychus citri, every year. To prevent pests, a sustainable
and effective strategy has been proposed to improve varieties resistant to plant pests [6].
New variety improvement programs through biotechnology tools have been developed
and improved, but the cultivation of citrus varieties that are highly resistant to the same
disease remains a challenge due to laboratories and experimental conditions [7] different
from the actual plantation [8]. To date, there is no successful approach to eradicating citrus
pests, and the only fundamental way to prevent the spread of the disease and minimize the
effects of infection is the removal of infected plants from pathogens. Numerous methods
have been applied and introduced to address problems related to plant pests, but early
detection and accurate diagnosis of diseases must be prioritized to reduce the spread of
diseases and crop damage. Predicting and detecting diseases early, monitoring plant health,
and applying control measures accordingly is critical to sustainable agriculture. Therefore,
there is a need for the latest AI-based tools that can predict the prognosis of diseases by
detecting pests in advance.

In recent years, research on plant pests has been conducted, focusing on various
machine-learning and deep-learning technologies, along with the increase in computing
resources due to the development of computer systems [9–11]. Since machine learning
methods operate based on user-defined functions, image feature values may be missed in
image classification. CNN-based deep learning technology has been used in recent plant
disease diagnosis research to solve this problem. Deep learning models have a longer
runtime for training, but a shorter runtime than other methods. They also provide more
accurate results than machine-learning methods by automatically extracting image features
from raw images/data [12]. Therefore, the deep learning-based plant disease classification
method is the most promising computing method in modern agriculture because it derives
better accuracy than machine learning. In many studies, deep-learning models are used to
identify pests in various parts of the plant, such as citrus fruits, leaves, and stems [13–16].
Computer vision models require training on large image datasets to increase the accuracy
of classification and detection. However, the publicly available citrus pest dataset is
very limited and contains low-resolution disease sample images. The datasets used in the
current study are limited in the variety of pests by collecting images from Kaggle and Citrus
Image Gallery Dataset, and the dataset is relatively small [17–19], containing 5000 images.
In addition, the citrus pest disease classification study [20] using a dataset obtained in
the laboratory achieved high performance but is not a dataset obtained from the actual
plantation, so it is difficult to project the research results directly to the plantation.

In order to solve the problem of datasets in existing studies, this paper builds big data
by collecting citrus pest images on its own from actual citrus plantations. The constructed
dataset trains five deep learning models to classify citrus pests and diseases. The five
models extract weights derived from the highest f1 score through training, and the extracted
weights are used in the test dataset to evaluate the performance of the proposed model.
The best model is applied to the web application system that informs the type of disease
when the user inserts an image. The proposed deep learning-based automatic disease
classification system for citrus has achieved excellent performance, and it can help to
quickly and easily identify pests in the agricultural industry, where early diagnosis of pests
and pests is difficult.

In summary, the significant contributions of this study are as follows:

• We have developed a novel citrus pest dataset comprising six disease detection classes.
The constructed dataset consists citrus images that are either infected or non-infected
by pests in Jeju Island, South Korea, in 2021. The constructed dataset provides a total
of 20,000 high-quality images with a resolution of 1920 × 1090. Currently, Citrus Open
Datasets are either low resolution or paid. We published the datasets used in the study
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free of charge https://github.com/LeeSaeBom/citrus (accessed on 19 August 2022).
A detailed description of the dataset is provided in Section 5.

• We use EfficientNet and ViT models, which are the latest algorithms in this area,
including VGGNet, ResNet, and DenseNet models, which are commonly used for the
classification and detection of plant pests and diseases [21–23]. All five models can
use the pre-training method, and high accuracy and f1 score derivation are possible.
VGGNet, ResNet, DenseNet and EfficientNet models can extract local features of the
feature map using a convolution layer, and the ViT model uses a transformer, so global
features of the feature map can be extracted.

• Application development is required to automate the classification of various diseases.
The web application server has the advantage that it can be accessed from anywhere in
the world, as long as the Internet is available. In most citrus cultivation sites, workers
manually determine the presence or absence of pests and classify disease types. It is
difficult for non-professional workers to quickly determine the type of pest. Based on
these problems, we developed our own web application system, and non-professional
workers can use it to easily determine the pests and diseases.

The rest of this paper is organized as follows. The related work is mentioned in
Section 2. The Network Architecture presented in Section 3. The Method is mentioned in
Section 4. The experimental procedure and results are discussed in Section 5, and finally,
the conclusion and future work are addressed in Section 6.

2. Related Works

In the past, researchers used statistics, machine learning, and deep learning approaches
to classify and detect plant pests. Statistics and machine learning detect plant diseases
based on features of self-produced images. Traditional machine-learning methods tend to
rely heavily on user-defined image features, so important features of the image may be
missed. This, along with degraded model performance, leads to difficulties in detecting
immediate plant pests. To overcome this problem, a deep-learning-based approach that
passes through the layers and uses the image features determined from the layers is used
to solve various orchard disease classification problems.

2.1. A Study on the Detection of Fruit Crop Disease

Before classifying citrus disease, classification studies on various crops were conducted.
Wang et al. [24] proceeded with disease classification for tomatoes using an artificial neural
network (ANN). Singh and Misra [25] et al. also used ANN to detect disease in bananas.
Sankaran et al. [26] performed citrus disease classification using k-nearest neighbor (KNN).
In addition, various plant and crop disease classification studies using plant village, an
open dataset, are continuously being conducted [27].

2.2. A Study on Fruit Crop Disease Based on Machine Learning

As computing speed improves, studies have been conducted to classify diseases of
various fruit crops, focusing on machine-learning approaches. Among machine-learning
approaches, support vector machine (SVM) is a widely known method for detecting
diseases of citrus [28] and tomatoes [29]. Iniyan et al. [30] combined SVM and ANN to
obtain high accuracy in orchard disease detection. Another representative method among
machine-learning-based infected plant recognition research is to use principal component
analysis (PCA) [31]. The PCA method has the advantage of finding components that are
judged to explain the given data well. However, as statistics and machine learning detect
plant diseases based on self-generated image features, important information in the images
may be lost. This, along with poor model performance, leads to difficulties in immediately
detecting plant pests. Deep learning methods solve problems in machine learning by going
through layers and using features of an image determined by the layers. The downside of
deep learning models is that they take longer than machine learning methods. However,
with the advancement of computing systems, the training time of deep learning-based
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models is decreasing. Therefore, deep learning techniques are more effective than machine
learning in plant disease recognition research. In order to solve this problem over the
past 5 years, research combining machine learning and deep learning has appeared, and
deep network learning has become possible with the development of [32,33] GPUs, and
deep-learning-based crop disease classification research is in progress [34].

2.3. A Study on Fruit Crop Diseases Based on Deep Learning

Fruit crop disease recognition research is a study of datasets including various types
of fruit, such as bananas and tomatoes. As labeling data increased and imaging techniques
developed, datasets for single breeds increased. This part focuses on disease awareness
research on citrus cultivars. Research on the classification of citrus and pest diseases
has been conducted in various ways. Among them, light convolutional neural network,
multi-class support vector machine (M-SVM), pyramid histogram of oriented gradients
(PHOG), ensemble boosted tree [35], linear discriminant analysis [36], convolutional neural
networks(CNN) [37], very deep convolutional network (VGGNet) [38] for large-scale image
recognition, and other deep-learning and machine-learning methods were combined to
train the model and classify orchard diseases.

Hossain et al. [39] proposed a deep-learning model capable of classifying several fruit
crops, including citrus, in a variety of commercial environments, and used two CNN models.
The first used the light CNN model, and the second used the VGG16 model to compare
the performance with other models. Nasir et al. [40] conducted a deep-learning-based
classification of fruit-crop-related diseases and used a method that combines a pre-learned
VGG19 model with a PHOG model. After combining the feature vectors obtained through
VGG19 and the PHOG model, minimum redundancy maximum relevancy was performed
to perform feature selection. Using the obtained features, the accuracy tests were conducted
using various classifiers. Syed Ab Rahman et al. [19] detected citrus disease using a two-
step deep convolutional neural network based on Faster R-CNN. The network structure
is a feature extractor, region proposal network (RPN), region of interest (ROI) pooling,
and it consists of four components of a classifier. This study has the advantage of fast
training speed and memory saving. Khanramaki et al. [41] conducted a self-constructed
citrus pest dataset recognition study using feature-level diversity, data-level diversity, and
classifier-level diversity methods. The researchers collected images of three citrus pests. The
collected images were data preprocessed in feature-level diversity. In data-level diversity,
a bootstrap strategy was used. The size of each bootstrap was matched to the number of
training samples, and four bootstrapping results were generated for each basic CNN. In
classifier-level diversity, instead of searching for a super-high-level CNN model, a more
contextual ensemble classifier was constructed by converging CNN models with common
elements compared to the basic CNN. The CNN models used in the study are AlexNet,
VGG16, ResNet50, and InceptionResNetV2.

Several studies have shown how to classify citrus pests and fruit crops using CNN
and VGGNet. CNN and VGGNet have a high network speed, but they have low accuracy
owing to the plain model structure. Therefore, in this study, while utilizing the VGGNet
used in the previous research, deep residual learning for image recognition (ResNet) [42],
and densely connected convolutional networks (DenseNet) [43] models with CNN-based
multi branch structure and EfficientNet: rethinking model scaling for convolutional neural
networks (EfficientNet) [44], which propose the compound scaling method, were added. In
addition, for comparison and evaluation with CNN-based models, a vision transformer
(ViT) [45] with a transformer structure was added to classify citrus pest diseases.

3. Network Architecture

The proposed network architecture for this study is to extract the model weights and
perform model testing and web applications using the extracted weights. Figure 1 shows
a block diagram of the proposed model in a high-level view. The network architecture
is mainly divided into the network structure and web application module. The network
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structure step primarily consists of data transformation, model training, validation, and
testing. In the data transformation step [46], model training was conducted after image
resizing at 224 × 224 and stochastically rotating the image vertically or horizontally. The
detailed data transformation process is described in Section 5. The models used by the
network structure were VGGNet, ResNet, DenseNet, EfficientNet, and ViT models, were
all pre-trained.

Figure 1. Citrus pest classification system network architecture.

A detailed description of the model is provided in Section 4. The transformed images
enter the input layer of each model through the layer of each model and reach the output
layer. In this study, the output layer was implemented to derive six diseases by changing
the output to six classes in the last step. During the training and validation processes, the
models were trained according to a set epoch. In this process, the highest accuracy of the
five models and the model weights were extracted with the F1 score. Among them, the
model weight that derived the highest F1 score proceeded to the model testing step. In
the testing process, the test was performed using the test dataset with the same epoch
as in training and validation. Subsequently, the models determined to be suitable were
transmitted to the web application module and became the standard of the classification
model. The web application module classified the citrus pest disease using the model
preferred by the user from among the models delivered from the network structure in the
web server designed using Python Flask, and the characteristics and control methods of
the pests could be obtained. In this step, when a user connected to an application sends
an API request for citrus image classification, it is designed to respond to the classification
result value. The detailed process for the web application module is explained in Section 5.

4. Methods

In this study, VGGNet16 [38], ResNet50 [42], DenseNet161 [43], EfficientNet_b0 [44],
and ViT_b_16 [45] were trained on ImageNet. VGGNet, ResNet, DenseNet, and EfficientNet
are algorithms derived from CNN, which trained the network deeper and reduced the
error rate. In all four models, when input images were obtained, feature maps were
extracted for each layer step through the convolution layer, and the final features were
extracted from the last layer through classifier yθ to classify classes. ViT is a model that
uses the transformer [47] structure, which is often used in natural language processing
(NLP), performs classification using image patches, and demonstrates good performance
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in large-scale image datasets. In this study, after using a pre-trained model that can derive
high classification results in a short time by pre-learning 1000 classes for all five models, the
loss of parameter yθ is minimized by applying the cross-entropy loss among the objective
functions. Subsequently, for model optimization, the Adam optimizer [48] combined with
the RMSProp and momentum method was used, and CosineAnnealingLR [49], a method
that finds the optimum point while the learning rate oscillates, was used to train the model
and perform citrus pest disease classification.

4.1. VGGNet

VGGNet [38] is a model developed by VGG, a research team at Oxford University,
and was a runner-up in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2014. The VGGNet is divided into VGG16 and VGG19 according to the number of
convolution layers. VGGNet has a very small convolution filter of 3 × 3 as a structure
designed to determine how deepening of the network affects performance. VGGNet
receives a 224 × 224 × 3 image as an input and generates feature maps from the first
layer (conv1_1) to the 13th layer (conv5_3) through 3 × 3 convolution filters and the ReLU
function. Layers 14–16 pass through the fully connected layer to flatten the feature maps.
The final output values are a model that consists of 1000 neurons using the softmax function
and classifies 1000 image classes.

4.2. ResNet

ResNet [42] is a model that won the 2015 ILSVRC and is an algorithm developed by
Microsoft. The ResNet model lowered the top five errors by stacking 152 layers seven times
deeper than the GoogLeNet model, which won the 2014 ILSVRC. In general, the deeper
the network, the better the performance. However, after creating a 20-layer network and
a 56-layer network with convolution layers and fully connected layers, respectively, the
performance was tested, and the 56-layer network with a deeper structure showed worse
performance than the 20-layer network. Therefore, ResNet presents a residual learning
framework, which is a novel method used to facilitate the training of much deeper networks.
Residual learning reconstructs the layer by learning the residual function by referring to
the layer input, instead of learning the unreferenced function. This residual network is easy
to optimize, and high accuracy can be obtained, even in deep networks.

4.3. DenseNet

DenseNet [43] is a model with a higher performance and fewer parameters than
ResNet and Pre-Activation ResNet. DenseNet uses a method of connecting the feature
maps of all layers and connecting the feature maps of the previous layer to the feature maps
of all subsequent layers. In the case of the ResNet model, the previous layer is added and
connected through the residual block, while in DenseNet, all layers are connected through
the concatenation method. Therefore, the feature map size is the same when connecting
layers, and a very small value is used for the number of feature map channels in each
layer, considering that the number of channels is extremely large. The DenseNet model
shows that convolutional networks can train much deeper, more accurately, and efficiently
through short connections between layers close to the input and those close to the output.
This condition alleviates the problem of gradient loss, strengthens feature propagation,
encourages feature reuse, and significantly reduces the number of parameters to achieve
good performance with less computational cost than previous models.

4.4. EfficientNet

CNN is generally developed from limited resources and then expanded to achieve high
accuracy when more resources are available. Optimal performance and efficiency were not
obtained when increasing the accuracy of the model because the network depth, width, and
resolution of input images were manually adjusted. EfficientNet [44] systematically studies
model scaling and demonstrates good performance when balancing the depth, width,
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and resolution of the network. Experiments showed that depth, weight, and resolution
have constant relationships. Therefore, the depth, width, and resolution dimensions of
all networks can be applied to MobileNet [50] and ResNet using a new scaling method
compound coefficient, which is simple and highly efficient, to achieve much better accuracy
and efficiency than the previous CNN.

4.5. ViT

ViT [45] is a model that applies a transformer, which is used in the field of NLP, for
image classification without the use of conventional CNNs with minor variations. The
ViT splits an image into patches, passes these patches into linear embedding, and uses
them as inputs to the transformer. Similar to the transformer of NLP, uses an embedding
combined with learnable positional embedding and element-wise sum and maintains the
encoder–decoder structure, which is the existing seq2seq structure. After pre-training
using a multi-layer perceptron with one hidden layer for the transformer encoder output,
a randomly initialized linear layer is used for fine-tuning, and the pre-trained learned
positional embedding adjusts the positional embedding of the image to a different reso-
lution during fine-tuning. In addition, at the beginning of learning, position embedding
does not provide any information regarding the 2D position of the patch, and the spatial
relationship between the patches is learned from the beginning. The ViT has the advantage
of being strong in training a very large dataset with 100B parameters, and with an increase
in the size of the dataset, the performance does not saturate, even if the model is expanded.
Hence, this model that improves computational efficiency and scalability.

4.6. Comparison of Five Models

Each of the five models used in the experiment has a different model structure, and
even with the same model, the size of the parameters generated according to the number
of layers is different. Table 1 shows the total parameter size of each model.

Table 1. Comparison of five model parameters.

Model Name Parameters

VGGNet16 134,285,126
ResNet50 23,520,326

DenseNet161 26,485,254
ViT_b_16 85,803,270

EfficientNet_b0 4,015,234

VGGNet16 is the model with the largest parameter size. As VGGNet16 learns 13 conv
layers, the model deepens, and the parameter size becomes very large. After that, dropout
is applied to the remaining three layers to prevent overfitting, and some output values of
the layers are randomly excluded. As a result, 14,714,688 parameters are generated while
passing through 13 conv layers, and 119,570,436 parameter sizes are generated through
the remaining three layers. The total parameter size generated in the VGGNet16 model is
134,285,126.

The ResNet50 model consists of 50 deep convolutional neural networks. ResNet50
has a larger number of layers than VGGNet16, so the number of generated parameters is
likely to be larger, but it has a smaller parameter size, using residual blocks rather than
plane layer structures. The formula of the residual block is shown in (1). The H(x) formula
uses the conv layer, batch normalization, and relu function operations. The parameter
size generated in the ResNet50 model is 23,520,326 which is 110,764,800, smaller than that
of VGGNet16.

H(x) = F(x) + x (1)
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The DenseNet161 model has a structure with 161 layers consisting of 156 dense layer
blocks in each sub-block and the upper five conv layers. In ResNet, the input value is
added to the output value and the gradient flow is transmitted directly. Since these residual
connections are combined by addition, information flow in the neural network may be
delayed. The DenseNet model improves information flow with a dense block structure that
connects the previous layer directly to all the next layers. The formula for the dense block
is shown in (2). The dense block consists of 3 × 3 conv layers, batch normalization, and
relu function. The parameter size of DenseNet161 for the dataset used in the experiment is
26,485,254. The parameter size is 2,937,928 larger than that of the ResNet model, but the
difference is insignificant.

Xl = Hl([x0, x1, ..., xl−1]) (2)

The ViT model is a transformer structure and is based on the configuration used for
BERT. The ViT model is largely divided into ViT_Base, ViT_Large and ViT_Huge. Of the
three models, the one used in the experiment was the ViT_b_16 model. ViT_b_16 consists of
12 layers, 768 hidden sizes, 3072 MLP size, and 12 heads. Each layer parameter is 7,087,872,
and the total number of parameters is 85,803,270.

The EfficientNet_b0 model consists of 237 layers. EfficientNet_b0 uses the compound
scaling method as a way to achieve maximum efficiency with limited resources. The
formula for the compound scaling is shown in (3). Because the amount of calculation is
proportional to the depth and proportional to the square of the remaining two variables,
the movement of the variables can be determined in the same proportion as in Formula (3).
These three variables—depth, width, and resolution are closely related. The compound
scaling method shows fast inference times.

depth : d = αφ, width : w = βφ, resolution : r = γφ

s.t. α · β2 · γ2· ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1 (3)

As shown in Table 1, the parameter size of EfficientNet_b0 is 4,015,234, which has the
smallest parameter size. Among the five models, we show that the EfficientNet_b0 model
proposed in this study is highly efficient in computational time.

5. Experiments
5.1. Citrus Disease Images and Datasets

Among fruit crops, citrus is very sensitive to the environment. The most common
citrus pest in subtropical climates is the citrus bacterial canker (CBC) [51], and the most
common citrus pest in Asia is citrus huanglongbing (HLB) [52]. The causative agent of CBC
is Xanthomonas citri subsp (XCC). The XCC bacteria occur in the majority of citrus fruits,
including grapefruit, lemon, lime, and sweet orange. This disease has symptoms, such as
early leaf and fruit dropping, dryness of small branches, brown spots, and small blister-like
lesions on leaves, fruits, and stems that start small and expand as the disease progresses.
CBC is a citrus pest mainly in Australia, the USA, and South American countries, but it has
recently been observed in Asia and is emerging as a worldwide citrus disease.

HLB is a pathogen with a destructive effect on the citrus industry and is classified
as the most serious citrus pathogen. This pest is caused by Asian citrus psyllid, and the
causative bacterium is Candidatus liberibacter spp. The HLB disease is transmitted by an
insect vector, and there is no cure for citrus trees affected by the disease. Hence, prevention
and felling of infected trees are the only ways to stop the spread of diseases. Although
it is the same tangerine, various diseases and pests appear, depending on the growing
region and environment, and their types are also different. Therefore, to study citrus pest
diagnosis and classification models applicable to agricultural environments in several
regions beyond one region, it is necessary to establish a large dataset that includes various
citrus pests.
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Many of the current studies [17–19] mainly used images obtained from open datasets
such as the Kaggle and citrus Disease Image Gallery Datasets. Both datasets are similar
to midstream citrus pests mainly found in Australia and the USA, and the majority of
citrus-related image classification studies used subtropical climate citrus species. In this
study, among the citrus obtained in Asia, citrus trees that have similar pests to CBC and
HLB and can collect new pest images were investigated. CBC pests were found in citrus
unshiu, red mites, and aphids, which kill trees in the same way as HLB. Red mites cause
Panonychus citri disease [53], and aphid is a pest causing Toxoptera citricida disease [54], a
type of pest that has not been examined in previous studies.

In this study, images of pest-free citrus fruits and pest-infected images (including
fruits and leaves) were acquired from a citrus farm in Jeju, Korea, for the year 2021. There
is a risk of noise problems with image datasets obtained from actual plantations. To avoid
the noise problem, we shot so that the subject was visible under various conditions. First,
the exact screen composition and ratio were set so that the entire subject came out. After
that, the height, angle, distance, and lighting distance were adjusted for each pest type for
consistent image quality. Additionally, only a single breed was photographed on a white
background, and the photograph was taken so that the subject’s shaking, shading, and
light reflection did not occur at the time of the shooting. Finally, the pictures were taken so
that the unique characteristics of each breed, such as color and pattern, were clearly visible.
High-quality images were collected using this method. Therefore, the rate of occurrence
of noise problems was lowered. The shooting angle is shown in Figure 2. Of the images
collected in this way, only images with distinct characteristics of pests and pests were
selected, and more than 25,000 images were collected. To reduce the bias of data among
the collected pest classes, classes with less than 1000 images were excluded from the final
dataset, and a total of 20,000 datasets were constructed and then randomly divided into
8:1:1 = training images: validation images: test images. As shown in Table 2, the number
of images for the validation images and test images was unified for each class. The citrus
fruit normal class covered a total of 2545 photos, citrus fruit CBC had 1716 photos, citrus
leaf normal included 2455 photos, and citrus leaf CBC constituted 2545 photos. Citrus leaf
Panonychus citri had a total of 9552 sheets, with 1814, and citrus leaf Toxoptera citricida
a total of 1918 sheets, with 16,000 training images, 2000 validation images, and 2000 test
images. All images used in the experiment were RGB images in the JPG format with a
resolution of 1920 × 1090. Dataset samples are shown in Figure 3, and details of the citrus
pest classes and dataset are shown in Table 2.

Figure 2. Dataset shooting angle.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Citrus unshiu pest disease image sample: (a) Citrus fruit normal. (b) citrus fruit
CBC. (c) citrus leaf normal. (d) citrus leaf CBC. (e) citrus leaf Panonychus citri. (f) citrus leaf
Toxoptera citricida.

Table 2. Summary of the dataset information.

Citrus Pest Disease Type Training Images Validation Images Test Images Total Images Image Size

Citrus Fruit Normal 2034 225 255 2545 1920 × 1080
Citrus Fruit CBC 1372 172 172 1716 1920 × 1080
Citrus Leaf Normal 1965 245 245 2455 1920 × 1080
Citrus Leaf CBC 7642 955 955 9552 1920 × 1080
Citrus Leaf Panonychus citri 1452 181 181 1814 1920 × 1080
Citrus Leaf Toxoptera citricida 1534 192 192 1918 1920 × 1080

Total 16,000 2000 2000 20,000

5.2. Data Transform

In this step, citrus images were simply pre-processed separately for the five mod-
els. For VGGNet, DensenNet, and EfficientNet, you need to change the image size to
224 × 224 sizes. The default input size for ViT is 224 × 224. ResNet can use various input
sizes, such as 112 × 112, 224 × 224, 336 × 336, and 448 × 448. Scale the input image for all
models to 224 × 224 inches. We proceed with model comparison evaluation by selecting
the same input size as the remaining four models among multiple input sizes of ResNet.
We applied data augmentation to training and validation datasets to solve the problem of
data imbalance and model overfitting. Among the different types of data augmentation,
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this study uses horizontal, vertical, and rotation methods to randomly flip and rotate
a 224 × 224 image dataset horizontally and horizontally by 90 degrees. The reason we
used this method during data augmentation is that the above method is commonly used.
Additionally, images taken in real plantations are inherently noisy. Therefore, there is a risk
that the use of color jitter techniques will further spread the noise problem. So, we used
basic data augmentation techniques of horizontal, vertical, and rotation methods. Since the
dataset is in PIL image format, we convert it to a tensor format by applying a commonly
used transform. Finally, we complete the data pre-processing by performing normaliza-
tion. The test dataset is used ro verify the proposed model, and data reinforcement is not
performed. It only performs image scaling, tensors, and normalization to fit model training.

5.3. Transfer Learning

For the network training, we performed a transfer-learning approach in which weights
are transferred from a pre-trained model. Transfer learning is proven to improve the
performance of the network. Scratch learning [55] shows good performance when the
number of training data per class is 5000 or more. The lack of training data increases the
bias of the model during training and causes it to overfit. Transfer learning can solve this
problem [56]. Transfer learning reuses a model learned from a specific task to perform other
tasks, and is useful in model training with a small amount of training data. In addition,
when transfer learning is applied, the learning rate is faster than that of a model that learns
a task from scratch, and it tends to perform better on new tasks. Transfer learning can be
divided into upstream and downstream tasks. If the method of learning a specific task is
called an upstream task, the learning process is called pre-training. The downstream task is
a method used to solve a specific problem and has been used for image classification in
this study. Transfer learning uses models trained on a wide range of datasets. In general, a
model trained on the ImageNet dataset by transfer learning is used because the ImageNet
dataset consists of 1000 classes and is a model that has already been trained on a large
dataset. This implies that the model is suitable for extracting meaningful features from
input images, and the model is trained to identify higher-level features. Therefore, models
with transfer learning can be trained to be more optimized than those with scratch learning
when learning new tasks.

In this study, we used a pre-trained model trained on the ImageNet dataset and
then fine-tuned [57] the last layer. Fine-tuning is a method of updating a model that has
completed pre-training to fit a downstream task. In this study, rather than extracting
1000 classes, the output was derived according to the number of self-collected dataset
types. Since the size of the constructed dataset is large, we use the method of learning the
entire model while only using the structure of the pre-training model. Through this, high
accuracy and F1 score were achieved in classifying citrus pests and diseases by improving
the learning speed of the model and resolving the imbalance of the collected dataset.

5.4. Model Training

In this section, we describe the details of the model training. The five models presented
in Section 4 are divided into several versions according to their size. Among them, we
trained the model by selecting VGG16, ResNet50, Densenet161, Efficient_b0, and ViT_b_16,
which can be operated with ease in the experimental environment, and all models used in
the experiment were pre-trained using the imagenet dataset, as described in Section 5.3 The
initial learning rate used was 0.0001, and the model was trained by running 100 epochs for
each model while using a batch size of 64. Models that have been trained go through a
validation process, and validation proceeds by running 100 epochs per model in the same
way as in training. For training and validation, the Adam optimizer, and CosineAnneal-
ingLR were applied as the cross-entropy loss and learning rate scheduler, respectively, as
mentioned above.



Sensors 2022, 22, 8911 12 of 19

5.5. Evaluation Metrics
An evaluation of the citrus pest and disease classification model was conducted using

the recall (4), precision (5), accuracy (6), and F1 score (7). true positive (TP), false negative
(FN), false positive (FP), and true negative (TN) represent the predicted numbers of true
positives, false negatives, false positives, and true negatives. Recall is the ratio of data
predicted to be positive among actual positive data. Precision is the proportion of data
that are actually positive among the data predicted as positive. Accuracy is defined as the
number of correctly predicted data points divided by the total number of data points. The
F1 score is the harmonic mean of precision and recall. Each model calculates the recall,
precision, and accuracy values for each epoch and the f1 score based on the values.

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

F1 score =
2 × Precision × Recall

Precision + Recall
(7)

5.6. Results in Validation Dataset

In this section, we evaluated the performance results of the five models obtained
through the validation dataset. Table 3 described the accuracy, recall, and precision values
of the five models when they achieved the highest f1 score obtained during epoch 100. In
Table 3, the classification indicated by F implies fruit, and that indicated by L means leaf.
The following terms indicate the type of pest, which can be seen in detail in the dataset
of Table 2. In the resulting table, the class name is abbreviated for readability. All the
models used in the experiment derived accuracy of 97% or more, and all f1 scores also
yielded results of 96% or more. Among the five models, EfficientNet-b0 has the highest
accuracy and f1 score. EfficientNet-b0 derived an accuracy of 98.8% and an f1 score of 98.2%.
Even if the model’s accuracy and f1 score are high, if recall and precision are concentrated
in one class, it cannot be said to have a good performance. Poor performance risks not
accurately classifying citrus pests in the web application classification test, which is one
of the experiments to be carried out later. As shown in Table 3, the recall and precision
of the L_T.citir class are not as stable as those of other classes. The recall and precision of
the ResNet50 model, showing that the DesneNet161 model is a little closer to the f1 score
than the ResNet50 model, are more certain. Comparing the two models, ResNet50 used
for the web application server has better performance. Among the five model validation
results, efficientNet_b0, which derived the highest f1 score, showed the most stable recall
and precision. Although the recall and precision of the L_T.citir class have larger deviations
than the other classes, all classes except the DenseNet161 model yielded results of over
90%. Therefore, our proposed model derives high performance from the validation dataset,
so the extracted five best model weights can be used for the next section, the citrus test
dataset experiment.
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Table 3. Five model validation classification performance of the citrus dataset.

Model Accuracy F1 Score Class Parameters Parameters

VGG16 0.977 0.967

F_Normal 0.985 0.982
F_CBC 0.974 0.981
L_Normal 0.948 0.971
L_CBC 0.989 0.999
L_P.citri 0.952 0.946
L_T.citri 0.969 0.90

macro avg 0.97 0.97
weighted avg 0.98 0.98

ResNet50 0.983 0.976

F_Normal 0.982 0.987
F_CBC 0.983 0.974
L_Normal 0.972 0.962
L_CBC 0.999 0.993
L_P.citri 0.974 0.964
L_T.citri 0.938 0.99

macro avg 0.97 0.97
weighted avg 0.98 0.98

DenseNet161 0.984 0.977

F_Normal 0.986 0.986
F_CBC 0.984 0.984
L_Normal 0.971 0.964
L_CBC 0.998 0.987
L_P.citri 0.953 0.971
L_T.citri 0.885 1.0

macro avg 0.97 0.97
weighted avg 0.98 0.98

EfficientNet 0.988 0.982

F_Normal 0.995 0.992
F_CBC 0.989 0.992
L_Normal 0.995 0.992
L_CBC 0.997 0.998
L_P.citri 0.996 0.947
L_T.citri 0.925 1.0

macro avg 0.97 0.98
weighted avg 0.98 0.98

ViT 0.972 0.961

F_Normal 0.974 0.974
F_CBC 0.956 0.956
L_Normal 0.963 0.942
L_CBC 0.996 0.982
L_P.citri 0.933 0.955
L_T.citri 0.914 0.988

macro avg 0.97 0.98
weighted avg 0.98 0.98

5.7. Results in Test Dataset

In this section, we evaluated the performance of the citrus test dataset using the five
models that had the highest f1 score in the validation dataset experiment. In Table 4, the
dataset name is implied as in Table 3. Table 4 describes the experimental results of the test
dataset, and an average accuracy of 98% was derived from the experimental results. All
f1 scores also yielded results of 97% or more. The accuracy and f1 score results yielded
similar results for both the validation and test datasets. The model that derived the highest
accuracy and f1 score among the five models is EfficientNetb0. EfficientNet_b0 obtained
an accuracy of 99% and f1 score of 98.6%. EfficientNet_b0 model recall and precision also
achieved high performance. In particular, the citrus fruit pest dataset shows a very high
classification accuracy. The confusion matrix of the five models can be seen in Figure 4.
In the confusion matrix, the row represents the actual citrus pest class and the column
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represents the citrus pest class predicted by the model. In Figure 4, it can be seen that the
most prediction error occurs in the citrus leaf normal class. The VGGNet model predicted
that 16 citrus leaf Panonychus citri image samples were citrus leaf normal. Next, 10 citrus
leaf toxoptera citricida image samples were predicted to be citrus leaf normal. Six citrus leaf
toxoptera citricida image samples of ResNet50 were predicted as citrus leaf normals, and
seven citrus leaf toxoptera citricida image samples of DenseNet161 were also predicted as
citrus leaf normals. For the models of EfficinetNet and ViT, four citrus leaf Panonychus citri
image samples of EfficientNet were predicted as citrus leaf normals, and nine citrus leaf
Panonychus citri image samples of the ViT model were also predicted as citrus leaf normal.
From this, it can be seen that the citrus leaf Panonychus citri and citrus leaf toxoptera
citricida classes are most often classified as citrus leaf normal classes. Among the confusion
matrices of the five models, the EfficientNet_b0 model, which derived the highest f1 score,
has the smallest number of images of the wrongly predicted class. The best model that
underwent five model tests was delivered to the Python Flask web server and used to
classify citrus pert diseases when the user uploads an image. In this study, the weights of
the EfficientNet_b0 model, which showed the best performance, were applied to the web
application, and the experiment was conducted.

(a) (b) (c)

(d) (e)

Figure 4. Confusion matrix of test dataset (a) VGGNet16. (b) ResNet50. (c) DenseNet161. (d) Efficinet-
Net_b0. (e) ViT_b_16.
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Table 4. Five model test classification performance of the citrus dataset.

Model Accuracy F1 Score Class Parameters Parameters

VGG16 0.979 0.97

F_Normal 0.992 0.996
F_CBC 0.994 0.988
L_Normal 0.996 0.897
L_CBC 0.997 0.99
L_P.citri 0.969 0.89
L_T.citri 0.917 0.994

macro avg 0.96 0.98
weighted avg 0.98 0.98

ResNet50 0.986 0.98

F_Normal 0.992 0.996
F_CBC 0.994 0.983
L_Normal 0.956 0.984
L_CBC 0.994 0.997
L_P.citri 0.972 0.962
L_T.citri 0.948 0.984

macro avg 0.98 0.98
weighted avg 0.99 0.99

DenseNet161 0.985 0.977

F_Normal 1.0 1.0
F_CBC 1.0 1.0
L_Normal 0.971 0.96
L_CBC 0.997 0.993
L_P.citri 0.983 0.962
L_T.citri 1.0 0.943

macro avg 0.98 0.99
weighted avg 0.99 0.99

EfficientNet 0.99 0.986

F_Normal 0.984 1.0
F_CBC 1.0 0.977
L_Normal 0.988 0.976
L_CBC 0.998 0.994
L_P.citri 0.967 0.994
L_T.citri 0.974 0.984

macro avg 0.99 0.99
weighted avg 0.99 0.99

ViT 0.981 0.975

F_Normal 0.992 0.984
F_CBC 0.977 0.988
L_Normal 0.976 0.941
L_CBC 0.994 0.989
L_P.citri 0.928 0.971
L_T.citri 0.964 0.995

macro avg 0.97 0.98
weighted avg 0.98 0.98

5.8. Web Application Module

The weights of the best-trained model obtained through the model training and
validation were transmitted to a web server running Python Flask, and the web server
stored the transmitted model. Python Flask [58] is a web server framework for interacting
with users. Flask is written in Python, and it facilitates building a web server in a very easy
and simple manner. It also supports extension functions that can add application functions,
as well as their implementation. Extensions exist for object relationship mappers, form
validation, upload management, open authentication techniques, and several common
framework-related tools. The user uses the best weights among the models learned through
the network structure described in Section 3 to the web server and requests to upload an
image through RESTFul API [59], which passes through the trained model to prevent citrus
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disease and evaluate the diseases. The operation process in the network structure and web
application module can be checked again in Figure 1 in Section 3.

In the study, the EfficientNet_b0 model, which showed the best performance among
the models derived through the network, described above was used in the web server. The
built web application performs citrus pest classification tests by mixing the self-collected
test image dataset with the dataset provided by the web page. When a user requests to
upload an image, the trained model classifies the image and responds with the result.
Figure 3 describes the network structure and web application module operation process. In
this study, Efficient-b0, which showed the best performance in validation and testing, was
applied. The user can upload the desired citrus pest image through the web UI and see the
result on the far right in Figure 1. The types of data obtained from the web page include
citrus leaf panonychus citri, citrus leaf toxoptera citricida, and hallabong citrus CBC similar
to citrus fruit CBC. The web application system containing the web application module is
simply composed of an image upload window and a classification result window so that
users can use it easily. Users who use the web application system can easily upload images
and view pest types through the web UI and can check types of citrus pests and control
methods through this system.

6. Discussions and Conclusions

In this paper, a computerized approach has been proposed to detect citrus pests
through deep-learning methods. We collected high-resolution citrus pest images from
natural plantations to build a multivariate citrus image dataset. In order to prevent noise
problems, it was photographed so that the illuminance was unified and the citrus pest
pattern was clearly displayed in various conditions. There are 20,000 collected images
consisting of six classes. The constructed dataset detected citrus diseases by training
VGGNet, ResNet, and DenseNet models that have undergone transfer learning, which
is widely used in plant disease research, and EfficinetNet and ViT models, which are in
the spotlight. The five models went through training, validation, and testing, and a web
application server capable of effectively classifying citrus diseases was built using the
EfficientNet model that showed the best performance. At present, although many deep-
learning-based plant disease classification studies have been conducted, many plantations
are still using humans to manually classify citrus pests. Since this method takes a long time,
it is necessary to develop an application that can be automated to classify various diseases.
The web application server is accessible from anywhere in the world upon enabling, and it
can be used to perform citrus disease detection anywhere. This application can effectively
classify citrus pests, prevent the spread of diseases, and improve the overall citrus quality.

The method proposed in this study shows valid results in simple image classification,
but does not suggest specific pest locations because it does not use a detection model. We
look at the collected dataset, which consists of images that can be annotated and images
that are difficult to annotate. For example, CBC disease can be placed as a bounding box.
However, for the citrus Panonychus citri disease, a bounding box for a specific pest location
is not possible because the pest coverage is the whole leaf. Additionally, since the size of
the dataset is 20,000 sheets, it is difficult to annotate them manually. For this reason, we did
not comment on the dataset we built. This problem arose because the actual farm contained
more citrus pests and we wanted to collect images that could work seamlessly with the tin,
but we only collected data for 2021 from a specific region. However, the dataset used in
the experiment includes rare disease types such as citrus Toxoptera citricida, including the
CBC disease group that was widely used in previous studies. A challenging part of deep
learning research is collecting large datasets covering different kinds of diseases. This is
because relatively small datasets overfit the model. The dataset used in this study is a large
dataset of 20,000 sheets and contains unfamiliar citrus pest types. In addition, current citrus
disease recognition research has limitations in data collection, focusing on unpublished
data, paid data, and the Kaggle dataset. We make our dataset public with this study. By
applying this dataset to existing citrus disease recognition studies, we can classify more
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types of citrus diseases. Further annotations to this dataset in the future can pinpoint
specific locations of disease in detection models such as YOLO [60] and RefineDet [61].
Additionally, although pests appear on particular parts of fruits and leaves, the scope of
diseases such as the citrus Panonychus citri is holistic. Therefore, data pre-processing
studies that can better represent disease patterns should be performed. In the future, if the
above studies are carried out, it will be possible to generalize to studies applicable to other
varieties beyond citrus in actual farmland.
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