
Automatic Collision Avoidance for Manually Tele-operated

Unmanned Aerial Vehicles

Jason Israelsen Matt Beall Daman Bareiss Daniel Stuart Eric Keeney Jur van den Berg

Abstract— In this paper we present an approach that aids the
human operator of unmanned aerial vehicles by automatically
performing collision avoidance with obstacles in the environ-
ment so that the operator can focus on the global direction
of motion of the vehicle. As opposed to systems that override
operator control as a last resort in order to avoid collisions
(such as those found in modern automobiles), our approach
is designed such that the operator can rely on the automatic
collision avoidance, enabling intuitive and safe operator control
of vehicles that may otherwise be difficult to control. Our
approach continually extrapolates the future flight path of the
vehicle given the current operator control input. If an imminent
collision is predicted our algorithm will override the operator’s
control input with the nearest control input that will actually
let the vehicle avoid collisions with obstacles. This ensures safe
flight while simultaneously maintaining the intent of the human
operator as closely as possible. We successfully implemented
our approach on a physical quadrotor system in a laboratory
environment. In all experiments the human operator failed to
crash the vehicle into floors, walls, ceilings, or obstacles, even
when deliberately attempting to do so.

I. INTRODUCTION

The use of tele-operated unmanned aerial vehicles (UAVs)

in applications such as search and rescue, policing, cin-

ematography, monitoring, entertainment, and inspection of

inaccessible or hazardous locations [1], [2], [3], [4] has

increased dramatically in recent years, as they have allowed

for accessing hard to reach locations both indoor and outdoor.

Consider a scenario where a human operator maneuvers a

UAV equipped with cameras through a building at risk of a

collapse in search of survivors after an earthquake or fire, or

through an industrial building where toxic, nuclear, or oth-

erwise hazardous material has been released. In these cases,

the operator must make high-level decisions about where to

fly the vehicle in potentially unknown indoor environments,

and simultaneously ensure that the vehicle does not crash into

obstacles, walls, floors and ceilings. UAVs can be difficult

to fly even for trained operators, particularly in indoor GPS-

denied environments where the operator must navigate with

live camera-feed from the vehicle.

To aid the human operator in such tasks, we present an

approach that lets the vehicle automatically perform collision

avoidance, such that the operator can focus all of their

attention on the global decision making. Whereas collision

avoidance systems such as those that can be found in modern

Jason Israelsen, Matt Beall, Daman Bareiss, Dan Stuart, and Eric Keeney
are with the Department of Mechanical Engineering at the University
of Utah. Email: {jason.israelsen, matt.beall, daman.bareiss, dan.stuart,
eric.keeney}@utah.edu.

Jur van den Berg is with the School of Computing at the University of
Utah. E-mail: berg@cs.utah.edu.

Fig. 1. A time-lapsed picture showing the working of our automatic colli-
sion avoidance algorithm for a manually tele-operated quadrotor helicopter.
The vehicle was given an operator input to fly into the floor and into the
obstacle (green arrows). The automatic collision avoidance system follows
the operator inputs as closely as possible while ensuring that collisions are
avoided. We refer the reader to the video accompanying this paper and to
http://arl.cs.utah.edu/research/aca for videos of our experiments.

automobiles warn the driver or even override operator control

as a last resort [5], [6], [7], [8], our approach is designed

specifically so that the operator can rely on the automatic

collision avoidance. Our system ensures that collisions are

avoided. It also maintains the objective of the operator

by continually selecting a control input that is as close

as possible to the operator’s control input, resulting in an

intuitive control interface. This is not unlike the concept

of virtual fixtures [9] that are commonly used in surgical

robotics [10], [11], [12], [13], [14]; our approach similarly

allows the operator to use the obstacles for navigation and

achieve smooth obstacle-compliant flight (see Fig. 1).

Specifically, our method continually estimates the future

trajectory of the vehicle given its dynamics, its current state,

and the current operator’s control input. It checks whether a

collision will occur with any obstacle within a preset time

horizon. If a collision is imminent, our method selects a

new control input such that the change to operator’s input

is minimized while ensuring that collisions are avoided.

We note that if no collision is imminent, our method does

not change the operator’s control input. Our approach is

conceptually designed to fit the paradigm in which the

vehicle detects the relative location of nearby obstacles in

real-time using on-board sensors [15], [16] (our approach

does not require absolute positioning). However, in this paper

we focus on collision avoidance and assume that the robot

knows its local environment and its relative position within.

We implemented our algorithm on a physical quadrotor he-

licopter within a laboratory environment, highlighting our ap-

proach’s ability to handle systems with non-linear dynamics

that are difficult to operate manually. In our implementation,

2014 IEEE International Conference on Robotics & Automation (ICRA)

Hong Kong Convention and Exhibition Center

May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 6638

positioning of the vehicle is provided by a motion capture

system, and the obstacle geometry is preprogrammed. We

performed experiments for various scenarios in an indoor

environment with walls, floors, ceilings, and obstacles. In all

cases the human operator failed to crash the vehicle even

when deliberately attempting to do so.

The remainder of this paper is structured as follows. We

discuss related work in Section II. The problem we address

is formally defined in Section III. Our approach along with

implementation details is presented in Section IV. Simulation

and experimental results are presented in Section V. We

conclude in Section VI.

II. RELATED WORK

The problem of collision avoidance has a long history in

robotics. Methods based on artificial potential fields [17],

[18], [19], dynamic windows [20], [21], velocity obstacles

[22], [23], [24], inevitable collision states [25], and others

have been developed over the past decades. Approaches

geared specifically to (teams of) unmanned aerial vehicles

include [1], [2], [26], [27], [28], [29]. These methods mostly

focus on cases where the robot navigates fully autonomously.

Collision avoidance as a means of assisting a human

operator has been studied and commercially implemented in

automobiles, in which case the system warns the operator

or overrides operator control when a collision or unsafe

situation is imminent [5], [6], [7], [8]. These systems are

typically implemented as last resort safety mechanisms.

Systems designed such that the operator can rely on

collision avoidance have mainly been studied in the context

of tele-operated (surgical) manipulator robots [10], [11], [12],

[13], [14]. These approaches use the concept of virtual

fixtures [9], which are virtual boundaries in the workspace

that aid the operator in moving the robot’s end-effector

relative to obstacle geometry. The end-effector is prevented

from penetrating the fixtures by projecting the range of

the robot’s Jacobian matrix onto the subspace parallel to

the fixtures [10], so that any control input may only result

in motion parallel to the fixture. In many cases this is

supplemented with haptic feedback to the operator [11],

[13]. The goal of our approach is to achieve similar results

for tele-operated unmanned aerial vehicles, whose highly

inert dynamics is a critical complicating factor that must

specifically be accounted for.

Several operator-assisting collision avoidance methods

have been developed specifically for UAVs. The method

of [30] provides information about the environment to the

operator through force feedback. This force feedback is

relative to the time to impact (determined from vehicle’s

current velocity and distance to obstacle), and helps drive

the operator from obstacles. Similarly, in [3], the operator

input is overridden proportional to an approximate TTC (time

to collision), based on the vehicle’s current velocity and

distance to the obstacle. The TTC is classified as a threat

level, and each threat level determines a response (e.g. no

action, slow, stop, evasive maneuver). In this paper we take

a slightly more principled approach. To aid the operator

we specifically take into account the actual dynamics, state,

and operator control input to determine collisions in the

future from potentially non-linear trajectories, and use this

information to minimize the deviation from the operator

input such that collisions will not occur.

III. PROBLEM DEFINITION

We consider a robot with general non-linear dynamics and

a state space of arbitrary dimension. Let X ⊂ R
n be the state

space of the robot, and let U ⊂ R
m be the control input space

of the robot. Let the continuous-time, non-linear dynamics

of the robot be defined by a function f ∈ X ×U ×R → R
n:

ẋ(t) = f(x(t),u(t), t) (1)

where t is the time, x(t) is the state at time t, and u(t) is

the operator input at time t. Then, given the current state

x0 = x(0) and a constant operator input u, the state of the

robot for t ≥ 0 is defined by:

x(t) = g(x,u, t) (2)

where g ∈ X × U × R → X represents the solution to

differential equation (1).

Let Rd, where typically d = 3, be the workspace in which

the robot maneuvers, and let O ⊂ R
d define the subset of

the workspace occupied by obstacles and, in order to be

conservative and compatible with the paradigm of on-board

sensing, those regions of the workspace that are occluded by

the obstacles as seen from the current state of the robot (see

Fig. 2). Let R(x) ⊂ R
d denote the subset of the workspace

occupied by the robot when it is in state x ∈ X .

The problem we discuss in this paper is now defined as

finding a minimal change ∆u ∈ U to the operator’s control

input u ∈ U given the current state x of the robot, such that

for all times up to a preset time horizon τ ∈ R the robot

does not collide with obstacles:

minimize: ∆uTR∆u (3)

subject to: ∀t ∈ [0, τ] :: R(g(x,u+∆u, t)) ∩ O = ∅,

where R ∈ R
m×m is a positive-definite weight matrix.

IV. APPROACH

In this section we outline our approach. We first discuss

simplifying assumptions to make the problem tractable, and

then describe our (approximate) solution to the problem.

A. Simplifying Assumptions

The optimization problem as defined by Eq. (3) is highly

non-linear and non-convex. Given the real-time constraints

of our system, we make a number of key simplifying but

reasonable assumptions to make the problem solvable.

Firstly, we assume that the position of the robot, p ∈ R
d

can be derived from the robot’s state x through a potentially

non-linear projection function c ∈ X → R
d;

p = c(x), (4)

and that the geometry R of the robot is the robot’s smallest

enclosing sphere with radius r centered at its reference

6639

p
col

r

rp(τ)

n
nTp > c

Fig. 2. A schematic picture illustrating our approach. The future trajectory
of the robot is extrapolated given the current state of the robot and current
operator input, and is checked for collisions against the obstacles O, which
include the “shadows” of the obstacles that cannot be seen from the vantage
point of the robot. If a collision is imminent within the time horizon τ , a
halfspace is defined tangent to the point of collision that induces a constraint
for the change in control input ∆u.

point (such that its geometry is invariant to orientation). Let

R(p) ⊂ R
d denote the subset of the workspace (a sphere)

occupied by the robot when it is at position p.

Secondly, given the current state x of the robot, and a

change ∆u to the operator’s control input u, let the position

of the robot at time t be approximated by the first-order

Taylor expansion:

p(t,∆u) ≈ p̂(t) +G(t)∆u (5)

where

p̂(t) = c(g(x,u, t)), G(t) =
∂(c ◦ g)

∂u
(x,u, t). (6)

In addition, we make an implicit assumption about the local

linearity of the future trajectory of the robot, such that if the

robot is collision-free at the time horizon τ with respect to

an appropriately chosen convex subset of the free workspace

(Rd \O), then it is also collision-free for all times t ∈ [0, τ].
This is reasonable as long as τ is not too large, and the

convex subset of the free workspace includes the current

position of the robot.

B. Basic Approach

Our approach is as follows: given the current state x and

the current operator’s control input u, the (exact) future

positions of the robot are given by the function p̂ of Eq.

(5). If for all t ∈ [0, τ] the robot does not collide with

any obstacle, i.e. ∀t ∈ [0, τ] :: R(p̂(t)) ∩ O = ∅, then the

operator’s control input need not be changed: ∆u = 0.

If a collision is encountered, let pcol be the first position

of the robot at which it is in collision with the obstacles:

pcol = p̂(min{t ∈ [0, τ] | R(p̂(t)) ∩ O 6= ∅}), (7)

and let n be the unit normal vector to O (pointing into the

free workspace) at the point of collision (see Fig. 2). We

now define the following linear constraint on the position

p(τ,∆u) of the robot at the time-horizon τ :

nTp(τ,∆u) > c, (8)

where c = nTpcol. Eq. (8) defines a halfspace that gives

a (rough) convex approximation of the local free space.

Substituting Eq. (5) transforms it into a constraint on ∆u:

aT∆u > b, (9)

where aT = nTG(τ) and b = c − nT p̂(τ). Replacing the

complex constraint of Eq. (3) by the simple constraint of Eq.

(9) then gives an closed-form solution for ∆u:

∆u = bR−1a/(aTR−1a). (10)

C. Iteration

The new control input u+∆u does not guarantee that the

future trajectory of the robot is collision-free with respect

to all obstacles for all t ∈ [0, τ], in particular near convex

corners and edges of the free-space (see Fig. 3). Therefore,

we repeat the above approach in an iterative fashion.

Let the change in control input computed in Eq. (10)

be denoted ∆u1, and let this have been iteration 1 of the

algorithm. Then, in iteration i, we extrapolate the trajectory

for control input u+∆ui−1 and search for the first collision.

This defines a linear constraint aTi ∆u > bi on the change

in control input similar as in Eq. (9). We now solve an

optimization problem with respect to i constraints:

minimize: ∆uTR∆u (11)

subject to:
⋂i

j=1{a
T
j ∆u > bj}

In each iteration a constraint is added to the convex opti-

mization problem. In our implementation we let the number

of iterations, and hence the number of constraints, be maxi-

mized at d (the dimension of the workspace) to account for

corners of the free space in d dimensions (see Fig. 3 for

an illustration where d = 2). The control input u + ∆u,

where ∆u is the change in control input computed in the

last iteration, is then applied to the robot. Note that the above

approach is repeated in each control cycle of the robot.

The iterative inclusion of constraints in this optimization

problem aligns well with the LP-type algorithm of [31] that

can solve such low-dimensional convex optimization prob-

lems in O(i) expected time by considering the constraints in

an iterative fashion (i being the number of constraints). The

dimension of our optimization problem equals the dimension

m of the control input ∆u, which is typically equal to the

dimension d of the workspace. The fact that we maximize

the number of iterations at d then ensures that the convex

optimization problem is always feasible.

V. IMPLEMENTATION AND EXPERIMENTS

In this section we describe the implementation of our

approach on a physical quadrotor helicopter in a laboratory

environment, and qualitatively discuss experimental results.

We refer the reader to the video accompanying this paper

and to http://arl.cs.utah.edu/research/aca for videos of our

experiments.

6640

p(τ,0)
p(τ,∆u

1
)

p(τ,∆u
2
)

r

r

Fig. 3. A schematic illustration of our iterative optimization approach
near convex corners of the free workspace. The future trajectory given the
operator’s control input collides with the left wall, so a change ∆u1 is
computed that avoids collision with the left wall. However, this change
in control input will let the robot collide with the top wall, so a change
in control input ∆u2 is computed in an optimization problem with two
constraints. The number of iterations, and hence the number of constraints,
is maximized at d, the dimension of the workspace, which in this example
is d = 2. The change in control input ∆u2 that is computed in the last
iteration is then applied to the robot.

A. Quadrotor Dynamics

We used a Parrot AR.Drone 2.0 quadrotor in our ex-

periments. Its state x = [pT ,vT , rT ,wT]T ∈ X is 12-

dimensional, and consists of its position p ∈ R
3 (m), its

velocity v ∈ R
3 (m/s), its orientation r ∈ R

3 (rad) (rotation

about axis r/‖r‖ by angle ‖r‖), and angular velocity w ∈
R

3 (rad/s). Its control input u = [u1, u2, u3]
T ∈ U is

3-dimensional and consists of desired vertical velocity u1

(m/s), desired roll u2 (rad), and desired pitch u3 (rad). The

AR.Drone also allows input for its yaw, but since this is a

redundant degree-of-freedom, we implicitly hold this input

constant at zero. The actual internal dynamics of the Parrot

AR Drone 2.0 are not completely known to us, but we

hypothesize that its dynamics (i.e. the function f of Eq. (1))

are approximated well by:

ṗ = v (12)

v̇ = −kdragv + exp([r])[0, 0, kp1(u1 − vz)]
T (13)

ṙ = w (14)

ẇ =

kp2(u2 − rx)− kdwx

kp2(u3 − ry)− kdwy

−kp3wz

 , (15)

where [r] represents the skew-symmetric cross-product ma-

trix of r, and kdrag, kp1, kp2, kp3, and kd are coefficients

and gains whose values were determined using standard

parameter estimation techniques. Note that we use a simple

yaw controller on the quadrotor to ensure that its yaw

remains zero. We set the AR.Drone to an aggressive flight

mode that allows for roll and pitch angles of up to 0.4rad.

B. Experiment Setup and Implementation Details

We performed our physical experiments within a labo-

ratory environment equipped with an OptiTrack V100:R2

motion capture system. All computations were performed

on an off-board computer with an Intel Core i7 3.4GHz

processor with 8GB RAM. We implemented our approach

within the Robot Operating System (ROS) framework, and

ran it with a control cycle of 50 Hz. Controls were sent

to the vehicle over a wireless WiFi connection, and oper-

ator controls were received via USB Xbox controller. The

current state of the vehicle was continually estimated using

a Kalman filter that obtains position information from the

motion capture system through the Motive software interface,

and obtains information regarding velocity, orientation, and

angular velocity from sensors on-board the AR.Drone.

The obstacle environment was predefined for each ex-

periment and represented in the form of a set of oriented

triangular facets. These triangles model the true obstacles

offset along their normals by the radius r of the bounding

sphere of the robot, such that the robot itself can be treated as

a point. Given the current state x of the quadrotor from the

Kalman filter, and an operator control input u from the Xbox

controller, the future trajectory of the robot was estimated by

integrating the function f of Eq. (1) (as specified in Section

V-A) forward in time using 4th-order Runge-Kutta integra-

tion with small time increments. Between each increment,

the trajectory of the robot was approximated by a straight-

line segment, which was checked for intersection with each

of the triangular obstacle facets [32]. Halfspace constraints

induced by intersections, as in Eq. (8), were slightly offset

by a safety margin (i.e. c was increased) to prevent the robot

from coming too close to obstacles. The matrix G(τ) was

approximated using numerical differentiation. We used the

iterative method outlined in Section IV-C along with Eq.(10)

to compute ∆u in each control cycle given the halfspace

constraints.

C. Setting the Time Horizon τ

The time horizon τ , i.e. the amount of time the algorithm

looks ahead, is an important parameter of our approach.

Setting it too low may cause collisions, since the robot is

given too little time to avoid them once they are predicted.

Setting it too high may cause too conservative behavior, in

which the algorithm constantly overrides the operator, even

if there is enough time to avoid a potential future collision.

To quantitatively assess the effect of the value of τ on

our method, we performed an experiment in which the robot

was repeatedly flown along a path perpendicular to a wall for

varying values of τ . The virtual wall was defined by a single

constant halfspace constraint of the form of Eq. (8), with

respect to which a change in control input ∆u was computed

in each control cycle. Fig. 4 shows the position of the robot

along the perpendicular axis of the virtual wall as a function

of time for multiple values of τ . It can be seen that setting τ
too small (τ = 0.75s) results in an under-damped response,

which causes the vehicle to oscillate about the position of

the virtual wall. Resulting in unsafe flight with undesirable

oscillatory behavior. Setting τ too large (τ = 1.75s) results

in an over-damped response, which corresponds to safe but

overly conservative behavior. The value of τ that results in a

6641

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

P
o

s
it
io

n
 (

m
)

τ = 0.75

τ = 1.0

τ = 1.25

τ = 1.75

Fig. 4. A diagram showing the experimental results from varying the time
horizon τ of our collision avoidance approach for the Parrot AR.Drone
2.0 quadrotor. The vehicle was flown straight towards a virtual wall for
various values of τ . The graphs shows the position of the robot along the
axis perpendicular to the virtual wall as a function of time during each of
the flights for multiple values of the time horizon τ . As the time horizon
increases the system’s response changes from underdamped (τ = 0.75s),
to critically damped (τ = 1.25s), to overdamped (τ = 1.75s).

critically damped response is most desirable. Based on this

experiment we estimate this value to be about τ = 1.25s,

and we used this value in all subsequent experiments.

It is important to note that the optimal time horizon τ
will be different for each robotic system, as it depends on

the responsiveness of the dynamics of the vehicle. Hence,

the above experiment must be repeated if our approach were

implemented on a different vehicle.

D. Experimental Results

We experimented in the environment of Figs. 1, 5, and 6,

where in all cases the obstacles included four (virtual) walls

(as indicated by the blue lines in the figure), a ceiling, and

a floor. In the first experiment (see the video accompanying

this paper or videos on http://arl.cs.utah.edu/research/aca),

we let the quadrotor be flown along the boundaries of the

domain. This experiment highlights our approach’s ability to

deal with convex edges and corners of the free space, even

when the operator attempts to crash the vehicle into each of

the four corners. As can be seen, our approach prevented this

from happening, and slows the quadrotor down just before

it would hit a wall. In the second experiment (see Fig. 5)

the operator controls the quadrotor to fly towards a wall at

an oblique angle. Before the quadrotor hits the wall, our

approach deflects the movement of the vehicle such that it

flies parallel to the wall rather than into it. This experiment

highlights the capability of our approach to let the operator

use the obstacles for compliant flight; our approach only uses

the component of the operator’s control input that is parallel

to the obstacle, and ignores the component of the control

input that is perpendicular and directed into the obstacle. In

the third experiment (see Fig. 6) we added an obstacle to

the environment that protrudes from one of the walls. When

the operator flies the quadrotor along the wall, our approach

Fig. 5. A time-lapsed picture showing the behavior of our approach when
the operator attempts to fly the quadrotor into a wall (blue lines) at an
oblique angle. Our approach only uses the component of the operator’s
control input (green arrows) that is parallel to the obstacle, and ignores
the component of the control input that is perpendicular and directed
into the obstacle, in order to prevent collisions from happening while
at the same time maintaining the operator’s intent as closely as possi-
ble. We refer the reader to the video accompanying this paper and to
http://arl.cs.utah.edu/research/aca for videos of our experiments.

makes sure that the obstacle is avoided by letting making

an evasive maneuver before returning to a flight trajectory

parallel to the wall. The fourth experiment is similar (see

Fig. 1), but here the obstacle protrudes from the floor. In this

case the operator attempted to fly the quadrotor into the floor

and into the obstacle, but our approach prevented collisions

by increasing the vehicle’s altitude so that it safely flew over

the obstacle. These experiments show our approach’s ability

to handle concave edges and corners of the free space. The

video accompanying this paper also shows an experiment

where the vehicle is flown head-on to one of the obstacle

edges. In all experiments, the operator was unable to crash

the vehicle, even when deliberately attempting to do so.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for automatic col-

lision avoidance for manually tele-operated unmanned aerial

robots. Our experiments on a physical quadrotor show that

our approach is capable of avoiding collisions with obstacles

while at the same time following the operator’s control input

as closely as possible. This leads to an intuitive control

interface that allows the operator to focus his attention on

global decision-making and rely on the system to avoid

collisions with obstacles and walls. While we implemented

our approach for quadrotor helicopters, we conceptually

developed our approach for general systems with non-linear

dynamics. In future work we will explore the applicability of

our approach on other types of tele-operated (mobile) robots.

Our approach has conceptually been designed such that

all computations can be performed on-board the vehicle.

However, our experiments were performed in a laboratory

environment whose obstacle geometry was given. To make

our approach applicable in unknown, indoor environments,

our approach would need to be augmented with some form

6642

Fig. 6. A time-lapsed picture showing the behavior of our approach when
the operator attempts (green arrows) to fly the quadrotor along a wall (blue
lines) out of which an obstacle protrudes. Our approach makes sure that
the obstacle is avoided by letting the quadrotor make an evasive maneuver
before returning to a trajectory parallel to the wall. We refer the reader to the
video accompanying this paper and to http://arl.cs.utah.edu/research/aca

for videos of our experiments.

of on-board SLAM [15], [16], [33]. We plan to do this

in future work. Other possible future extensions include

combining our approach with a haptic feedback mechanism,

and enabling our approach to avoid collisions with moving

obstacles and other robots.

REFERENCES

[1] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano, “Quadrotor
using minimal sensing for autonomous indoor flight,” in Proc. of the

European Micro Air Vehicle Conference and Flight Competition, 2007.

[2] R. He, S. Prentice, and N. Roy, “Planning in information space for a
quadrotor helicopter in a gps-denied environment,” in Robotics and

Automation, 2008. ICRA 2008. IEEE International Conference on,
2008, pp. 1814–1820.

[3] J. Mendes and R. Ventura, “Assisted teleoperation of quadcopters
using obstacle avoidance,” Journal of Automation, Mobile Robotics

& Intelligent Systems, vol. 7, no. 1, 2013.

[4] L. Hull, “Drone makes first uk arrest as police catch car thief hiding
under bushes,” Daily Mail, vol. 12, 2010.

[5] A. Vahidi and A. Eskandarian, “Research advances in intelligent colli-
sion avoidance and adaptive cruise control,” Intelligent Transportation

Systems, IEEE Transactions on, vol. 4, no. 3, pp. 143–153, 2003.

[6] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen, “Develop-
ment of advanced driver assistance systems with vehicle hardware-in-
the-loop simulations,” Vehicle System Dynamics, vol. 44, no. 7, pp.
569–590, 2006.

[7] J. C. McCall and M. M. Trivedi, “Driver behavior and situation aware
brake assistance for intelligent vehicles,” Proceedings of the IEEE,
vol. 95, no. 2, pp. 374–387, 2007.

[8] J. Cao, H. Liu, P. Li, and D. J. Brown, “State of the art in vehicle active
suspension adaptive control systems based on intelligent methodolo-
gies,” Intelligent Transportation Systems, IEEE Transactions on, vol. 9,
no. 3, pp. 392–405, 2008.

[9] L. B. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic
manipulation,” in Virtual Reality Annual International Symposium,

1993., 1993 IEEE, 1993, pp. 76–82.

[10] P. Marayong, M. Li, A. M. Okamura, and G. D. Hager, “Spatial
motion constraints: Theory and demonstrations for robot guidance
using virtual fixtures,” in Robotics and Automation (ICRA), 2003 IEEE

International Conference on, vol. 2, 2003, pp. 1954–1959.

[11] A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D.
Hager, “Vision-assisted control for manipulation using virtual fix-
tures,” Robotics, IEEE Transactions on, vol. 20, no. 6, pp. 953–966,
2004.

[12] M. Dewan, P. Marayong, A. M. Okamura, and G. D. Hager, “Vision-
based assistance for ophthalmic micro-surgery,” in Proc. Medical

Image Computing and Computer-Assisted Intervention, 2004, pp. 49–
57.

[13] J. J. Abbott, P. Marayong, and A. M. Okamura, “Haptic virtual fixtures
for robot-assisted manipulation,” in Proc. Int. Symp. on Robotics

Research, 2007, pp. 49–64.
[14] T. L. Gibo, L. N. Verner, D. D. Yuh, and A. M. Okamura, “Design

considerations and human-machine performance of moving virtual
fixtures,” in Robotics and Automation, 2009. ICRA’09. IEEE Inter-

national Conference on, 2009, pp. 671–676.
[15] S. Thrun, M. Diel, and D. Hähnel, “Scan alignment and 3-d surface

modeling with a helicopter platform,” in Field and Service Robotics,
2006, pp. 287–297.

[16] A. Bry, A. Bachrach, and N. Roy, “State estimation for aggressive
flight in gps-denied environments using onboard sensing,” in Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA 2012), St Paul, MN, 2012.
[17] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[18] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast
mobile robots,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 19, pp. 1179–1187, 1989.

[19] M. Nieuwenhuisen, D. Droeschel, J. Schneider, D. Holz, T. Labe, and
S. Behnke, “Multimodal obstacle detection and collision avoidance
for micro aerial vehicles,” in Mobile Robots (ECMR), 2013 European

Conference on. IEEE, 2013, pp. 7–12.
[20] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[21] P. Saranrittichai, N. Niparnan, and A. Sudsang, “Robust local obstacle
avoidance for mobile robot based on dynamic window approach,” in
Int. Conf. on Electrical Engineering/Electronics, Computer, Telecom-

munications and Information Technology, 2013.
[22] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments

using velocity obstacles,” The International Journal of Robotics Re-

search, vol. 17, no. 7, pp. 760–772, 1998.
[23] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoid-

ance under bounded localization uncertainty,” in IEEE Int. Conf. on

Intelligent Robots and Systems, 2012.
[24] J. van den Berg, D. Wilkie, S. J. Guy, M. Niethammer, and

D. Manocha, “Lqg-obstacles: Feedback control with collision avoid-
ance for mobile robots with motion and sensing uncertainty,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference

on, 2012, pp. 346–353.
[25] T. Fraichard and H. Asama, “Inevitable collision states. a step towards

safer robots?” in Intelligent Robots and Systems, 2003. (IROS 2003).

Proceedings. 2003 IEEE/RSJ International Conference on, vol. 1,
2003, pp. 388–393.

[26] G. Ducard and R. D’Andrea, “Autonomous quadrotor flight using a
vision system and accommodating frames misalignment,” in Industrial

embedded systems, 2009. SIES’09. IEEE international symposium on,
2009, pp. 261–264.

[27] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in Robotics and Automation, 2009.

ICRA’09. IEEE International Conference on, 2009, pp. 2878–2883.
[28] D. Bareiss and J. van den Berg, “Reciprocal collision avoidance for

robots with linear dynamics using lqr-obstacles,” in IEEE Int. Conf.

Robotics and Automation, 2013.
[29] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic

program trajectory generation for heterogeneous quadrotor teams,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference

on, 2012, pp. 477–483.
[30] A. M. Brandt and M. B. Colton, “Haptic collision avoidance for a

remotely operated quadrotor uav in indoor environments,” in Systems

Man and Cybernetics (SMC), 2010 IEEE International Conference on,
2010, pp. 2724–2731.

[31] M. De Berg, O. Cheong, M. van Kreveld, and M. Overmars, Compu-

tational Geometry: Algorithms and Applications. Springer, 2008.
[32] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle

intersection,” Journal of graphics tools, vol. 2, no. 1, pp. 21–28, 1997.
[33] M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and

M. Csorba, “A solution to the simultaneous localization and map build-
ing (slam) problem,” Robotics and Automation, IEEE Transactions on,
vol. 17, no. 3, pp. 229–241, 2001.

6643

