
Automatic Clustering for Self-Organizing Grids

Weishuai Yang, Nael Abu-Ghazaleh and Michael J. Lewis
Department of Computer Science, Binghamton University

{wyang, nael, mlewis}@cs.binghamton.edu

Abstract

Computational grids have not scaled effectively due to
administrative hurdles to resource and user participation.
Most production grids are essentially multi-site supercom-
puter centers, rather than truly open and heterogeneous sets
of resources that can join and leave dynamically, and that
can provide support for an equally dynamic set of users.

Large-scale grids containing individual resources with
more autonomy about when and how they join and leave
will require self-organizing grid middleware services that
do not require centralized administrative control. This pa-
per considers one such service, namely the dynamic dis-
covery of high-performance variable-size clusters of grid
nodes. A brute force approach to the problem of identifying
these “ad-hoc clusters” would require excessive overhead
in terms of both message exchange and computation.

Therefore, we propose a scalable solution that uses a
delay-based overlay structure to organize nodes based on
their proximity to one another, using a small number of de-
lay experiments. This overlay can then be used to provide
a variable-size set of promising candidate nodes than can
then be used as a cluster, or tested further to improve the se-
lection. Simulation results show that this approach results
in effective clustering with acceptable overhead.1

1 Introduction

Although a number of computational grids have be-
gun to appear, truly large-scale “open” grids have not yet
emerged or been successfully deployed. Current production
grids comprise tens, rather than hundreds or thousands, of
sites [1, 3]. The primary reason is that existing grids require
resources to be organized in a structured and carefully man-
aged way, one that requires significant administrative over-
head to add and manage resources. This overhead is a sig-
nificant barrier to participation, and results in grids compris-

1This material is based upon work supported by the National Science
Foundation under Grant ACI-0133838, CNS-0454298, and by the Air
Force Research Laboratories under contract FA8750-04-1-0054.

ing only large clusters and specialized resources; manually
adding individual resources—especially if those resources
are only intermittently available—becomes infeasible and
unworthy of the effort required to do so.

An alternative model for constructing grids [4] low-
ers the barrier for resource and user participation by re-
ducing various administrative requirements. In this Self-
Organizing Grids (SOGs) model, resource owners would
directly and dynamically add their resources to the grid.
These resources may include conventional clusters that per-
manently participate in the grid, or that are donated by
providers during off-peak hours. In addition, users may pro-
vide individual resources in much the same way that they
add them to peer-to-peer networks and public resource com-
puting projects such as SETI@home [2]. The grid would
then consist of the currently participating resources. We en-
vision SOGs that contain different tiers of resources, rang-
ing from always connected large clusters, to individual PCs
in homes, down to small-scale sensors and embedded de-
vices. Thus, SOGs represent the intersection of peer-to-peer
computing, grid computing, and autonomic computing, and
can potentially offer the desirable characteristics of each of
these models.

Constructing grid services that can operate in, let alone
take advantage of, such an environment requires raises a
number of challenges and requires different algorithms and
designs [4]. This paper considers one of the primary chal-
lenges, namely how to automatically discover efficient clus-
ters within SOGs to enable effective scheduling of appli-
cations to resources in the grid. A candidate collection of
SOG nodes may not necessarily be a physical cluster of co-
located machines under a single administrative domain con-
nected by a high-speed network; but the nodes’ proximity to
one another—in terms of network connection performance
characteristics—may allow them to serve as an ad hoc clus-
ter to support some applications. A brute force approach to
the problem of discovering ad hoc clusters would periodi-
cally test network performance characteristics between all
pairs of resources in the grid. Clearly, this approach is not
feasible for a large scale system; more scalable approaches
are needed.

1-4244-0328-6/06/$20.00 c©2006 IEEE.

The need for clustering arises in P2P environments,
where it has received significant research attention [8, 13, 5,
9]. In P2P environments, clusters are needed for scalability
of document search and exchange. Clusters are created and
maintained in a large and dynamic network, where neither
the node characteristics nor the network topology and prop-
erties (such as bandwidth and delay of edges) are known
a priori. To improve performance, cluster nodes must be
close enough to one another, and must typically fulfill addi-
tional requirements such as load balancing, fault tolerance
and semantic proximity. Some of these properties are also
desirable for our system. However, the emphasis on prox-
imity is much more important to SOGs, since the compu-
tational nature of grid applications may require close cou-
pling. Further, to allow flexible application mapping, vari-
able size clusters must be extractable; in contrast, the em-
phasis in P2P networks is usually on finding clusters of a
single size.

Clustering in SOGs is more complicated than classical
dominating set and p-center problems from graph theory,
which are themselves known to be NP-complete. Simple
strategies such as off-line decisions with global knowledge
do not work because of the large scale and dynamic nature
of the environment. Further, the importance of cluster per-
formance (because of its intended use), along with the re-
quirement to create variable size clusters, suggest the need
for different solutions. An optimal solution that measures
the quality of connections between all pairs of nodes, and
that then attempts to extract the optimal partition of a given
size, requires O(n2) overhead in the number of messages to
measure the connections, and an NP-complete optimal clus-
tering solution. Further, the dynamic nature of the problem
in terms of the network graph and processor and network
loads requires lighter weight heuristic solutions. The prob-
lem and related work are presented in Section 2.

In this paper, we propose a scalable solution to automatic
clustering in SOGs. A flexible overlay structure, called
a Minimum-delay Dynamic Tree (MDTree), is built and
maintained to allow an initial sorting of the nodes based
on a small number of delay experiments for every joining
node. The MDTree organizes nodes as they join, keeping
nearby nodes close together in the tree. As nodes join, a
grouped set of nodes may exceed the allowed threshold as
nodes and the group must be split. We show that effective
partitioning when splits occur is critical to the performance
of the approach; because the problem is NP-complete, we
use a genetic algorithm for bi-partitioning. We describe the
organization and maintenance of an MDTree in Section 3.

The MDTree overlay structure is then used when users
generate requests for clusters, to identify effective clusters
of a given size efficiently; Section 4 describes variable size
on-demand clustering using MDTrees. As a result, it be-
comes possible to find clusters of specified sizes with low

average delay among the nodes. We use simulation to study
the performance of this approach, and describe the results of
this study in Section 5. We show that by using an MDTree,
the message overhead for finding a cluster can be kept lin-
ear with respect to cluster size, and the average link delay
within the formed cluster is close to optimal.

We note that traditional computational grids that com-
prise multiple physical clusters may still benefit from an
automatic clustering approach like the one we describe.
In particular, when a large-scale application requires a set
of machines that exceeds the size of the largest avail-
able cluster, our approach will consider the delay between
nodes at different sites, and can help identify a large multi-
organizational collection of machines to support the appli-
cation. We discuss our conclusions and future work in Sec-
tion 6.

2 Problem Definition and Related Work

To support general large-scale parallel processing appli-
cations, SOGs must self-organize in a way that allows effec-
tive scheduling of offered load to available resources. When
an application request is made for a set of nodes, SOGs
should be able to dynamically extract a set of resources to
match the request. Since these resources are often added
separately and possibly by multiple providers, SOGs should
be able to identify and track relationships between nodes.
In addition, to support effective scheduling, the state of re-
sources in the grid must be tracked at appropriate granular-
ity and with appropriate frequency.

An important initial question is “What represents an ef-
fective cluster?” Clearly, the capabilities of the individual
nodes are important. However, the influence of commu-
nication often has a defining effect on the performance of
parallel applications in a computational cluster. Moreover,
it is straightforward to filter node selection based on node
capabilities, but it is much more challenging to do so based
on communication performance, which is a function of two
or more nodes. In this paper, we assume that all SOG nodes
are capable of participating in clusters, and focus on clus-
ter selection based on communication performance. In fu-
ture work, we plan to investigate how our approach can be
extended to consider both communication and computation
characteristics of candidate cluster nodes.

The automatic clustering challenge is to extract the struc-
ture of the SOG from a performance perspective; out of the
unorganized or partially organized set of SOG resources,
how can the structure that is available to conventional grids
be dynamically and automatically discovered? The pro-
posed solution is to create a hierarchy within the system
and to localize most of the interactions to a small number of
nearby nodes. The base problem in constructing the overlay
that exposes structure is how to use distributed algorithms to

organize the nodes into leaders and peers according to some
performance-related criteria, without global knowledge. A
description of some clustering work that has been done in
the P2P community follows:

Highways [8] presents a basic solution for creating clus-
ters through a beacon-based distributed network coordinate
system. Such an approach is frequently used as the basis
for other P2P clustering systems. Beacons define a multi-
dimensional space with the coordinates of each node being
the minimum hop-count from each beacon (computed by a
distance vector approach or a periodic beacon flood). Dis-
tances between nodes are measured as Cartesian distances
between coordinates. Highways serves as the basis for sev-
eral other clustering approaches. Shortcomings include the
fact that the distance in the multi-dimensional space may
not correspond to communication performance, and that
markers must be provided and maintained.

Agrawal and Casanova [5] describe a pro-active algo-
rithm for clustering in P2P networks. They use distance
maps (multi-dimensional coordinate space) to obtain the co-
ordinates of each peer, and then use a marker space (not the
same concept as in Highway) as the cluster leader by using
the K-means clustering algorithm. The algorithm chooses
the first marker (leader) randomly, then repeatedly finds a
host of distance at least D from all current markers, and adds
it into the marker set. Nodes nearest to the same marker are
clustered together, and are split if the diameter becomes too
large. This strategy results in message flooding and its as-
sociated high overhead.

Zheng et. al. [13] present T -closure and hierarchical
node clustering algorithms. The T -closure algorithm is a
controlled depth-first search for the shortest paths, based
on link delay. Each node learns all shortest paths starting
from itself, with distance not larger than T . The hierarchi-
cal clustering algorithm uses nomination to select a super-
node within some specified distance. These two strategies
require high overhead and do not support node departure.

Xu and Subhlok describe automatic clustering of grid
nodes [9] by separating the clustering problem into two dif-
ferent cases. Their approach uses multi-dimensional virtual
coordinates to cluster inter-domain nodes, and uses n2 di-
rect measures to cluster intra-domain nodes. This strategy
can classify existing nodes into clusters according to phys-
ical location, but cannot extract variable sized clusters ac-
cording to user requirements.

3 Overlay Pre-Clustering with Minimum-
delay Dynamic Trees

We classify clustering algorithms into two categories:
pro-active and on-demand. Most existing algorithms are
pro-active; that is, given a set of nodes that join dynami-
cally, the goal is to organize them into clusters as they join.

On-demand systems do not maintain clusters in advance
but construct them from scratch when required. However,
we intend to support SOGs whose diverse applications may
lead to users requesting clusters of various sizes. Therefore,
either different size clusters must be built pro-actively (sig-
nificantly increasing the overhead), or an on-demand ap-
proach must be employed. A purely pro-active system re-
sults in high overhead and inflexibility, whereas a purely
on-demand system requires significant dynamic overhead
that can introduce scheduling delay. The approach that we
take in this work is to pro-actively organize the nodes into
an overlay that makes on-demand construction of variable
size clusters efficient.

The problem of finding an optimal variable size cluster
is NP-complete [13]; O(n2) delay experiments (ping mes-
sages) are needed to collect the full graph edge information.
Therefore, the objective of our approach is to find an ap-
proximation of the optimal solution. Thus, adaptive heuris-
tic approaches that can provide efficient solutions with more
acceptable overhead in terms of communication and run-
time are desired.

We use the work by Banerjee et. al. [6] as our starting
point for hierarchically arranging peers in tiers, and extend
it for more effective operation with respect to computational
clustering, and to enable dynamic cluster formation. The
tree is maintained dynamically as nodes join and leave. To
better balance the tree, we use a genetic algorithm to parti-
tion groups of nodes under a common parent (i.e. neighbor-
hoods of a super-node). This enables the tree to maintain
relatively small groups of mutually close nodes.

Our approach is to pre-cluster the nodes using an overlay
organization that we call a Minimum-Delay Tree (MDTree).
Nearby nodes in the tree have small delay to each other;
thus, on-demand variable size clustering considers only a
small subset of the nodes. Each level in an MDTree consists
of a neighborhood in which each node is a representative of
another neighborhood at a lower level, recursively down to
the leaf nodes. Inter-node delays among nodes within the
same neighborhood are relatively small.

An MDTree makes it easier to find a specified number of
nodes with minimum average delay. By using a hierarchical
tree overlay structure, MDTree controls the complexity of
node joins and cluster extraction to O(LogkN), where K is
the size of neighborhood on each layer in the tree and N is
the number of nodes.

3.1 MDTree Architecture

An MDTree employs a hierarchically layered tree struc-
ture. Nodes on the same branch of the tree are organized
such that they are close to one another in terms of link de-
lay. This structure helps requests to be satisfied with clus-
ters that have small internal average link delays.

We start by describing the terminology used in this de-
scription.

• MDTree: All the SOGs nodes are organized in a struc-
ture that facilitates resource sharing, information ex-
change, and cluster formation. This structure is the
MDTree.

• Layer: All nodes at distance j edges from the root of
the MDTree are said to be at layer L(H − j) of the
tree, where H is the height of the tree. Total number
of layers in an MDTree is approximately O(LogkN),
where N is the total number of nodes in the tree, and
K is predefined neighborhood size, which is defined
below.

• Peer-node: Any participating node is a peer-node.

• Super-node: A super-node is the leader of a neigh-
borhood. “Super-node” and “peer-node” are relative
concepts. A node can be a peer-node on one layer, and
a super-node on another. The super-node of a lower
layer neighborhood is also a participant in the neigh-
borhood of the above layer. In other words, every node
on layer Li is a super-node on layer Li−1. On the other
side, a super-node of layer Li+1, must be a super-node
for exactly one neighborhood in layers L1 through Li.
Super-nodes are key nodes in the structure; they con-
trolls peer-nodes in its neighborhood, and they are the
gateway to the outside of the neighborhood.

• Neighborhood: A neighborhood consists of a super-
node and all other controlled nodes on a specified
layer. Numerous neighborhoods controlled by differ-
ent super-nodes exist on a specified layer. Lower lay-
ers than the layers above them. On each layer, nodes
within the same neighborhood exchange information
with each other, which helps electing new super-node
when the current super-node is missing. However,
nodes on the same layer but under the controll of dif-
ferent super-node, i.e., belonging to different neighbor-
hoods, do not directly communicate, and they do not
know the existence of one another.

• Community: A community consists of a super-node
and the subtree comprising all the neighborhoods on
lower layers controlled by that super-node.

• Entry Point: A special super-node used to direct new
joining nodes to the neighborhood on the highest layer.
The entry point is the super-node on the highest layer,
and the only participant in this layer.

• K: Each neighborhood has a pre-set maximum number
of nodes that it can contain; this maximum value, K,

is currently a constant of the overlay. Once a neighbor-
hood on layer Li grows to contain K nodes, the neigh-
borhood eventually splits into two, and the newly gen-
erated super-node is promoted into layer Li+1. A split
may happen immediately after a neighborhood grows
to contain K nodes, or at a specified interval, depend-
ing on the implementation.

Figure 1 depicts an example of an MDTree consisting of
16 nodes with K = 4. Super-nodes keeps information of
number of nodes it is controlling on each level, as is shown
in the figure, and, in its neighborhood on each layer, the
number of nodes controlled by each of its peer-nodes. This
information is useful for cluster formation.

MDTree construction and maintenance consist of four
components: (1) the Node Join Protocol governs how nodes
join the tree; (2) Neighborhood Splitting splits a neighbor-
hood into two neighborhoods, when its size exceeds K; (3)
a Tree Adjustment process allows nodes to move to more
appropriate layers if they get misplaced by the neighbor-
hood splitting process (or otherwise, for example, as nodes
leave); and (4) Tree Maintenance mechanisms maintain the
tree as nodes leave, by promoting nodes if their super-node
leader disappears. We discuss these aspects of the design in
the remainder of this section.

3.2 Node Join Protocol

To join the MDTree structure, a new node first queries
the Entry Point, which replies with a complete list of top
layer nodes. Then the node pings each node in the returned
list. As a result of the pings, it finds out the closest node
and sends a query to it. From this node, it gets a list of its
neighborhood at the lower level. The process is repeated
recursively until a layer L1 node is found; the joining node
then attaches itself on layer L0 to the found node. When
nodes join the system, they are always initially attached to
layer L0. Once a neighborhood consists of K nodes, it must
eventually be split. Higher layer nodes result from layer
splitting.

3.3 Neighborhood Splitting

An MDTree’s layer structure is dynamic, with layers
and super-nodes potentially changing roles and positions
when nodes join and leave. When one super-node’s num-
ber of children reaches K, this neighborhood is split into
two. The layer splitting algorithm has significant impact on
the performance of the tree; a random split may cause in-
effective partitioning, as relatively distant nodes get placed
in the same layer. The effect is compounded as additional
splits occur. Ideally, when a split occurs, the minimum de-
lay criteria of the tree would be preserved. In other words,

15

8

4 6

913

2

3

117

12 14

110

5

15 2 11 1

2 11

0
Layer 2

Layer 1

Layer 0

7
8

4 4
43

16

Entry Point

Figure 1. An MDTree of 16 nodes with maximum neighborhood size of K = 4. Each super-nodes is in bold, and is
labelled with the number of nodes it controls.

the average link delay for each new neighborhood should be
minimized.

Because of previous information exchange within the
neighborhood, the super-node has all the information about
its peer-nodes, including their distance to each other; the
presence of this information allows the super-node to ef-
fectively partition the neighborhood. Effective partitioning
of the neighborhood is critical to the performance of the
MDTree. However, optimal bi-partitioning is known to be
NP-complete, and it is impractical to enumerate all the com-
binations and calculate average link delays for each of them
when K is relatively large. For this reason,we use an op-
timized genetic partitioning algorithm to achieve effective
partitioning. Section 3.3 describes this algorithm. How-
ever, any heuristic that can efficiently and effectively parti-
tion the neighborhood may be used here. We discuss this in
Section 5.1.

After nodes are partitioned into two new smaller neigh-
borhoods, just for simplicity and avoiding update this node
on all above layers, the super-node Na of the neighborhood
at layer Li remains the super-node of the neighborhood to
which it belongs after the split. Here Na continues to be a
super-node because it may reside on a higher layer. After
splitting, if Na is found to be not the best suitable super-
node on that layer, it can be replaced be the best fit node.
In the newly generated neighborhood, Nb, the node having
the minimum link delay to all other nodes, is appointed to
be the super-node of layer Li. (However, for perfection,
both super-nodes can be selected like the newly generated
neighborhood.) Now both Na and Nb will participate in the
same neighborhood on layer Li+1 under the same super-
node Nc. Now Nb, the new super-node, becomes its sibling

and a new peer-node of Nc. Na informs all related nodes
about the change of leadership. Upon receiving the split
message, the new super-node Nb requests to attach to layer
Li+1 and join Nc’s neighborhood. Nc, the super-node of
Na now becomes the common super-node of both Na and
node Nb.

Such a split reduces the number of nodes on layer Li, but
increases the number of nodes on layer Li+1. If the number
of nodes in a neighborhood on layer Li+1 reaches K, that
neighborhood splits.

3.4 Tree Adjustment

In general, heuristic approaches do not necessarily con-
sider the full solution space, and can therefore result in sub-
optimal configurations. For example, a node may unluckily
get placed in the wrong branch of a tree due to an early split.
Further, neighborhood splitting results in MDTree structure
changes, and nodes being promoted to higher layers. How-
ever, this may separate nearby nodes into different neigh-
borhoods, and they may eventually migrate away from each
other in the tree. Heuristics may allow nodes to recover
from such unfortunate placement. For example, a node
can through its super-node at layer Li discover the super-
node’s neighborhood on Li+1. The node can then ping all
the nodes in that neighborhood at a fixed infrequent interval
to check for a peer of lower link delay, and move itself into
that neighborhood (and merge all of its community into the
new community).

3.5 Tree Maintenance

It is important to recover from node and super-node fail-
ure (or more commonly, departure from the SOG). We note
that in a SOG, most nodes may be well behaved and an-
nounce their intent to depart. This may allow soft recon-
figuration of the tree, by removing the peer-node and elect-
ing an alternate super-node for the layers where it serves
this duty. The tree provides an efficient structure for multi-
casting such messages. However, since failures and unan-
nounced departures are possible we also have nodes in the
same neighborhood exchange heartbeat messages. A node
is considered absent if it fails to respond to some predefined
number of consecutive heartbeat messages; this can trigger
tree reconfiguration. Recovery from peer-node departures
is handled differently from recovery from super-node de-
partures, as described below.

• Peer-node Departure: The departure of a peer-node
P simply results that the super-node and other peer-
nodes in P ’s neighborhood remove P from their
records. If the number of nodes in the neighborhood
falls below a predefined threshold, the super-node of
layer Li may try to demote itself to a peer-node on
layer Li, and join its entire community into that of an-
other super-node on layer Li. This approach can keep
the tree structure balanced; however, we do not explore
MDTree shrinking in this paper.

• Super-node Departure: Because all MDTree struc-
ture information is broadcast within the neighborhood,
all peer nodes have the knowledge of the neighbor-
hood. Thus, a new super-node can be elected directly
from the neighborhood and promoted in place of the
departed super-node.

4 Cluster Formation

When user on a node requests a cluster of size R, it
checks if the number of nodes it controls is larger than the
requested size multiplied by a predefined candidate scale
factor S, where S > 100% so that the requester may se-
lect the R most suitable nodes from among a set of more
than R nodes should it decide to do so. If it cannot satisfy
the request, the request is forwarded recursively to super-
nodes at higher and higher layers without DETERMINED
flag, until it arrives at a super-node that controls a commu-
nity that contains more than R ∗ S nodes. This super-node
then decides which part of the community under its con-
trol should join the cluster, and forwards the request, with
DETERMINED flag being set, to those nodes. A cluster
request message with DETERMINED flag requires the re-
ceiver and all the nodes controlled by the receiver to respond
to the original requester with no further judgement.

After receiving enough responses from cluster candi-
dates, the requester can then ping each responder and se-
lect the closest R nodes; or, the cluster can choose to se-
lect a random subset of R nodes, or the first R responders.
In our current implementation, we set a default value of
S = 180%, so requesters receive 1.8 times as many candi-
date nodes for their cluster as they request, and the requester
picks top R responders with least link delay to itself, thus
leads to a solution favoring minimum diameter.

The original requester only knows the link delay be-
tween itself and responders, but not the delay among re-
sponders. This is another sacrifice of optimality for per-
formance; a perfect selection would require a solution to
the NP-complete clustering problem, and O(n2) tests (here,
however, n reflects the size of the cluster, not the much
larger size of the SOG). In the future, we will explore al-
ternative heuristics for final selection of the cluster from
among candidate nodes.

In this paper, we assume that the requester is interested in
a nearby cluster, which reduces the application launch de-
lay, and acts as a crude geographical load-balancing tech-
nique. However, alternative approaches for cluster forma-
tion can be directly supported on top of an MDTree. For
example, the tree can track the load at a coarse granularity,
and map the request to a lightly loaded portion of the SOG.

5 Experimental Evaluation

We conducted simulation experiments to evaluate
the proposed approach using the GPS simulation frame-
work [10, 11] and Transit-Stub networks generated from
the GT-ITM topology generator [12]. We extended GPS
to model MDTrees, and to support our cluster formation al-
gorithm. The topology studied consists of 600 nodes (due
to run-time and memory usage considerations). Link de-
lay within a stub is 5 milliseconds (ms), between stubs and
transits it is 10 ms, and between transits is set to 30 ms. We
evaluate cluster requests of sizes 8, 16, 32, 64, 128, and 256
nodes. Pings are used to determine the link delay between
node pairs. In our experiment, we used 25 as the value of
K for the MDTree, and 180% as candidate scale factor S.

We use the following metrics to measure the quality of
the cluster that an MDTree helps discover:

• Average link delay among nodes within the cluster:
The average link delay is likely to be the most impor-
tant criterion for the quality of the clustering, espe-
cially for fine-grained applications. Such applications
require frequent communication among nodes within
the cluster and their performance is bound by the la-
tency of communication.

• Maximum link delay to the cluster requester: This
criteria is important for clusters in which the most fre-

 0

 0.05

 0.1

 0.15

 0.2

 50 100 150 200 250

Li
nk

 D
el

ay
 (

se
c)

Cluster Size Requested

Average Link Delay between Nodes in the Cluster

Experimental Average Link Delay
Optimal Average Link Delay

Figure 2. Average Link Delay in the cluster

quent communication is between the cluster requester
and the other nodes.

• Cluster diameter: The largest link delay between any
pair of nodes in the cluster.

• Cluster Formation Overhead: The overlay perfor-
mance is measured by the number of messages sent
during the process of requesting a cluster. These
messages include cluster request messages, cluster re-
sponses, pings, and cluster confirmation. Since the
MDTree is constructed pro-actively, the cost is amor-
tized over all the requests generated for clusters; it can
be considered as a fixed cost. New node joining only
cost approximately O(LogkN) messages, which in-
cludes attach queries and pings, where, again, N is the
number of nodes in the SOG, and K is the maximum
number of nodes in any neighborhood.

Figure 2 shows the average link delay in the extracted
cluster, compared to the optimal cluster for the topology
(found through exhaustive search). The average delay, in
general, is quite good compared to the optimal available.
However, especially at small size clusters (smaller than the
layer size), the quality of the solution can be improved. We
believe that this argues for supporting mechanisms to allow
nodes to change their location in the tree if they are not
placed well. We note that at 256 nodes, the large size of the
cluster relative to the topology size may contribute to the
two graphs converging.

Figures 3 and 4 show the maximum link delay to the
cluster requester, and the cluster diameter respectively.
These figures contain a similar result to that of Figure 2.
In general, the results show that the proposed approach per-
forms well with respect to the optimal solution according to
all three metrics.

The complexity of the clustering stage (i.e. the mes-
sages that are exchanged after a cluster is requested, as op-

 0

 0.05

 0.1

 0.15

 0.2

 50 100 150 200 250

Li
nk

 D
el

ay
 (

se
c)

Cluster Size Requested

Maximum Link Delay to Cluster Requester

Experimental Maximum Distance
Optimal Maximum Distance

Figure 3. Maximum Link Delay to the cluster re-
quester

 0

 0.05

 0.1

 0.15

 0.2

 50 100 150 200 250

Li
nk

 D
el

ay
 (

se
c)

Cluster Size Requested

Cluster Diameter(Link Delay)

Experimental Diameter
Optimal Diameter

Figure 4. Cluster Diameter

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200 250

N
um

be
r

of
 M

es
sa

ge
s

Cluster Size Requested

Cluster Request Overhead

Figure 5. Cluster Requesting Overhead, messages
include requests, responses, pings, and cluster con-
firms

posed to the pro-active MDTree setup costs associated with
join messages) depends on the options used in represent-
ing the clusters and the MDTree structure (e.g. the val-
ues of S and K described earlier). Figure 5 shows that the
overhead for requesting a cluster appears to be linear with
the size of the requested cluster. Building and maintaining
the MDTree structure also requires overhead. Node joining
costs approximately O(LogkN) messages and pings. How-
ever, the main overhead comes from the periodic heartbeat
messages, since it broadcasts to each nodes in the neighbor-
hood. This overhead can be reduced by piggybacking and
merging update messages.

5.1 Discussion

Clearly, super-nodes and regular peer-nodes have differ-
ent levels of responsibilities in MDTrees. A super-node is
a leader on all layers from 1 to the second highest layer it
joins. Each super-node must participate in query and infor-
mation exchange on all the neighborhoods it joins, which
can make it heavily burdened. However, if higher layer
super-nodes did not appear within neighborhoods at lower
layer neighborhoods, it would be inefficient to pass infor-
mation down to neighborhoods at lower layers.

Graph bi-partitioning is known to be NP-complete [7]. In
an MDTree, we used a genetic algorithms for neighborhood
splitting. Our algorithm generates approximately optimal
partitioning results within hundreds or thousands of genera-
tions, which is a small number of computations compared to
the NP-complete optimal solution (and these computations
take place locally within a super-node, requiring no inter-
node messages). Figure 6 shows that our genetic algorithm
(or any other effective bi-partitioning heuristic) has a signif-
icant impact on the quality of the solution when compared
to random partitioning for neighborhood splitting.

6 Summary and Future Work

This paper introduces an efficient data structure and
algorithm for implementing automatic node clustering for
self-organizing grids, which will contain clusters of high
performance “permanent” machines alongside individual
intermittently available computing nodes. Users can ask for
an “ad hoc” cluster of size N , and our algorithm will return
one whose latency characteristics come close to those of the
optimal such cluster. Automatic clustering is an important
service for SOGs, but is also of interest for more traditional
grids, whose resource states and network characteristics are
dynamic (limiting the effectiveness of static cluster infor-
mation), and whose applications may require node sets that
must span multiple organizations.

Our MDTree structure organizes nodes based on the link
delay between node pairs. The proposed approach is dis-

 0

 0.05

 0.1

 0.15

 0.2

 50 100 150 200 250

A
ve

ra
ge

 L
in

k
D

el
ay

 (
se

c)

Cluster Size Requested

Layer Splitting Algorithm Comparison

Genetic Algorithm Split
Random Binary Split

Optimal

Figure 6. Comparison of Genetic Split and Random
Split

tributed, scalable, efficient, and effective. We use a ge-
netic algorithm for neighborhood splitting to improve the
efficiency and effectiveness of partitioning.

Significant future work remains in many areas. First, we
plan to further study the proposed solution and the impact
of parameters and design decisions within it. In particular,
the impact of MDTree parameters such as the neighborhood
size, the heartbeat frequency, and the neighborhood split-
ting algorithm may have significant influence on overhead
and performance.

Previous sections of this paper mention several other ar-
eas for future exploration; we have implemented some of
them, but have not yet evaluated them in detail. Examples
include tree optimization to revisit placement decisions, the
effect of node departure on clustering, and re-balancing to
recover from incorrect placement decisions. Future work
also includes using multiple criteria to identify candidate
cluster nodes, instead of just inter-node delay. These crite-
ria could include computing capabilities and current load,
and the measured bandwidth between nodes.

We envision tiered SOG resources, ranging from con-
ventional clusters that are stable and constantly available,
to user desktops that may be donated when they are not
in use. This variation in the nature of these resources can
be accounted for, both in the construction of the MDTrees
(e.g., by associating super-nodes with stable nodes) and dur-
ing the extraction of clusters (e.g., by taking advantage of
known structure information like the presence of clusters,
instead of trying to automatically derive all structure).

Significant challenges also remain to make the SOG
model feasible. These include the ability to do resource
monitoring for co-scheduling in SOGs. Resource monitor-
ing and co-scheduling have significant overlap with auto-
matic clustering; their intersection is an interesting area of

research. Effective SOG operation also requires service and
application deployment, fault tolerance, and security.

References

[1] Enabling grids for e-science (egee). http://public.eu-
egee.org.

[2] Seti@home. http://setiathome.berkeley.edu.
[3] Teragrid. http://www.teragrid.org.
[4] N. Abu-Ghazaleh and M. J. Lewis. Short paper: Toward

self-organizing grids. In Proceedings of the IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC-15), pages 324–327, June 2006. Hot Topics
Session.

[5] A. Agrawal and H. Casanova. Clustering hosts in p2p and
global computing platforms. In The Workshop on Global
and Peer-to-Peer Computing on Large Scale Distributed
Systems, Tokyo, Japan, April 2003.

[6] S. Banerjee, C. Kommareddy, and B. Bhattacharjee. Scal-
able peer finding on the internet. In Global Telecommunica-
tions Conference, 2002. GLOBECOM ’02, volume 3, pages
2205–2209, November 2002.

[7] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co., New York, NY, USA, 1979.

[8] E. K. Lua, J. Crowcroft, and M. Pias. Highways: Proximity
clustering for scalable peer-to-peer network. In 4th Interna-
tional Conference on Peer-to-Peer Computing (P2P 2004),
Zurich, Switzerland, 2004. IEEE Computer Society.

[9] Q. Xu and J. Subhlok. Automatic clustering of grid nodes. In
6th IEEE/ACM International Workshop on Grid Computing,
Seattle, WA, November 2005.

[10] W. Yang. General p2p simulator.
http://www.cs.binghamton.edu/˜wyang/gps.

[11] W. Yang and N. Abu-Ghazaleh. Gps: A general peer-
to-peer simulator and its use for modeling bittorrent. In
Proceedings of 13th Annual Meeting of the IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ’05,
pages 425–432, Atlanta, GA, Sept 2005.

[12] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In IEEE Infocom, volume 2, pages
594–602, San Francisco, CA, March 1996. IEEE.

[13] W. Zheng, S. Zhang, Y. Ouyang, F. Makedon, and J. Ford.
Node clustering based on link delay in p2p networks. In
2005 ACM Symposium on Applied Computing, 2005.

