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Automatic Construction of Building Footprints from

Airborne LIDAR Data
Keqi Zhang, Jianhua Yan, and Shu-Ching Chen, Senior Member, IEEE,

Abstract— This paper presents a framework that applies a
series of algorithms to automatically extract building footprints
from airborne LIDAR measurements. In the proposed frame-
work, the ground and non-ground LIDAR measurements are
first separated using a progressive morphological filter. Then,
building measurements are identified from non-ground measure-
ments using a region growing algorithm based on the plane-
fitting technique. Finally, raw footprints for segmented building
measurements are derived by connecting boundary points, and
the raw footprints are further simplified and adjusted to remove
noise caused by irregularly spaced LIDAR measurements. Data
sets from urbanized areas including large institutional, commer-
cial, and small residential buildings were employed to test the
proposed framework. Quantitative analysis showed that the total
of omission and commission errors for extracted footprints for
both institutional and residential areas was about 12%. The
results demonstrated that the proposed framework identified
building footprints well.

Index Terms— Airborne LIDAR, building footprint.

I. INTRODUCTION

BUILDING footprints are one of the fundamental GIS

data components that can be used to estimate energy

demand, quality of life, urban population, and property taxes

[1]. Accurate building footprint data are essential for construc-

tion of urban landscape models, assessment of urban heat

island effect, and estimation of building base elevation for

flood insurance [2]. In addition, footprint data in combination

with height values can be used to generate three-dimensional

(3D) building models for visualization in GIS. Traditionally,

aerial photographs and high-resolution satellite images were

the most effective data sources for extraction of building

footprints. Manual derivation of building geometric data from

a remote sensing image for a large area is cost prohibitive

and time consuming. Therefore, numerous studies have been

done to develop automated methods to extract footprints [3]-

[6]. However, the success of the automated methods is limited

due to the influence of sun shadow and relief displacement of

high buildings in remote sensing images.

Recent emerging airborne light detection and ranging (LI-

DAR) technology provides a promising alternative for mea-
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suring buildings. Airborne LIDAR systems derive irregularly

spaced 3D point measurements of objects, including ground,

buildings, trees, and cars scanned by the laser beneath the

aircraft. Compared to aerial photographs and satellite images,

LIDAR measurements are not influenced by sun shadow and

relief displacement. However, voluminous point data pose a

new challenge for automated extraction of building informa-

tion from LIDAR measurements because many raster image

processing techniques cannot be directly applied to irregularly

spaced points.

This paper presents algorithms for the extraction of building

footprints from LIDAR measurements. The presented work

is focused more on 2D footprint extraction than 3D building

models. The paper is arranged as follows. Section II reviews

the previous work. Section III describes the algorithms that

derive building footprints. Section IV describes the sample

LIDAR data set used by this study and parameters for data

processing. Section V examines the results by applying foot-

print extraction algorithms to the sample data set and discusses

several factors influencing footprint extraction algorithms.

Section VI includes conclusions.

II. LITERATURE REVIEW

Two steps are involved in extracting a building footprint:

identifying building measurements from LIDAR data and

deriving the footprint polygon. Two ways are often utilized

to identify building measurements from LIDAR data. One is

to separate ground, buildings, trees, and other measurements

from LIDAR data simultaneously [7][8]. The more popular

way is to separate the ground from non-ground LIDAR mea-

surements first and then identify the building points from non-

ground measurements [9]-[11]. Numerous algorithms have

been developed to identify ground measurements from LIDAR

data [12]. The non-ground measurements can be derived by

removing identified ground data from a raw data set. The

critical step is to classify the building and vegetation points

which dominate non-ground measurements.

Morgan and Tempfli [9] applied Laplacian and Sobel op-

erators to height surfaces to separate building and tree mea-

surements. Filin [8] and Morgan and Habib [13] separated

building and tree measurements using the parameters for a

plane which fits a LIDAR point and its neighbors within a local

window. Elberink and Mass [14] segmented LIDAR data using

anisotropic height texture measures. Alharthy and Bethel [15]

employed the height difference between the first and last return

measurements to distinguish building and tree measurements.

The Hough Transform has also been used to identify building
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points from non-ground measurements [11] or directly from

raw LIDAR data [16][17].

However, these methods suffer from various problems. For

example, the height differences from first and last returns

do not work for areas covered by dense trees where laser

pulses cannot penetrate. It is difficult to define an optimum

voting size in the parameter space for the Hough Transform

because local height changes of building roof surfaces are

varied. The region growing algorithm is often employed to

identify building points in a method that uses estimated plane

parameters for a point and its neighbors. The processes of

region growing are variable, depending on the selection of seed

points. The effect of selecting seed points on segmentation

results has not been examined.

After measurements for a building are identified, a raw foot-

print polygon for the building can be derived by connecting

all boundary points. However, the raw footprint is often noisy

because of the irregularly spaced LIDAR measurements. It is

a challenging task to derive an accurate footprint from a noisy

and complex polygon. Alharthy and Bethel [15] employed

a histogram of boundary points to generalize the footprint

edges by assuming that the buildings have only two dominant

directions that are perpendicular with each other. Based on

the same assumption, Sampath and Shan [18] used the least

squares model to regularize the footprint edges. However, this

assumption is too strict and cannot be applied to buildings

whose edges are not perpendicular to the dominant directions.

It is not uncommon that both commercial and residential

buildings have some segments that are not parallel to the

dominant directions.

The main objective of this paper is to present a framework

involving a series of algorithms for building footprint extrac-

tion from LIDAR measurements and an accuracy analysis for

the proposed methods. The framework consists of three major

steps. First, the non-ground and ground measurements are

separated. Second, building measurements are identified by

region growing using a local plane-fitting technique. Finally,

footprints are derived and adjusted based on estimated domi-

nant directions.

III. DERIVATION OF BUILDING FOOTPRINTS

A. Separating Ground and Non-Ground Measurements

Morgan and Tempfli [9] showed that classifying ground and

non-ground measurements is a critical step for constructing

building footprints. The ground and non-ground measurements

are separated as a first step in the proposed framework

using a progressive morphological filter [19]. We selected the

progressive morphological filter because this filter identifies

the ground and non-ground measurements well for the study

areas which are located in a coastal urban setting with gentle

slopes. Alternative filters can also be used in this step if those

filters can produce a better classification.

Before filtering and building identification, a two-

dimensional array was employed to represent points falling

in cells of a mesh overlaying the data set to facilitate the

computation. The cell size (cs) of the mesh is usually set

to be less than the average spacing of LIDAR points to

reduce information loss. Each point measurement from the

LIDAR data set is assigned to a cell in terms of its x and y

coordinates. If more than one point falls in the same cell, the

point with the lowest elevation is selected as the array element.

If no point exists in a cell, the array element for the cell is

assigned by its nearest neighbor. Since our main concern is to

identify buildings, non-ground measurements whose heights

are less than 2 m were removed to minimize the effect of

trimmed bushes. The heights were derived by subtracting

elevations interpolated using identified ground measurements

from elevations of non-ground measurements.

B. Identifying Building Measurements

The second step of our method is to identify building

measurements from non-building (mainly vegetation) data

using the region growing algorithm based on a plane-fitting

technique. Areas of connected non-ground measurements are

found and labeled first by connecting the eight neighbors of

a cell, recursively. For each non-ground measurement area,

inside and boundary points are identified. If at least one of

the eight neighbors of a point is a ground measurement, the

point is defined as a boundary point. Otherwise, the point is

an inside point.

Then, non-ground LIDAR measurements for each area

are segmented by region growing based on a plane-fitting

technique. Given an inside point p0(x0, y0, z0), a Cartesian

coordinate system (x, y, and z) is established using p0 as the

origin. In this coordinate system, a best fitting plane for p0

and its eight neighbors is derived by using the least squares

method. Assume that the plane is defined by:

z = ax + by + c (1)

The parameters (a, b, c) can be derived by minimizing the

sum of squares due to deviations (SSD)

min(SSD) = min
∑

(pk)∈M

(zk − hk)2 (2)

where M is a set for p0 and its neighbors, and hk and zk

are observed and plane fitted surface elevations, respectively.

Region growing segmentation starts with the selection of

the seed point from the inside points for an area of connected

non-ground measurements. The inside points for the area are

sorted based on their SSDs in ascending order. The point with

the minimum SSD is labeled and selected as the first seed point

for region growing. The neighbors of a seed point are judged

by whether they belong to the same category through a plane-

fitting technique. A plane is constructed based on the points

in the category using a least squares fit. The elevation from

the candidate point to this plane is compared to a predefined

threshold ∆hT to select the point. ∆hT is determined by the

elevation error of the LIDAR survey and is usually 15-30 cm.

If a neighbor is found to be in the same category, it is labeled

and added to the category. The neighbors of the growing area

are examined further, and the process is continued until no

additional points can be added into the category. Next, the

unlabeled inside points are sorted in terms of their SSDs, and

region growing starts again from a labeled seed point with a
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minimum SSD. The region-growing processes are repeated for

each non-ground measurement area until all measurements are

segmented.

After non-ground measurements are segmented, patches for

non-building objects are removed by four steps. First, areas

of patches are compared with a predefined area threshold

Min Surface (e.g. 5 m2) to eliminate small and fragmented

patches of vegetation. Second, eliminated small patches in the

first step representing chimneys, water tanks, and pipe lines of

buildings are recovered. The condition to include these small

patches is they are completely surrounded by large patches.

Third, isolated boundary points, none of whose eight neighbors

is an inside point, are removed. Fourth, the remaining patches

are merged in terms of their connectivity. Through this process,

adjacent roof surfaces from the same building, having different

slopes, are merged into a large building patch. Relatively

large vegetation patches that are not removed in the first step

remain in merged patches, however vegetation patch sizes are

usually smaller compared to those of merged building roofs.

Therefore, these vegetation patches are removed by comparing

their area values to a threshold Min Building that approximates

the minimum area of a building, e.g. 60 m2. The remaining

patches after four operations are classified as building patches.

C. Deriving the Outline of a Building

With the building measurements identified, a raw footprint

can be obtained by connecting the boundary points (Fig.

1a). However, the boundary of the raw footprint contains too

many details and ”zig-zag” noise because of the irregularly

spaced point measurements and the grid based interpolation.

In this section, the following three steps describe the method

to reduce the noise of raw footprints.

1) Extracting the Coarse Footprint: Several algorithms

have been employed to reduce the vertices of a noisy raw

building footprint and derive a coarse footprint. Latecki and

Lakamper [20] proposed a method based on a conspicuous

value to remove boundary noise. The drawback of this method

is that it is difficult to automatically define the termination

condition. Weidner and Forstner [21] eliminated noisy vertices

of a footprint polygon by comparing the heights of triangles

formed by three consecutive vertices with a predefined thresh-

old. The Douglas-Peucker algorithm [22] is another alternative

to simplify lines with noise. The Douglas-Peucker algorithm

generalizes lines by forming a line connecting start and end

points first, and then recursively selecting a left point with a

largest distance to the line until a predefined distance threshold

T Douglas is reached. The Douglas-Peucker algorithm was

implemented in our framework because of its simplicity.

2) Estimating the Dominant Directions of a Building:

The Douglas-Peucker algorithm occasionally removes critical

corner vertices of a raw footprint due to the ”zig-zag” pattern

of boundary lines, thus distorting the orientation of segments

and producing acute or obtuse angles between segments (Fig.

1b). In order to recover the removed critical vertices and

distorted segments, the building footprints were divided into

two categories. For the first category, there are two dominant

directions for a building footprint polygon, and most segments

Fig. 1. Example to illustrate the framework for extracting building footprints.
The x and y coordinate units are in meters. (a) The raw footprint derived by
connecting boundary points of identified building measurements through the
region growing algorithm. The raw footprint is noisy due to the interpolation
of the irregularly spaced LIDAR measurements. (b) The coarse footprint
(dash line) that was derived by applying the Douglas-Peucker algorithm to
the raw footprint and the estimated dominant directions (solid line). (c) The
adjusted footprint that recovered the critical corner vertices removed by the
Douglas-Peucker algorithm. The footprint was rotated clockwise according to
the estimated dominant directions. (d) Comparison of the final footprint (dot
line) with corresponding known footprint (solid line).

are parallel or perpendicular to each other. For the second

category, a considerable number of segments are oblique to the

two dominant directions, or more than two dominant directions

exist. The critical step in identifying these two categories of

building footprints is to estimate the dominant directions.

Maas and Vosselman [23] derived dominant directions using

invariant parameters, based on an assumption that the roof type

of a building is already known. However, building roof types

are not available in many cases before building footprints are

identified [13]. Also, it is often difficult to classify the roofs of

complex buildings into any given type. A 2D Hough Transform

can be used to estimate the dominant directions of a building

footprint. The major limitation of the Hough Transformation

is that it is difficult to determine the optimum cell size in

parameter space.

We have proposed a new method to estimate the dominant

directions of a building footprint based on weighted line

segment lengths. Let x’ and y’ represent possible dominant

directions in a 2D coordinate system x and y (Fig. 2). The

dominant directions x’ and y’ are related to the coordinate

system x and y through a counterclockwise rotation by an angle

ϕ(00 ≤ ϕ < 900)). Therefore, the key step to estimate the

dominant directions is to find the rotation angle ϕ. Assuming

that the counterclockwise intersection angle between a line
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Fig. 2. Relationship between angles βi, θi, αi and ϕ. The coordinate system
x′ and y′ is a counterclockwise rotation of the coordinate system x and y by an
angle ϕ. θi is the counterclockwise intersection angle between a segment of
a building footprint (solid square) and the axis x. αi is the counterclockwise
intersection angle between a segment and the axis x′. βi is the minimum
intersection angle between a segment and the axes x′ and y′

segment and x axis is θi(0
0 ≤ θi < 1800), we define

SL =

N
∑

i=1

g(Li)f(βi(θi, ϕ)) (3)

where N is the total number of vertices of a building footprint,

Li is the segment length, βi(0
0 ≤ βi < 450) is the minimum

intersection angle between a segment and the nearest axis in

the coordinate system x’ and y’, and is determined by θ i and

ϕ. g() is the weight function based on L i, and f() is the

weight function based on and θi and ϕ. The dominant building

directions can be estimated through finding an optimum ϕ so

that SL will reach a minimum. A linear function is employed

to represent g()

g(Li) = Li/

N
∑

i=1

Li (4)

Finding the optimum ϕ depends heavily on f() which can

be in many forms such as linear and exponential. We would

like to construct f() such that the segments close to the

dominant direction will have a small contribution to SL. Here

a linear function is used to represent f()

f(βi(θi, ϕ)) = βi/45 (5)

Obviously, the closer the segment is to the dominant direc-

tion, the smaller the f(). βi is determined by

βi =

{

min(αi, 90 − αi) : αi ≤ 90
min(180− αi, αi − 90) : αi > 90

(6)

where αi(0
0 ≤ αi < 1800) is the counterclockwise intersec-

tion angle between a line segment and the axis x’ and has the

following relationship with θi and ϕ

αi =

{

θi − ψ : θi ≥ ϕ
180 + θi − ϕ : θi < ϕ

(7)

Numerically, the optimum ϕ is found by comparing SL
values for angles between 00 and 900. After ϕ is derived, the

Fig. 3. A footprint with several parallel and perpendicular segments and
an oblique line. The parallel and perpendicular segments align with dominate
directions that are x and y axes. Angles βi, θi, αi and ϕ have the same
definitions as those in Fig. 2.

building footprint is rotated so that the x and y axes are aligned

with the dominant directions of the buildings.

Although the algorithm is simple, this method to estimate

the dominant direction of a building is very robust and has the

following property:

Estimated dominant directions are the same as the direc-

tions of parallel and perpendicular segments as long as the

total length of oblique lines is less than the total length of

parallel and perpendicular segments of a footprint.

Proof: Let directions for parallel and perpendicular

segments be x and y, and possible dominant directions are

x’ and y’ that are derived by rotating x and y axes with an

angle ϕ (Fig. 3). Since θi is 1800 (or 00) and 900 for parallel

and perpendicular segments, respectively, β i for parallel and

perpendicular segments is the same (βD) and equal to the

rotation angle ϕ or the complementary angle of ϕ. Therefore,

the contribution (SLD) of rotated parallel and perpendicular

segments to SL can be represented by

SLD =
N

∑

i=1

g(Li)βi/45

= βDLD/45LT

=

{

ϕLD/45LT : ϕ ≤ 45
(90 − ϕ)LD/45LT : ϕ > 45

(8)

where LD is the total length of parallel and perpendicular

segments, and LT is the total length of segments of a footprint.

SLD is a period function with minimum values at 0 and 90

and maximum value at 45 (Fig. 4). The amplitude and period

of SLD are LD/LT and 90, respectively.

The contribution (SLO) of rotated oblique lines to SL can

be described by

SLO =

M
∑

i=1

SLOi =

M
∑

i=1

LOiβOi(ϕ, θOi)/45LT (9)

where M is the number of oblique segments, SLOi is the

contribution of ith oblique segment to SL, LOi is the length

of ith oblique segment, and βOi is the minimum intersection
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Fig. 4. SLD , SLO, and SL for a footprint with several parallel and
perpendicular segments and an oblique line. The length of parallel and
perpendicular segments is 60% of the total length of segments, and the length
of the oblique line is 40% of the total length of segments. The θO for the
oblique line is 1200. The directions of parallel and perpendicular segments
are the dominant directions of the footprint.

angle between the oblique segment and the nearest axis in the

coordinate system x’ and y’. Similar to SLD, SLOi has period

of 90 and amplitude of LOi/LT . The initial phase of SLOi

is determined by the counterclockwise intersection angle θOi

between the oblique segment and x axis. Fig. 4 shows the

change of SLOi as a function of ϕ when θOi is 1200.

In order to facilitate the analysis, we divided SL into two

sections: ϕ < 450 and ϕ > 450 In section ϕ < 450, SL
becomes

SL = ϕLD/45LT −
M
∑

i=1

LOiβOi(ϕ, θOi)/45LT (10)

The derivative of SL with respect to ϕ is

∂SL

∂ϕ
=

1

45LT

(LD +

M
∑

i=1

±LOi) >
1

45LT

(LD − LO) (11)

where LO is the total length of oblique segments. The sign

before LOi is determined by θOi and ϕ. Since LD > LO,

no matter how SLO changes, SL, like SLD, increases mono-

tonically in section ϕ < 450. Similarly, we can demonstrate

that SL decreases monotonically in section ϕ > 450. This

indicates that SL reaches minimum at ϕ = 0 or ϕ = 90.

There are no better dominant directions for the footprint other

than the directions of parallel and perpendicular segments as

long as the total length of parallel and perpendicular segments

is larger than that of oblique lines.

3) Adjusting the Footprint: For the first category of building

footprints which have two distinct dominant directions, a

unique optimum ϕ can be derived. The SL value for a rotated

footprint should be small. However, for the second category of

building footprints, multiple optimum ϕ could be derived. In

such a case, the first optimum ϕ is used to rotate the footprint.

The SL value for the second category of footprints should

be large. Therefore, the SL value for each rotated building

footprint was employed to classify the footprint. If the SL
value is less than a threshold T SL (e.g., 0.3), the footprint

is classified as the first category which has two dominant

directions. Otherwise, the footprint belongs to the second

category. For the first category, we propose an algorithm to

recover the critical vertices based on two assumptions:

• Each building has two dominant directions and they are

perpendicular to each other

• Most (e.g., 80%-90%) of the boundary segments are

parallel to one of the two dominant directions

Segments of the rotated footprint are adjusted using four

types of operations. The split operation is used to adjust certain

horizontally and vertically oblique segments. The adjustable

horizontally oblique segment is the line whose projection on

the x axis is equal to or greater than the y axis, and whose

projection on the y axis is less than a threshold T Projection.

The adjustable vertically oblique segment is the line whose

projection on the x axis is less than the y axis, and whose

projection on the x axis is less than T Projection. Fig.

5a shows how an adjustable horizontally oblique segment

P1P2 is straightened by adding two more points P
′

3 and P
′

4

using split. Line P1P2 is replaced by three lines P1P
′

3, P
′

3P
′

4,

P
′

4P2, among which P
′

3P4
′ is horizontal. The x coordinates

of vertices P
′

3 and P
′

4 are the same as those of P1 and P2.

The y coordinates are the average of P1 and P2, respectively.

A similar operation can be applied to an adjustable vertically

oblique segment by exchanging the x and y coordinates.

The intersect operation is employed to recover the missing

corner as shown in Fig. 5b. This operation compares the ratio

R of the area of the triangle P2PP3 to that of triangle P1PP4.

If the R is less than the threshold T Ratio, the four points P1,

P2, P3, and P4 are replaced with points P1, P and P4.

The merge operation adjusts four consecutive points P1, P2,

P3, and P4 when P1P2 is parallel to P3P4, but not collinear.

Without loss of generality, P1P2 is assumed to be horizontal.

The operation can be applied to the case when P1P2 is vertical

by exchanging the x and y coordinates. There are three types

of merge operations. The first type is for the case that P1P2

is opposite to P3P4 (Fig. 5c). If the distance between P1P2

and P3P4 is less than the threshold T Deviation, the merge

operation replaces the four original points with P1, P and

P4. This operation is used to remove the long, thin portion

protruding from a footprint. For the other two types of merge

operations, P1P2 has the same direction as that of P3P4. The

difference is that the projection of line P1P4 on the x axis is

longer than that on the y axis for the second type (Fig. 5d),

while the projection on the x axis is shorter for the third type

(Fig. 5e).

A horizontal segment P
′

2P
′

3 is constructed for the second

type of merge so that P1P
′

2 and P
′

3P4 are vertical. The y

coordinates of P
′

2 and P
′

3 are between those of P1 and P4 and
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Fig. 5. Operations proposed to adjust segments of a footprint (a) split, (b)
intersect, (c) first type of merge, (d) second type of merge, and (e) third type
of merge.

are inversely proportional to lengths LP1P2
andLP3P4

y = y3 + (y2 − y3)
LP1P2

LP1P2
+ LP3P4

(12)

where y2 and y3 are coordinates of P2 and P3 on the y axis. If

the difference |y2−y3| is less than the threshold T Deviation,

the original four consecutive points P1, P2, P3, and P4 are

converted into P1, P
′

2, P
′

3 and P4 by the merge operation. The

third type of merge operation is illustrated in Fig. 5e. A vertical

P
′

2P
′

3 is constructed by using the average of x coordinates

of P2 and P3 and y coordinate of P2 or P3. If the absolute

difference between y coordinates of P2 and P3 is less than

threshold T Deviation, the points P1, P2, P3, and P4 are

replaced by P1, P
′

2, P
′

3 and P4.

The remove operation is designed to remove the redundant

vertices of a line. Extra vertices may exist on a segment of

the footprint after operations split, intersect, and merge are

performed. These extra collinear vertices are eliminated using

the remove operation immediately after performing one of

three other operations.

The segments of the first category of building footprints are

adjusted iteratively using the four operations starting from a

small value of T Projection. T Projection is incremented

gradually until the percentage of the lengths of horizontal and

vertical segments of a footprint is over the predefined threshold

T Footprint. T Footprint is usually set to be between 80%

and 90% of the perimeter of the adjusted footprint. Fig. 1c

displays a building footprint refined from the coarse footprint

(Fig. 1b). Corner vertices lost due to the line simplification by

the Douglas-Peucker algorithm were recovered successfully by

our footprint adjustment algorithm.

The same operations and procedure are employed to ad-

just the second category of building footprints. However,

it is not appropriate to use the threshold T Footprint as

a termination condition because a considerable number of

segments are not parallel to the estimated dominant direc-

tions. A footprint could be distorted severely if a large

T Footprint is used. Therefore, an alternative termination

condition for footprint adjustment is employed. The iteration

is stopped when T Projection is greater than a threshold

T Projection F inal to avoid adjusting long oblique seg-

ments.

IV. DATA PROCESSING

The study area is located at and around the campus of

Florida International University (FIU), covering 6 km2 of

low relief topography. Surveyed features include residential

houses, complex buildings, individual trees, forest stands,

parking lots, open ground, ponds, roads, and canals. The data

were collected in April 2000 and August 2003 with Optech

ALTM 1210 and 1233 systems operated by FIU, respectively.

The Optech system recorded the coordinates (x, y, z) and

intensity of the point measurements corresponding to first

and last laser returns. The 2000 data set consists of three

overlapping, 400 m wide swaths of 15 cm diameter footprints

spaced approximately 2 m apart. The 2003 data set consists

of five overlapping, 340 m wide swaths of 13 cm diameter

footprints spaced approximately 1 m apart.

Building footprints were extracted from two test LIDAR

data sets for the FIU campus and adjacent areas to examine

their effectiveness. The thresholds used in our experiments for

the FIU campus dataset are listed in Table I. These thresholds

were derived empirically by visually comparing the results

with gridded raw LIDAR measurements. This is feasible

because it took 9, 2, and 0.7 minutes for a PC with 2.8 GHz

processor and 2 GB RAM to perform morphological filtering,

building measurement identification, and footprint derivation

for the FIU campus dataset. A two dimensional array with

about 7.2 million elements was employed to represent raw and

interpolated points covering an area of 1.8 km2. Sensitivity

analysis showed that small changes in these thresholds have

little impact on the final results.

Aerial photographs, a building footprint map from the FIU

Planning and Facility Management Department, and field

investigation were used to qualitatively and quantitatively

evaluate the derived footprints. The aerial photographs were

collected in 1999 at a resolution of 0.3 m. The Planning

and Management Department footprint map was made mainly

through ground surveying when buildings were constructed

and included 62 buildings. All surveyed buildings can be found

on the aerial photographs and they did not change over the

time. Therefore, these buildings can be used to quantify errors

introduced by our framework.
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Fig. 6. The raw footprints for buildings at FIU Campus. Raw footprints were derived by connecting boundary points of identified building measurements
using the region growing algorithm. The background image was derived by interpolating raw LIDAR point measurements.

TABLE I

PARAMETERS FOR EXTRACTING SIMPLE BUILDING MODELS

Cell size (cs) for progressive morphological filter 0.5 m

Height difference to aggregate a point (∆hT ) 0.2 m

Minimal surface on the roof (Min Surface) 5 m2 (20 c2s)

Minimal building area (Min Building) 60 m2 (240 c2s)

Douglas distance (T Douglas) 1.5 m (3 cs)

Threshold for footprint classification (T SL) 0.3

Threshold for split adjustment (T Projection F inal) 2 m (4 cs)

Threshold for deviation (T Deviation) 2 m (4 cs)

Threshold for triangle area ratio (T Ratio) 0.1

Threshold for footprint evaluation (T Footprint) 0.85

V. RESULTS

Both qualitative and quantitative methods were employed

to measure the errors committed in extracting building foot-

prints in this study. A qualitative method checks the quality

of estimated dominant directions and derived footprints by

visually comparing the extracted footprints with those in maps

and aerial photographs. The quantitative method examines

the accuracy by extending the count-based metric method

proposed by Shufelt and Mckeown [3] and area-based metric

method suggested by Ruther et al. [4]. The count-based metric

method quantifies commission and omission errors in the

number of buildings identified. The area-based metric method

measures the changes of two footprints derived from different

stages of the proposed framework. Raw footprints derived by

connecting boundary points from identified building measure-

ments are placed over known building footprints to examine

the accuracy of the region growing segmentation algorithm.

The omission error is measured by the percentage of area not

in the raw footprint but in the known building footprints. The

commission error is measured by the percentage of area in

the raw footprint but not in the known building data set. Raw

and adjusted footprints are compared to evaluate the changes

induced by the vertex recovery algorithm. The commission and

omission errors from comparison of final building footprints

with corresponding known building footprints are employed

to measure the performance of the entire framework.

To demonstrate the effectiveness of the proposed framework

for building footprint extraction, the results from last return

measurements of the 2003 data set are presented in detail

in this section. Fig. 6 displays raw footprints for identified

building areas at the FIU campus. Count-based error analysis

shows that all buildings were identified and no tree areas

were mistakenly included. Area-based error analysis compared

raw footprints with known building footprints. The results

show that omission and commission errors are 10% and

2%, respectively, indicating that the segmentation algorithm

worked well to identify most building measurements. The

commission error occurs because the elevation change of some

trees adjacent to buildings is similar to those of buildings (Fig.

7a). These tree measurements were mistakenly included by

the region growing segmentation. The omission errors are 6

percent larger than commission errors. The major reason for

the relatively large omission error is that there are 40 buildings

whose areas are larger than 600 m2 in the known building

footprint data set. Most roofs of the large buildings are flat with

narrow high surfaces at edges. These edges are often removed

by plan-fitting technique because of large elevation deviations.

Another factor is the trees covering roofs that prevent the

portion of buildings underneath the trees from being identified

(Fig. 7b).

The effect of the footprint adjustment algorithm is well

illustrated in Fig. 8. Fig. 8a shows that the raw building foot-

prints have noise on their boundaries. Most of the noise was

removed in the adjusted footprints as shown in Fig. 8b and the

smoothness of the footprint polygons was greatly improved. To

test the deviation caused by the footprint adjustment algorithm,
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Fig. 7. Examples of errors caused by the region growing building segmenta-
tion algorithm. (a) Commission error (C): the flat tree top next to the building
is misidentified as a part of the building. (b) Omission error (O): the corner
portions of buildings were missed because the roofs are partially covered by
trees.

raw footprints were compared with adjusted footprints. The

results show that the deviation is small. About 3% of the

raw footprints are not contained in adjusted footprints, and

3% of the footprints are mistakenly added to the adjusted

footprints. By visually comparing the adjusted footprints with

raw footprints, we found that in most cases the adjusted

footprints preserve the original geometric shape.

The effectiveness of the algorithm to estimate dominant

directions was evaluated by visually examining all final foot-

prints. The algorithm worked well for all buildings at the

FIU campus. For example, Fig. 9a shows a complex building

which consists of five major parts. The dominant directions

were estimated to be nearly horizontal in terms of three major

rectangles. A circle portion (C in Fig. 9a) was approximated

by several line segments (Fig. 9b). A small oblique rectangle

(R in Fig. 9a) whose direction is different from the dominant

directions was also adjusted appropriately.

Fig. 9. The raw (a) and final (b) footprint for a complex building. The x
and y coordinate units are meters. Two dominant directions of the footprint
are nearly horizontal and vertical. Note that the arc of a circle (C in a) of the
footprint is approximated by a polyline. A small rectangle (R in a) that is not
aligned with the dominant directions is well preserved.

Fig. 10 shows a 3D building map for FIU campus based

on final building footprints and heights. The heights of the

buildings were derived by averaging the elevation differ-

ences between building measurements and the digital terrain

model (DTM) interpolated from ground measurements. These

building models have been used to construct a 3D synthetic

visual environment to animate hurricane-induced fresh water

flooding at FIU campus. Comparison of 62 final footprints

with footprints from the map provided by the FIU Planning

and Facility Management Department shows that 10% of the

building footprints were mistakenly removed, and 2% of the

footprints were incorrectly included into the final output by

our framework. Both the omission and commission errors

for the final footprints are almost the same as those caused

by the region growing segmentation algorithm. This further

proves that the deviations caused by the footprint adjustment

algorithm have little effect on the final result. Therefore, the

errors in final footprints mainly come from the errors before

the footprint adjustment is performed.

Building extraction results for a residential area are dis-

played in Fig. 11. The known building footprint data for

the residential area were derived by digitizing buildings from

aerial photographs. The relief displacement of the residential

houses in the orthorectified photograph was small due to their

low heights. The digitized footprints were overlaid over a

grid interpolated from raw LIDAR measurements to ensure

quality. The data set included 211 building footprints, and

the parameters used by the framework are the same as those

listed in TABLE I. All buildings were identified from LIDAR

data and there were no commission and omission errors from

the count-based accuracy analysis. Both area-based omission

and commission errors for final footprints were about 6%,

indicating that the framework worked well in residential areas.

Several factors influence the accuracy of building measure-

ment identification. One of them is the point measurement

used in computation. Most airborne LIDAR systems are ca-

pable of deriving first and last return measurements for an

emitted laser pulse. Both first and last return measurements

can be used to identify the building footprints. However, there

are different advantages and disadvantages in using them. The

first return measurements suffer fewer errors from multipath

reflections which can be caused by many factors. For example,

when a laser pulse hits glass walls or windows, it can enter

the room and bounce several times before it finally reaches

the sensor. The multipath reflection of a laser pulse can lead

to incorrect low elevation measurements for the roof of a

building. These low elevation points are often removed as

ground measurements by the progressive morphological filter,

resulting in small holes in the building footprint. There are

many more multipath errors in the last return measurements

than in the first return measurements in our data set. However,

the last return measurements have more of a chance to

penetrate into the vegetation and reach the ground. This helps

the filter to separate the ground and non-ground measurements.

Also, the last return measurements display more spatial change

than the first return in tree areas, which helps separate the

building measurements from tree measurements. The current

building identification methods have been applied to both first

and last return data in the study area. It was found that the

last return measurements have a better overall performance.

Improvement of the current algorithms by combining the first

and last return measurements need to be further investigated.

The performance of the region growing algorithm to seg-

ment building measurements in the proposed framework is

critical to the footprint extraction. The processes of region

growing segmentation rely on the selection of seed points.

In our algorithm, the seed points are selected in terms of

minimum SSDs based on a plane-fitting technique. To examine

the robustness of the algorithm, other methods for selecting
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Fig. 8. Comparison of raw (a) and adjusted (b) building footprints. The small ”zig-zag” noise in the raw footprints were removed in the adjusted footprints,
making the adjusted footprints look more realistic.

Fig. 10. 3D building models for FIU campus. Each building model was created using the final footprint and average building height derived from LIDAR
measurements. The DTM for building bases was derived by interpolating ground measurements identified by the progressive morphological filter.

seed points were tested for the FIU campus data set. One

alternative method is to start seed point selection at the left

upper corner of a non-ground area, and then select seed

points based on an increased order of x coordinates and a

decreased order of y coordinates. Comparison of the seed

point selection starting at the left upper corner with that based

on minimum SSDs shows that slight differences sometimes

occur in areas of individual patches (roof surfaces) within a

building footprint, especially for those points at the boundaries

between two roof surfaces. However, there is little difference

between the identified measurements for the whole building

when individual patches are merged for the building.

Three other cases with different combinations of increased

or decreased x and y coordinates have also been tested. The

results show that the maximum difference between identified

building measurements using these combinations and those

from minimum SSDs is less than 1%. A random selection of

seed points was also performed for individual building areas,

and the results also show that the selection of seed points has

little impact on the building measurement identification. This

indicates that the region growing algorithm based on plane-

fitting is robust for segmenting building measurements.

LIDAR measurement density also has great effect on seg-

mentation results. The LIDAR points for 2000 and 2003 data

sets are spaced approximately 2 m and 1 m, respectively.

To test the effect of point density, building footprints were

extracted from both data sets. Comparison of the footprints

for the same buildings shows that the 2003 data set with a

higher point density produced a much better result for the

FIU Campus because small building surfaces removed in the

2000 data set were preserved in the 2003 data set. The total

of commission and omission errors of final footprints for the

2000 data set was about 17%, a 5% increase compared to a

total error of 12% for the 2003 data set (TABLE II). The effect

of point density on the residential area is more substantial as

the total area-based error increases to 35%. This large error is

mainly due to the fact that residential buildings are small and

2000 LIDAR measurements are not dense enough to capture
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Fig. 11. Building footprints extracted from LIDAR data for a residential area.

TABLE II

ERROR ANALYSIS RESULTS FOR TWO DATASETS COVERING THE FIU

CAMPUS AND A RESIDENTIAL AREA. THE KNOWN BUILDING FOOTPRINTS

WERE PROVIDED BY THE FIU PLANNING AND FACILITY MANAGEMENT

DEPARTMENT AND INCLUDE 62 BUILDINGS. THE KNOWN BUILDING

FOOTPRINT DATA FOR THE RESIDENTIAL AREA INCLUDE 211 BUILDINGS

AND WERE DERIVED BY DIGITIZING BUILDINGS ON AERIAL

PHOTOGRAPHS AND AN IMAGE INTERPOLATED FROM RAW LIDAR

MEASUREMENTS.

Omission Error FIU
Campus
(2003)

FIU
Campus
(2000)

Residential
(2003)

Residential
(2000)

Raw footprint vs.

Known footprint
10.4% 17.1% 6.6% 30.3%

Raw footprint vs.

adjusted footprint
3.0% 3.1% 4.8% 8.4%

Adjusted footprint vs.

Known footprint
10.4% 17.2% 6.0% 30.6%

Commission Error FIU
Campus
(2003)

FIU
Campus
(2000)

Residential
(2003)

Residential
(2000)

Raw footprint vs.

Known footprint
1.8% 1.4% 6.0% 5.3%

Raw footprint vs.

adjusted footprint
3.2% 3.2% 4.9% 7.5%

Adjusted footprint vs.

Known footprint
1.9% 1.4% 5.5% 4.8%

the boundary of the buildings.

VI. CONCLUSION

A framework including a series of algorithms has been de-

veloped to extract a building footprint from LIDAR measure-

ments. The framework includes three major components: (1)

the progressive morphological filter for separating the ground

and non-ground measurements, (2) a region growing algorithm

based on a local plane-fitting technique for segmenting build-

ing measurements, and (3) the Douglas-Peucker algorithm for

removing noise in a footprint, an algorithm for estimating

the dominant direction of a building, and an algorithm for

adjusting the footprint based on estimated dominant directions.

The entire process is highly automatic and requires little

human aid, which is very useful for processing voluminous

LIDAR measurements.

The novel algorithm for direction estimation is capable of

identifying dominant directions as long as the total length of

parallel and perpendicular segments is larger than the total

length of oblique segments in a footprint. The allowance of

oblique segments in a footprint enables users to perform foot-

print refinement for complex buildings in urban environments.

The algorithms for dominant direction estimation and footprint

adjustment can also be applied to generalize noisy raw building

footprints derived from aerial photographs and high-resolution

satellite images.

Application of the framework to the FIU campus and a

residential area shows that the algorithms identified building

measurements from LIDAR data and extracted footprints ef-

fectively. The quantitative accuracy analysis indicates that all

buildings were identified and about 12% of the area errors

were committed by the proposed algorithms, despite the fact

that there are several complex building shapes on the FIU

campus. These results provide a good basis for refining the

footprint manually in a GIS environment for engineering

applications which need highly accurate footprint information.

The point density of LIDAR measurements influence the

accuracy of building footprint extraction, and approximately

1 m spaced LIDAR points are needed to achieve the above

accuracy. The region growing segmentation algorithm for
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identifying building points from non-ground measurements is

critical for building footprint extraction. Experiments demon-

strated that region growing segmentation based on local plane-

fitting is robust and not sensitive to seed point selection.
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