
Automatic Code Generation for Synchronous Reactive Communication∗

Guoqiang Wang‡

University of California

Berkeley, CA, USA

geraldw@eecs.berkeley.edu

Marco Di Natale

Scuola Superiore Sant’Anna

Pisa, Italy

marco@sssup.it

Pieter J. Mosterman

The MathWorks

Natick, MA, USA

pieter.mosterman@mathworks.com

Alberto Sangiovanni-Vincentelli

University of California

Berkeley, CA, USA

alberto@eecs.berkeley.edu

Abstract

Synchronous Reactive models are used in Model-Based

Design to define embedded control applications. The ad-

vantage of Model-Based Design is that system proper-

ties can be verified on the model and applied to its soft-

ware implementation if the translation of the model into

code preserves its semantics. In this paper, we present an

automatic code generation framework for the semantics-

preserving implementation of communication in multi-rate

systems. The proposed solution applies to the widely used

MATLAB R© and Simulink R© products. It leverages the Tar-

get Language Compiler template language of Real-Time

Workshop R© and extends the applicability of available com-

mercial code generators. The overhead in memory of the

presented solution is analyzed and compared with other im-

plementations.

1 Introduction

Model-Based Design (MBD) for embedded real-time

software aims at fostering reuse and improving quality by

capturing the functionality of the design with a model of

computation and deriving implementation code from this

model automatically. Further, MBD enables design-time

simulation and verification of properties on models. Among

the MBD formalisms to capture design functionality, Syn-

chronous Reactive (SR) models [1] are effectively used in

the design of hardware logic and for modeling control-

dominated embedded applications. SR models are very

∗This work was supported by the MARCO/DARPA Gigascale Systems

Research Center (GSRC). Their support is gratefully acknowledged.
‡Now with National Instruments Corporation.
†MATLAB and Simulink are registered trademarks of The MathWorks,

Inc. See www.mathworks.com/trademarks for a list of additional trade-

marks.

popular because they permit the use of tools for fast simula-

tion and formal verification of the system properties. They

are typically characterized by the “perfect synchrony hy-

pothesis”, which requires that the system completes the re-

action to an event before the occurrence of any other event.

When implementing a high-level SR model into code, it

is important to preserve its semantics, so to retain the sim-

ulation and verification results. At run time, a model of

communicating SR functional blocks may be implemented

by a concurrent program, in which tasks have a finite ex-

ecution time and are possibly subject to preemption. Se-

mantics preservation requires that the run-time behavior is

provably equivalent to the “zero execution time” behavior of

the model. This property subsumes the property that model

communication flows are preserved in the program imple-

mentation (stream preservation) [2]. In general, demon-

strating that the implementation respects the semantics of

the SR specification is non-trivial.

This work addresses SR models that exhibit a subset of

the full Simulink R© functionality. Here, a system is a net-

work of blocks communicating through ports. A block can

be a reader, a writer, or both. All blocks in the model react in

response to events that may be periodic, defining a sampling

rate, but may also be aperiodic. Each block computes two

functions: the output and the state update functions. Ac-

cording to the synchronous assumption, the computation is

considered to occur in zero time, meaning that the outputs

and the state depend instantaneously on the input values.

This implies that the input values must be determined at the

time the block is activated.

For each block bi, let bi(j) and ai(j) be its jth in-

stance and the corresponding activation time, respectively.

Under the SR semantics, given that the execution time is

zero, ai(j) captures also the start and the finish times of

bi(j). Assume writer w communicates with reader ri. Let



ow(j) and iri(j) be the output and the input of the jth in-

stance of w and ri, respectively. We define ζi(t) to be

the number of times that bi has been activated up to time

t, i.e., ζi(t) = sup{m|ai(m) ≤ t}, where the sup of an

empty set is defined to be zero. Let delay[i] be the com-

munication link delay for reader i. The SR communica-

tion semantics can be formulated as iri(j) = ow(k), where

k = max{0, ζw(ai(j)) − delay[i]}.

Upon implementation, the functionality of SR blocks is

realized by run-time tasks. There are two options to imple-

ment an SR multi-rate model on single-processor platforms.

In a single task implementation, all the SR blocks are im-

plemented by one task running at the system base rate. Such

an implementation is easier to construct, but is often char-

acterized by poor resource utilization.

A multi-task implementation uses one task for each ex-

ecution rate, and possibly more, executed under the control

of an Operating System (OS). Each task is characterized

by a set of parameters: priority, period (T), computation or

execution time, worst case response time (R), and relative

deadline (d). A task can be preempted according to its pri-

ority. Schedulability of tasks requires that R ≤ d. Multi-

task implementations allow for better schedulability. As

discussed in [3], because of interference or preemption, this

may possibly lead to problems with respect to communica-

tion of data streams over links, i.e., non-deterministic com-

munication and/or data integrity problem. Figure 1 shows

the difference between the model behavior (top of the fig-

ure) and a possible multi-task implementation. The kth in-

stance of bj should use ij(k) = oi(m) as input. However,

if blocks are executed by tasks as in the bottom part of the

figure, the execution of bj(k) may be delayed by interfer-

ences from higher priority tasks (hashed box), resulting in

ij(k) = oi(m + 1). Even worse, if data communication is

not atomic, preemption while reading/writing may cause the

data integrity to be compromised. To solve these problems,

different mechanisms have been proposed.

i
(m)

j
(k)i o

i
(m+1) o

i
(m+2)

j
(k+1)i

o
i
(m+1)o

i
(m)

b
i j

b

j
(k)i

o

Figure 1. Issues with Semantics Preservation

Previous Work Wait-free schemes can be used to pro-

tect a writer and its readers against concurrent access to

the communication data by replicating the communication

buffers and possibly by leveraging knowledge of access

times and scheduling constraints such as task priorities and

T=10

ρ

13
ρ

13
ρ

13
ρ

21
ρ

21
ρ

11
ρ

13
ρ

transition

T=20

11

write write

write

write write

read read

High priorityLow priority

read

High priority

T=10 T=20
Low priority

Rate

transition

Rate

Figure 2. Rate Transition Block of Simulink R©

periods. An example of a wait-free access control mech-

anism is the Rate Transition (RT) block of Simulink. The

RT block behaves like a Zero-Order Hold block for fast to

slow transitions or a Unit Delay block plus a Hold block (or

Sample and Hold) for slow to fast transitions. In the fast

to slow rate (high to low priority) transitions, the RT block

output and update functions execute at the rate of the slower

block, but with the priority of the faster block (dashed box

in the left side of Figure 2). In low to high rate (priority)

transitions, the RT block output update function runs in the

context of the fast task, but at the rate of the slow task as the

first function (dashed box in the bottom-right side of Fig-

ure 2). The RT block state update function executes in the

context of the slow task as the last function and updates the

internal buffer state (the striped box in the right side of Fig-

ure 2). The output function uses the state of the RT block

that was updated in the previous instance of the slow task.

In the case of activation with identical phase of communi-

cating blocks with harmonic rates, the RT block guarantees

data consistency and stream preservation. However, when

activations are not periodic or the writer and its readers

do not have harmonic periods or are activated with differ-

ent phases, RT blocks cannot be used and a more general

communication mechanism is needed.

As discussed in [3], a general buffer-based communi-

cation scheme consists of two parts: a sizing mechanism

and an indexing procedure. Buffer sizing mechanisms may

be based on writes that are spatially out of order or in or-

der. The out-of-order version computes an upper bound

for the maximum number of buffers that can be used at

any given time by a writer and its reader task instances.

In [4], an asynchronous protocol that guarantees data con-

sistency with the freshest-value semantics between a writer

and multiple readers is presented. The protocol needs N + 2

buffer slots, where N is the number of readers. Because of

their simplicity and efficiency, wait-free schemes are also

the preferred choice to implement SR communication pro-

tocols. In [5, 6], the Double Buffer (DoB) mechanism for

one-to-one communication with SR semantics is presented,

using a two-place buffer and two buffer indices. In the case

of single processor systems, given that the code that updates

the index variables is executed inside the kernel at task ac-

tivation time, there is no need for a hardware mechanism

to ensure atomicity when swapping buffer pointers or com-



paring state variables. In [7], the Dynamic Buffering (DyB)

protocol is defined for single-writer multiple-reader systems

with unit communication delay links, under the assumption

that each task instance terminates before its next activation

event. It is demonstrated that N + 2 buffers are sufficient for

DyB, where N is the number of lower priority readers. The

Constant Time Dynamic Buffering (CTDyB) protocol pre-

sented in [3] provides an efficient kernel-level implementa-

tion. The in-order version uses the notion of temporal con-

currency control to compute a buffer size by upper bounding

the number of times the writer can produce new data while

a given data is considered valid by at least one reader. This

concept is first introduced in [8, 9] for communication with

the freshest-value semantics, assuming as the data validity

time the worst case execution time of a reader. These two

mechanisms are also used in [10] for buffer sizing while

preserving the SR communication semantics.

In [11], the communication scenario presented in [7] is

further generalized to handle arbitrary multi-unit communi-

cation delays and multiple instances of a task active at the

same time. A bound on the number of required buffers is

provided for the communication of blocks with a general

pattern of activation. An efficient constant time implemen-

tation is presented as a set of C functions in [3]. The work

presented here improves on the code implementation of the

proposed method and defines its automation and integration

with modeling in the context of the commercial Simulink

and Real-Time Workshop R© [12] products for modeling and

automatic code generation. The result is a library of custom

Simulink blocks and the template files that control the gen-

eration of the code. The blockset extends the capability of

available commercial tools by allowing stream preserving

communication of aperiodic blocks and/or blocks activated

with different phases and non-harmonic periods.

An example of an application system that requires sup-

port for this type of communication is sensory fusion (e.g.,

as needed by active safety functions in the automotive do-

main). In this case, the subsystem performing the integra-

tion of sensory information processes data streams com-

ing from heterogeneous sensors (e.g., ultrasound and radar).

The rates at which sensory data arrive depend on the sensor

technology and the sensor manufacturer. It is quite common

to have sensors operating at non-harmonic rates (such as a

20 ms cycle for the ultrasound and 50 ms for the radar). Fur-

thermore, the sensory fusion subsystem benefits from the

time determinism on the input streams because it must cor-

relate in time the information about objects coming from

different sensor sources.

2 Protocol Implementation: DoB & CTDyB

In this section, we present two SR communication proto-

cols (DoB and CTDyB) and we show their implementation

according to the OSEK OS standard. Figure 3 shows the

Data Structure

boolean wrtIdx, rdIdx; message buf[2];

Low to High Priority High to Low Priority

Initialization
wrtIdx = 0; rdIdx = wrtIdx = 0;

buf[0] = buf[1] = · · ·

Writer

Activation
wrtIdx = !wrtIdx; if (rdIdx == wrtIdx)

wrtIdx = !wrtIdx;

Execution buf[wrtIdx] = · · ·

Reader

Activation rdIdx = !wrtIdx; rdIdx = wrtIdx;

Execution · · · = buf[rdIdx];

Figure 3. Double Buffer Mechanism

pseudo-code of the DoB mechanism in [5, 6] for single-

writer single-reader communication. In DoB, a pair of

buffers and two indices are maintained. DoB takes advan-

tages of information on the relative priority of the reader

and the writer tasks. Buffers are initialized and the writing

index initially points to the first buffer. The reading index of

a lower priority reader is initialized in the same way. At ac-

tivation time, the writing index of a lower priority writer is

always toggled while the writing index of a higher priority

writer is toggled only if the reading and the writing indices

are equal. The reading indices of a higher and a lower pri-

ority reader are assigned as the negated and the same value

of the writing index, respectively.

A pseudo-code description of the CTDyB mechanism

in [3] is shown in Figure 4. As a generalization of DoB,

CTDyB handles communication between a writer and mul-

tiple readers. An array of data buffers and indices to its en-

tries are maintained. Communication links with unit delay

require an additional index variable prev. The buffer size

Data Structure

char delay[NR], isHPR[NR]; char read[NR], UFL[NB];

char cur, prev, freeHd; message buf[NB];

Initialization

cur = 0; UFL[0] = 2;

prev = 0; for(j=2; j<NB-1; j++)

freeHd = 1; UFL[j] = j + 1;

buf[0] = · · · UFL[NB-1] = -1;

Writer Reader i

Activation

UseDec(prev); if (delay[i])

prev = cur; read[i] = prev;

cur = FindFree(); else

UFL[cur] = 1; read[i] = cur;

if (isHPR[i] == 0)

UFL[read[i]]++;

Execution buf[cur] = · · · · · · = buf[read[i]];

Termination
if (isHPR[i] == 0)

UseDec(read[i]);

char FindFree() { void UseDec(char i) {
char t = freeHd; UFL[i]--;

Auxiliary freeHd = UFL[t]; if (UFL[i] == 0) {
Functions return t; UFL[i] = freeHd;

} /* O(1) */ freeHd = i;

} }

Figure 4. CT Dynamic Buffering Mechanism



is equal to the sum of the number of lower priority readers

plus two. As in [3], the constant-time algorithm for finding

a free entry in the array uses a list to track the free buffers

and counters to maintain information on the number of read-

ers using each entry. The first free slot on the list is always

indicated by freeHd. At activation time, for a writer, the

use count of the slot pointed by the old prev index is decre-

mented and the buffer slot is freed if the use count drops to

zero. Then, prev and cur are updated and the use count

of the slot pointed by cur is set to one. Similarly, for a

reader, its reading index is assigned according to its link

delay and the use count of the buffer item is incremented

accordingly. At termination time of a lower priority reader,

the use count of the buffer item used by the reader is decre-

mented and then freed if the counter becomes zero. For

both DoB and CTDyB, at execution time, writer and reader

blocks write into and read from the slots that have been as-

signed at their activation times, respectively. The RT block

mechanism used in the code generated from Simulink by

Real-Time Workshop is a special case of DoB.

OSEK Implementation Preservation of communication

flows amounts to ensuring that the reader accesses the data

produced by the correct instance of the writer task. In par-

ticular, the buffer slots containing the item produced by

the writer and read by a reader have to be defined at their

respective activation times. Both writer and reader tasks,

however, are not guaranteed to start execution at their re-

lease times because of scheduling delays. Therefore, in

general, the selection of the data buffer entry must be del-

egated to the OS (or a hook procedure that is guaranteed

to be executed at task activation time). We choose the

OSEK automotive standard [13] as the target OS. OSEK

defines four Conformance Classes (BCC1/2 and ECC1/2)

with corresponding minimum requirements. In OSEK, a

task can be activated by ActivateTask and must call

TerminateTask on termination. At least one counter is

generated by a hardware or software timer. The counter can

be used as a time reference for alarm generation. An alarm,

associated with a counter, can be used to activate a task, set

an event, or call a callback routine. OSEK supports absolute

and relative alarms, single instance or cyclic.

OIL (OSEK Implementation Language) declarations are

used to configure an OSEK application. In the implementa-

tion of the CTDyB protocol presented in [3], lower priority

readers need to call PostTaskHook to release their buffers

upon termination. However, PostTaskHook is executed at

each context switch (not only at task termination), therefore

adding unnecessary time overhead. In this paper, we use a

different approach to handle the atomic termination of lower

priority readers. Besides the CTDyB protocol, code gener-

ation for the DoB protocol is also supported for comparison

with implementations using Rate Transition blocks.

Task Dispatcher Although the procedures for access-

ing the communication buffers can be used in the general

case of block activated by arbitrary events with a minimum

inter-arrival time [11], in our library blockset the block that

implements the connection with the task scheduling (the

task dispatcher) assumes periodic activation events. Our im-

plementation also assumes R ≤ T, which implies that only

one active instance for each task exists at any time. To ob-

tain software portability, one alarm is used in accordance

with the BCC1 compliancy rules. The proposed task dis-

patcher is shown in Figure 5. The dispatcher is sampled at

the base rate of the system. For each sampling rate (task),

there is a corresponding counter. The counters are initial-

ized appropriately so that all tasks are scheduled at startup.

The counters are incremented at the system base rate and re-

set to 0 when they reach their periods (i.e., the correspond-

ing task needs to be scheduled). The main functionality of

the dispatcher is to assign writing and reading indices at

task activation time. Depending on the chosen protocol, the

dispatcher assigns buffer indices via the code in Figure 3 or

4. Then the tasks are activated by calling the OSEK API

function ActivateTask. The dispatcher terminates by

calling TerminateTask.

The first if statement in Figure 5 is for CTDyB only. At

system startup, the termination segment in the dispatcher

is not needed, which is achieved by checking the flag,

systemStartup. At system startup, the flag is initial-

ized as true and later on during execution it is reset.

Priority information is needed when assigning indices

for both DoB and CTDyB. We assume that the priority as-

signment is based on Rate Monotonic when no information

is provided by the users.

The dispatcher is functionally equivalent to the imple-

mentation in [3], but more efficient in terms of speed and

memory usage. The use of PostTaskHook is avoided

by letting the dispatcher perform the termination for lower

Task(dispatcher) { Data Structure

RMS(); char p[NT], cntr[NT];

/* CTDyB only: LPR termination */ Initialization

if (!systemStartup) { systemStartup = 1;

for (i=0; i<NT; i++) { for (i=0; i<NT; i++) {
if (cntr[i] == 0) { cntr[i] = p[i] - 1;

· · · /* LPR termination */ }
} } Auxiliary Function

systemStartup = 0; RMS(void) {
} for(i=0; i<NT; i++){
/* kernel-level index assignment */ cntr[i]++;

for (i=0; i<NT; i++) { if(cntr[i]==p[i]){
if (cntr[i] == 0) { cntr[i] = 0;

· · · /* process task i’s writers */ }
· · · /* process task i’s readers */ }
ActivateTask(i); }

} }
TerminateTask();

}

Figure 5. Implementation of Task Dispatcher



TASK(init) {
· · · /* initialization required by protocol as in Figure 3/4 */

· · · /* initialization required by dispatcher as in Figure 5 */

SetRelAlarm(dispAlarm, actionOffset, baseRate);

TerminateTask();

}

Figure 6. General Structure of Task Init

priority readers. Furthermore, the implementation of ap-

plication tasks is simplified by avoiding the data structures

indicating the task status and the dispatch table used in [3].

Initialization Task The data structures of the commu-

nication protocols in Figures 3 and 4 and those used by the

dispatcher in Figure 5 must be initialized. These are per-

formed by the OSEK task init shown in Figure 6. The

task init also sets the cyclic alarm, dispAlarm, which

periodically activates the task dispatcher at the system

base rate. Through SetRelAlarm and ActivateTask,

the scheduling of the dispatcher and application tasks is

integrated with the RTOS scheduler. Task init only

needs to execute at system startup and is terminated by

TerminateTask.

The next step is to automatically generate the imple-

mentation by leveraging the customizable extensions of the

Real-Time Workshop code generation environment.

3 Real-Time Workshop R©

Real-Time Workshop (RTW) is a product for auto-

matic code generation, packaging, and compilation from

Simulink models. Two important RTW features are code

generation for user-created blocks via System Function (S-

Function) blocks and code customization flexibility via the

Target Language Compiler (TLC) [14].

The capability of the Simulink environment can be

extended by custom-defined S-Functions, coded in C or

MATLAB R©. Similar to built-in Simulink blocks, S-

Function blocks must provide an implementation accord-

ing to a pre-defined API to allow execution by the Simulink

simulation engine. S-Functions are compiled by the mex

utility and the compilation results are stored in Mex-files.

S-Function blocks can be put in a custom-defined library.

TLC is an RTW component that enables customization

of the generated code. The RTW build process converts a

graphical Simulink model into an intermediate form of the

block diagram, which includes all the model-specific infor-

mation required for code generation. Then, TLC transforms

the intermediate description into target-specific code.

TLC includes block-level and system-level files. Block-

level files define the generation of code for block-level fea-

tures and system-level files capture model-wide information

that is used for generating header and parameter informa-

tion in the program code. TLC files control the way RTW

generates code and can be customized for special needs.

They are indeed often used to generate efficient code for S-

Function blocks. By default, S-Functions are translated into

non-inlined code by the RTW code generator, which results

in memory and time overhead because of a significant data

structure that is created for each instance of the S-Function

block in the model and the function call for invoking the

block implementation. This overhead can be reduced by

providing a TLC file that allows inlining the S-Function.

The following section describes how to support code gener-

ation for SR communication protocols by extending RTW

with custom TLC files.

4 SR Protocol Code Generation

Before delving into code generation, we first need to ad-

dress data transfer at the application task level. For the pro-

tocols shown in Figures 3 and 4, indexing procedures at the

kernel and application levels are presented with the corre-

sponding data structures. As discussed in Section 2, kernel

level functionality can be implemented as a task dispatcher.

Similar to the Rate Transition block in Simulink, the appli-

cation level indexing can be implemented as a communica-

tion buffer block that reads in and writes out data at the rates

of the writer and reader, respectively.

In the design of communication data structures, we en-

capsulate within the S-Function buffer blocks the data that

is only accessed by its code. Data that is shared between the

dispatcher and the communication buffer blocks is defined

as data stores (shared variables). For example, for the DoB

in Figure 3, wrtIdx and rdIdx are accessed by both the

dispatcher and communication buffer (on behalf of writer

and reader) and thus they are represented as data stores.

Similarly, for the CTDyB in Figure 4, cur and read[] are

global variables. However, prev, freeHd, and UFL[]

are local to the dispatcher and hidden inside the block im-

plementation. For both mechanisms, buf[] is maintained

locally by the communication buffer.

The dispatcher and the communication buffer S-

Functions are coded in C and the corresponding blocks are

made available as part of a custom library.

4.1 Task Dispatcher

Figure 7 shows our custom SR implementation library.

The second and fourth block from the left in the top row

are the task dispatchers for DoB and CTDyB, respectively.

They have no input port and a variant number of output

ports for writing and reading indices. The number of out-

put ports can be customized for each block by changing its

parameters from the Simulink designer GUI. The number

of output ports clearly depends on the number of readers

for the communication buffers. In our library, under the de-

fault configuration, the DoB dispatcher assigns indices for



Figure 7. SR Implementation Library Blocks

a writer and its reader while the DyB dispatcher assigns in-

dices for a writer and its two readers.

The sampling period of the task dispatcher is the system

base period. Given knowledge on the priority of the writer

and each reader and on the delays with each communica-

tion link, the dispatcher assigns writing and reading buffer

indices to writers and readers at their respective rates.

The dispatcher block is constructed as an “atomic”

block, which means that the corresponding code can be

generated as a function (not inlined). This is needed be-

cause the rate grouping policy used by RTW or Real-Time

Workshop R© Embedded CoderTM [15] (the specialized code

generator for embedded systems) would otherwise merge

the dispatcher code inside a possible application task exe-

cuting at the base rate.

4.2 Communication Buffer

The first and third block from the left in the top row of

Figure 7 are the communication buffers for DoB and CT-

DyB, respectively. As discussed earlier, the communication

buffer block handles shared data between a writer and its

reader(s) at the application task level. In our library, the

communication buffer block for DoB has three input ports

(writing index, the data input, and reading index) and one

output port. However, the counterpart for CTDyB has a

variant number of input and output ports, depending on the

number of readers it may have. Similar to DoB, each reader

contributes to one input port (for reading index) and one

output port (for communication data). In the custom library,

the communication buffer for CTDyB under default config-

uration transfers data between a writer and its two readers.

Because the sampling rates of the writer and readers

may be different, the sampling of the communication buffer

block needs to be port-based. During execution, when the

writer produces its outputs, the buffer block reads both the

data value and the buffer index value assigned to the writer

and stores the data into the corresponding buffer slot. Sim-

ilarly, when a reader executes, the buffer block reads in the

assigned reading index value and then outputs the data iden-

tified by the reading index to the output port.

4.3 Dispatcher and Shared Buffer Interaction

The last issue we need to address is how to support write

and read indices shared between the dispatcher and the com-

munication buffer S-Functions. This is accomplished by us-

ing Simulink Data Store Memory blocks. The dispatcher

writes the assigned write and read indices into the data

store memory via the data store write block while the com-

munication buffers obtain the assigned indices through the

data store read block on behalf of the writer and readers.

With the integration of the dispatcher, the communication

buffers, and the data store read/write blocks, the SR com-

munication semantics can always be guaranteed, regardless

of the relative activation rates of the writer and its read-

ers [6, 7].

To ease model construction, the communication buffer

can be masked with its corresponding data store reads into

a wrapper block. Similarly, a wrapper block can be gener-

ated by grouping the dispatcher block and its corresponding

data store writes. The dispatcher and communication buffer

wrapper blocks are shown in the second row of Figure 7.

4.4 Model­Wide TLC File Customization

The SR communication protocols are implemented us-

ing the above discussed S-Functions and the correspond-

ing TLC files enable generation of efficient code. However,

model-wide TLC files still need to be customized to control

the definition of the scheduling sampling rates, the gener-

ation of the base rate functions, and the scheduling of the

tasks executing at different rates. Furthermore, an OSEK-

specific TLC library file is created to generate OSEK tasks,

the main function, and the OIL configuration file.

5 Code Generation and Execution Results

In this section, we use a pair of simple Simulink models

to show the generated code for the communication links and

the results of the code execution.

The example shown in Figure 8 is a Simulink model in

which a block pair communicates using the DoB mecha-

nism. The writer consists of an adder that adds its result at

the previous sampling step and a constant of 2. The reader

simply corresponds to an output port. The sampling peri-

ods of the writer and the reader are 2 and 3 seconds (not

harmonic), respectively. Hence, a multi-tasking implemen-

tation using the Rate Transition block is not possible and

indeed not allowed by the tool.

Our SR semantics preserving implementation of the DoB

example consists of 4 tasks: dispatcher, init, and two appli-

cation tasks. Given the specified sampling periods, the task

dispatcher runs at the base period of 1 second.

Figure 9 shows the generated code segments for writing

and reading accesses to the shared double buffer.

Figure 10 shows a Simulink model that uses the CTDyB

protocol. In this example, the communication buffer trans-



Figure 8. Example of DoB Mechanism

fers data between a writer and its two readers. The writer is

similar to that in Figure 8 except that the added constant is

1. The sampling periods of the writer, fast reader, and slow

reader are assumed to be 3, 2, and 5 seconds, respectively.

Under the Rate Monotonic priority assignment, three

buffer slots are needed as per the DyB sizing mechanism.

The communication buffer is assumed to take an initial

value of 8. Our SR semantics preserving implementation

of the DyB example consists of five tasks: dispatcher, init,

and three application tasks. The dispatcher is sampled at

the base period of 1 second. The generated code for buffer

accesses is similar to that of the DoB example.

The code generated by RTW for the SR communication

protocol needs to be executed together with an RTOS in

an emulation environment. This section presents the ex-

perimental environment and the results of the execution of

the DyB example. To validate the generated code, the Mi-

crochip MPLAB simulation/emulation environment [16] is

used. The 40 MHz-10 MIPS PIC18F452 microcontroller

from MicroChip Technology is chosen as the target ex-

ecution hardware platform. The used RTOS is the ePI-

Cos18 [17]: a multi-task, preemptive, and real-time kernel

that fully conforms to the OSEK OS standard for the PIC18

family. The cycle of the software system timer used to man-

Figure 9. Buffer Write and Read Code

Figure 10. Example of CTDyB Mechanism

age alarms and counters in the ePICos18 is 1 msec.

Figure 11 shows the MPLAB SIM results of the gener-

ated code from the DyB Simulink model with the CTDyB

protocol shown in Figure 10. The solid curve (blue) in Fig-

ure 11 is the writer’s output versus time (in seconds). The

value of the output is incremented by one at its sampling pe-

riod of 3 seconds. The dashed curve (red) shows the input

of reader 1, the slow reader in the DyB example. The sim-

ulation results show that reader 1 reads the current output

value of the writer, which is expected because the reader

has a lower priority than the writer. Similarly, the dotted

curve (black) shows the input of reader 2, the fast reader in

the DyB example. Because the reader has a higher priority

than the writer and the communication link has a unit delay,

the first two instances of the fast reader read 8, the initial

value of the buffer, before the first instance of the writer

finishes its execution. In the following sampling intervals,

reader 2 always reads the output value of the writer with

a unit delay. The simulation results show that the imple-

mented model executes as expected at run time.

Table 1 shows the RAM consumption due to communi-

cation buffers and the ROM consumption of the buffer in-

dexing procedures when implementing the example in Fig-

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

DyB Example

Writer Reader 1 Reader 2

Figure 11. MPLAB SIM Result



Rate Transition Double Buffer Dynamic Buffering

Data Integrity Yes Yes Yes

Time Determinism No Yes Yes

RAM (messages) 4 4 3

ROM (bytes)

Writing 68 64 54

Reading 58 56 104

Total 126 120 158

Table 1. RAM and ROM Consumption

ure 10 through the Rate Transition block (only data integrity

is obtained), the DoB Protocol, and the CTDyB Protocol.

For this particular example, both the RT block and the DoB

require 4 message buffers in RAM space, while the DyB

only requires 3 buffers. When there are more higher prior-

ity readers and the message size is large, the RAM saving

can be considerable. Table 1 also shows that the DoB con-

sumes the least amount of ROM while the DyB requires the

most amount of ROM for reading and writing procedures.

6 Conclusions and Future Work

We presented the definition of Simulink blocks for the

automatic code generation of two implementations of Syn-

chronous Reactive communication channels: DoB and CT-

DyB. The generated code guarantees both time determin-

ism (stream preservation) and data consistency, for any ac-

tivation period or activation pattern of the writer and reader

blocks. With a moderate increase in ROM consumption, the

DyB protocol consumes less RAM compared with the RT

block scheme and the DoB protocol. The generated code

was validated by analyzing the results of the MPLAB-based

emulation on the PIC18F452 processor on which the ePI-

Cos18 is running. Code validation confirms that SR com-

munication semantics can be assured upon implementation.

As future work, we may want to take sporadic task acti-

vation into account during implementation.

References

[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halb-

wachs, P. L. Guernic, and R. de Simone, “The syn-

chronous languages 12 years later.,” in Proceedings of

the IEEE, pp. 64–83, 2003.

[2] S. Tripakis, C. Pinello, A. Benveniste,

A. Sangiovanni-Vincentelli, P. Caspi, and M. D.

Natale, “Implementing synchronous models on

loosely time triggered architectures,” IEEE Transac-

tions on Computers, vol. 57, pp. 1300–1314, October

2008.

[3] G. Wang, M. D. Natale, and A. Sangiovanni-

Vincentelli, “An OSEK/VDX implementation of syn-

chronous reactive semantics preserving communi-

cation protocols,” in Proceesings of the OSPERT,

pp. 38–47, July 2007.

[4] J. Chen and A. Burns, “A three-slot asynchronous

reader/writer mechanism for multiprocessor real-time

systems,” Tech. Rep. YCS 286, University of York,

January 1997.

[5] N. Scaife and P. Caspi, “Integrating model-based de-

sign and preemptive scheduling in mixed time- and

event-triggered systems,” in Proceedings of the 6th

ECRTS, July 2004.

[6] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi,

“Semantics-preserving and memory-efficient imple-

mentation of inter-task communication on static-

priority or edf schedulers,” Proceedings of the 5th

ACM EMSOFT, 2005.

[7] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-

optimal buffering protocol for preservation of syn-

chronous semantics under preemptive scheduling,”

Proceedings of the 6th ACM EMSOFT, October 2006.

[8] J. Chen and A. Burns, “Loop-free asynchronous data

sharing in multiprocessor real-time systems based on

timing properties,” in Proceedings of the 6th RTCSA,

1999.

[9] H. Kopetz and J. Reisinger, “The non-blocking write

protocol NBW: A solution to a real-time synchroniza-

tion problem,” in Proceedings of the 14th IEEE RTSS,

December 1993.

[10] M. Baleani, A. Ferrari, L. Mangeruca, and

A. Sangiovanni-Vincentelli, “Efficient embedded

software design with synchronous models,” in

Proceedings of the 5th ACM EMSOFT, 2005.

[11] M. D. Natale, G. Wang, and A. Sangiovanni-

Vincentelli, “Optimizing the implementation of com-

munication in synchronous reactive models,” in Pro-

ceedings of the IEEE RTAS, pp. 169–179, 2008.

[12] The MathWorksTM Real-Time Workshop R©: User’s

Guide. http://www.mathworks.com.

[13] “OSEK OS, Version 2.2.3.” http://www.osek-vdx.org.

[14] The MathWorksTM Real-Time Workshop R©: Target

Language Compiler. http://www.mathworks.com.

[15] The MathWorksTM Real-Time Workshop R© Embedded

CoderTM: User’s Guide. http://www.mathworks.com.

[16] MPLAB IDE, SIMULATOR, EDITOR USER’S

GUIDE. http://www.microchip.com.

[17] G. Wang, “The enhanced PICos18: an O(1) OSEK-

compliant real-time operating system,” Master’s the-

sis, EECS Department, UC Berkeley, December 2007.


