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Automatic construction 
of molecular similarity networks 
for visual graph mining in chemical 
space of bioactive peptides: 
an unsupervised learning approach
Longendri Aguilera‑Mendoza1, Yovani Marrero‑Ponce2,3,4*, César R. García‑Jacas5, 
Edgar Chavez1, Jesus A. Beltran6, Hugo A. Guillen‑Ramirez7,8 & Carlos A. Brizuela1*

The increasing interest in bioactive peptides with therapeutic potentials has been reflected in a large 
variety of biological databases published over the last years. However, the knowledge discovery 
process from these heterogeneous data sources is a nontrivial task, becoming the essence of our 
research endeavor. Therefore, we devise a unified data model based on molecular similarity networks 
for representing a chemical reference space of bioactive peptides, having an implicit knowledge that 
is currently not explicitly accessed in existing biological databases. Indeed, our main contribution 
is a novel workflow for the automatic construction of such similarity networks, enabling visual 
graph mining techniques to uncover new insights from the “ocean” of known bioactive peptides. 
The workflow presented here relies on the following sequential steps: (i) calculation of molecular 
descriptors by applying statistical and aggregation operators on amino acid property vectors; (ii) a 
two‑stage unsupervised feature selection method to identify an optimized subset of descriptors using 
the concepts of entropy and mutual information; (iii) generation of sparse networks where nodes 
represent bioactive peptides, and edges between two nodes denote their pairwise similarity/distance 
relationships in the defined descriptor space; and (iv) exploratory analysis using visual inspection in 
combination with clustering and network science techniques. For practical purposes, the proposed 
workflow has been implemented in our visual analytics software tool (http://mobio sd‑hub.com/starp 
ep/), to assist researchers in extracting useful information from an integrated collection of 45120 
bioactive peptides, which is one of the largest and most diverse data in its field. Finally, we illustrate 
the applicability of the proposed workflow for discovering central nodes in molecular similarity 
networks that may represent a biologically relevant chemical space known to date.

During the last years, a growing interest has emerged for the development of Bioactive Peptides (BPs) as poten-
tial drugs impacting on human  health1,2. As a consequence, a lot of BPs and their biological annotations have 
been collected from the literature into a large variety of biological databases, providing a valuable ground for 
knowledge discovery. Naturally, the domain experts in the �eld of biomedical research need to mine knowledge 
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hidden in those heterogeneous data sources. However, to exploit the available data, most of the previous  reports3–6 
are primarily focused on the �eld of supervised machine learning for building predictive models from a set of 
training instances. �ese supervised based models are very suitable to predict the biological activities for new 
molecules whose functions to be predicted are unknown. By contrast, in unsupervised methods, the input data 
are not labeled with the corresponding outcome, and there is no response to supervise the learning process. So, 
in this other �eld of machine learning, the goal is �nding interpretable associations and patterns among avail-
able data elements.

In this report, we focus on employing unsupervised learning methods for turning existing data of BPs into 
information not appreciated before. As a foundation for this task, we already have introduced two valuable 
resources: starPepDB and starPep  toolbox7. StarPepDB is an integrated graph database of existing individual 
databases for a better understanding of the universe of BPs. �is comprehensive graph database is one of the 
largest and most diverse data in its �eld. It is comprised mainly of 45,120 nodes representing peptide com-
pounds, while additional nodes are connected to these primary nodes for describing metadata, i.e., biological 
annotations. Moreover, the so�ware named starPep toolbox helps researchers to understand the integrated data 
through visual network analysis.

Now we continue to extend the implemented visual analysis process to let the end-users gain insight into a 
graph-based representation of chemical space for studying BPs. Whereas the term chemical space refers to the 
ensemble of all possible molecules, either natural or synthetically accessible  product8,9, a realistic representation 
focuses on con�ned regions of such theoretical space. Still, chemical space is so vast that its complete enumeration 
and visual inspection goes beyond human comprehension. Nonetheless, not all likely compounds are biologically 
active, and the biologically relevant chemical space is where the bioactive compounds  reside8. �us, the analysis 
and visualization of chemical space covered by known bioactive peptides (those reported thus far) may play an 
essential role in decision-making when searching for new peptide-based  drugs10,11.

To visualize a chemical space, one of the most common approaches has been a coordinate-based  map12, where 
a set of numerical features (descriptors) characterizes each compound. �at is, mathematically, for each chemical 
compound corresponds a point in a multi-dimensional descriptor space that requires a dimensionality reduction 
technique for a proper visualization in 2D or 3D maps. For instance, Principal Component  Analysis13 (PCA) is 
a popular technique that seeks a small number of principal components expressed as a linear combination of 
original features, explaining as much of data variability as possible. In this way, the 2D (3D) map may project 
the information contained in two (three) of the �rst principal components of descriptor space, ending in a loss 
of information.

As an alternative to the coordinate-based map, the so-called Chemical Space Networks (CSNs)14–16 have been 
proposed as coordinate-free representations for analyzing and visualizing the chemical space without reducing 
dimensionality. In such CSNs, nodes represent molecular entities while an edge may indicate a similarity relation-
ship between two compounds. A key point of these networks relies on the potential application of graph-based 
algorithms, which can be used in combination with interactive visualization to enable the domain-expert in the 
�eld of Biomedical research to �nd previously unknown and useful  information17,18.

Note that the interactive visualization aims to incorporate the human factor in a process that has been called 
the Visual Information Seeking  Mantra19: overview �rst, zoom and �lter, then details-on-demand. For instance, 
under this mantra, the interactive visual interface �rstly provides an overview of the chemical space. Secondly, 
the user focuses on molecules of interest and �lter out uninteresting peptide compounds. �en, to gain a better 
understanding of the data, the user accesses only the details of the interesting molecules.

As user interaction relies on a visual representation of chemical space, mapping the raw data of BPs into a 
multi-dimensional descriptor space should be robust and not accidental to derive consistent conclusions. A grand 
challenge is to �nd the most appropriate chemical space representation since there are many di�erent ways of 
coding molecules to denote the descriptor space, and it is unknown which set of MDs is the best one. So, the 
success of the visual exploration approach depends on two main aspects: (i) a particular choice of molecular 
descriptors (MDs), and (ii) proper visualization techniques to display information related to the chosen MDs. 
Nonetheless, even in cases where the chemical space visualization is unclear, we argue that the interactive explo-
ration, in combination with suitable algorithms may help humans to understand and reason about the chemical 
data under consideration.

With the study presented here, we tackle the automatic construction of molecular similarity networks for 
navigating and mining a chemical reference space from our comprehensive collection of BPs. In such molecular 
similarity networks, each node representing BPs is characterized by a set of molecular descriptors, and edges 
between nodes denote their pairwise similarity/distance relationships. Once this meaningful network has been 
created, it can provide insight into drug design for decision-makers20,21.

Results
�e corresponding steps of a proposed work�ow (Fig. 1) have been implemented in our visual analytics so�ware 
starPep  toolbox7 (http://mobio sd-hub.com/starp ep/), intended to be used by researchers. As described next, we 
experimented with the proposed work�ow for assessing and tuning the automatic construction of similarity 
networks from raw amino acid sequences of BPs. We also illustrate the usage of the proposed work�ow for turn-
ing known BPs into information that is hidden in the existing biological databases. For instance, we generated 
molecular similarity networks for �nding out central nodes that may represent a biologically relevant chemical 
space of anticancer peptides.

Comparative study of molecular descriptors. Various molecular descriptors can be derived from pep-
tide sequences by applying statistical and aggregation operators on amino acid property vectors (SI1-2). Indeed, 

http://mobiosd-hub.com/starpep/
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hundreds or even thousands of these descriptors can be calculated using the starPep  toolbox7 during work�ow 
execution (Fig. 1). Since many of the descriptors to be calculated are di�erent from those frequently employed in 
the literature, we performed a comparison with several other peptide descriptor families available in the recent 
so�ware package  iFeature22. For this comparative study, 748 peptide sequences (SI1-3) with 30 amino acids were 
recovered from  starPepDB7.

On the one hand, the iFeature descriptors on the peptide dataset are comprised of 3340 amino acid composi-
tion (AAC) indices, 310 grouped amino acid composition (GAAC) indices, 360 autocorrelation indices, 273 com-
position-transition-distribution (C/T/D) indices, 100 quasi-sequence-order (Q-S-O) indices, 85 pseudo-amino 
acid composition (PAAC) indices (85), 430 PseKRAAC indices, 15930 amino acid (AA) indices, 600 BLOSUM62 
indices, and 150 Z-scale indices. �ese external descriptors are given in SI1-4. On the other hand, the starPep 
descriptors were calculated by selecting all the available amino acid properties (e.g., heat of formation, side chain 
mass, etc.), all groups of amino acid types (e.g., aliphatic, aromatic, unfolding, etc.), and traditional (excepting 
those based on GOWAWA and Choquet integral) plus neighborhood (k neighbors up to 6) aggregation operators.

A�er generating peptide descriptors, a Shannon Entropy (SE)-based variability  analysis23 (VA) was carried 
out in order to quantify and compare the information content codi�ed by the calculated descriptors. In this way, 
relevant descriptors can be identi�ed according to the principle that high-entropy values correspond to those 
descriptors with a good ability to discriminate among structurally di�erent peptides, while low-entropy values 
are indicative of the  opposite24. Notice that the discretization scheme adopted for entropy calculation is equal 
to 748 bins, which is the number of peptides accounted for. �us, the maximum entropy for each descriptor is 
equal to 9.55 bits.

Figure 1.  A �ow diagram guiding the automatic construction and visual graph mining of similarity networks. 
�e similarity network can be automatically generated for the �rst time and just reused, or even it could be 
regenerated a�er that. Whereas the mining task is made up of two nested loops, in order, from the most internal 
to the most external: (A) data manipulation loop, and (B) visual feedback loop. �is �gure has been created 
using the package TikZ (version 0.9f 2018-11-19) in Latex, available at https ://www.ctan.org/pkg/tikz-cd.

https://www.ctan.org/pkg/tikz-cd
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�e IMMAN  so�ware25 was used to perform the VA of descriptors calculated by iFeature and starPep tool-
box. It should be pointed out that all iFeature descriptor families were joined into a single data set for a proper 
comparison. Also, a correlation �lter was applied for the computed descriptors. Hence, some redundant features 
were removed using the Spearman correlation-based �lter with a threshold equal to 0.95. Consequently, a total 
of 12018 iFeature descriptors and 8416 starPep descriptors were retained (SI1-5), being these two sets of descrip-
tors the ones used in the VA.

As a result of the VA, Fig. 2 depicts the SE distribution corresponding to the best 8000 ranked descriptors 
according to their SE values. As it can be noted, the starPep descriptors present better ability to discriminate 
among structurally di�erent peptide sequences than the iFeature descriptors, since the formers have better SE 
distribution than the latter. �e analyzed starPep descriptors present an average SE equal to 7.59 bits, whereas 
the iFeature descriptors have an average SE equal to 4.29 bits. More speci�cally, if we zoom in to the best 500 
ranked descriptors, those from starPep always present SE values greater than 8 bits (83.77% of the maximum 
entropy), whereas only 231 iFeature descriptors are above the threshold aforementioned. In general, it can be 
concluded that the starPep descriptors have better information content than several types of peptide descriptor 
families. �us, the starPep descriptors are useful for the mathematical characterization of a chemical space of BPs.

Moreover, Fig. 3 shows the boxplot graphics corresponding to each iFeature descriptor family (without 
removing correlated descriptors), as well as the corresponding ones to the starPep descriptors. It can be noted 
in this �gure that the best iFeature descriptor families correspond to autocorrelation, Q-S-O, and PAAC indices, 
being the former the best of all. If these descriptor families are compared to the starPep descriptors (denoted 
as starPep_All), it can be observed that the 100 Q-S-O indices and 85 PAAC indices present a similar distribu-
tion regarding the 8416 starPep descriptors analyzed, whereas the 360 autocorrelation indices from iFeature 
present a better distribution. However, if the best 360 ranked descriptors from starPep are analyzed (denoted as 
starPep_360), then it can be observed that they present better distribution than the 360 autocorrelation indices 
from iFeature.

As a complement to the previous results, a linear independence analysis was performed by means of the 
 PCA13 method. To this end, the iFeature and starPep descriptors with SE values greater than 8 bits were selected 
from the descriptor sets considered in the VA. �ereby, the input data for PCA is comprised of 700 starPep 
descriptors and 231 iFeature descriptors (SI1-6). By applying the PCA method on this feature space, orthogonal 
descriptors are strongly loaded (p-value ≥ 0.7) in di�erent components, while collinear descriptors are loaded 
in the same component. Supplementary Information SI1-7 contains the eigenvalues and the percentages of the 
explained variance by the 11 principal components (PCs) obtained, which explain approximately 54.46% of the 
cumulative variance.

From the result table of PCA (SI1-7), we observed that some of the iFeature and starPep descriptors analyzed 
show collinearity in PC1 (16.64%) and PC4 (4.47%). For instance, in PC1, Q-S-O indices based on the Grantham 
chemical distance  matrix26, for lag values from 1 to 13, are collinear with starPep descriptors encoding informa-
tion related to amino acids favoring alpha-helix and uncharged polar amino acids, which were weighted with the 
third z-scale property. Moreover, in PC4,  a single Q-S-O index based on the Schneider–Wrede physicochemical 

Figure 2.  Shannon’s entropy distribution for the iFeature descriptors versus starPep descriptors. �is �gure has 
been created using the R so�ware package (version 3.5.1), available at https://cran.r-project.org/.
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distance  matrix27, for lag equals to 12, codi�ed collinear information to starPep descriptors related to the iso-
electric point and hydrophilicity amino acid properties. Additionally, the results obtained also indicate that the 
starPep descriptors have exclusive loads in the remaining components determined. �at is, the iFeature descrip-
tors studied did not present unique loadings in either of the components obtained.

Finally, three important conclusions can be drawn from the study so far: (1) the starPep descriptors seem 
to codify a degree of structural information captured by the iFeature descriptors, evidenced by the collinearity 
between the two groups; (2) there is structural information encoded by the starPep descriptors that is linearly 
independent to the iFeature descriptors; and (3) the iFeature descriptors seem not to codify di�erent information 
respect to the starPep descriptors. �ese early outcomes demonstrate the applicability of the theoretical aspects 
of the starPep descriptors, and therefore, they should be useful in the construction of similarity networks.

Feature ranking and filtering. In this part of our experiments, we used starPep  toolbox7 to initially com-
pute 830 molecular descriptors on various datasets with di�erent numbers of instances (n). For each dataset, the 
original descriptors and its corresponding reduced feature subsets were used as experimental  data28 to assess the 
early stage of the feature selection process (Table 1). In this preliminary study, the calculated descriptors were 
ranked according to their entropy values, using the number of bins equal to n, and the entropy cuto� value ( θ1 ) 
was set to 10% of maximum entropy (i.e., θ1 = 0.1 ∗ log n ) for removing irrelevant features from input datasets 
(Algorithm SI2-1). In general, there were at most 25 useless descriptors having information content less than the 
cuto� value, and they were removed.

A�er removing irrelevant features, all input datasets approximately kept 800 molecular descriptors sorted by 
their entropy values. Following that order, redundant features are removed, as described in Algorithm SI2-1. At 
this step, for the two correlation methods considered (Pearson’s or Spearman’s coe�cient), several cuto� values 
were used to assess their e�ect at removing redundant variables (Table 1). Besides, Procrustes  analysis29 was 
employed to check how much the complete set of descriptors can be reduced while preserving the data structure 
between the original and reduced descriptor space. On comparing the two descriptor spaces, the Procrustes 
goodness-of-�t is calculated between the �rst PCs of both the original and reduced sets of variables. �e �rst 50 
PCs were used since they explained at least 80% of the variance in the original data.

As can be seen in Table 1 and Fig. 4, the initial amount of calculated descriptors can be drastically reduced, 
providing some level of redundancy elimination in the resulting set of variables. As it is expected, decreasing 
the correlation threshold led to reducing the number of �ltered features, being the Spearman coe�cient, the one 
that least features retained. Moreover, looking at the Procrustes analysis, a low correlation threshold a�ects the 
goodness-of-�t between the original and reduced data. Whereas setting a high correlation threshold results in a 
better match between the reduced data structure and the original one, which is desired at this stage.

By analyzing Table 1, it can be noted that using Spearman and �xing the correlation threshold to 0.9 still yields 
a high number (> 300) of �ltered descriptors; but a lower-number of descriptors (< 300) is retained when the 
correlation threshold is equal to 0.80, while the average goodness-of-�t is less than 0.2. It means that the resulting 
lower-dimensional space represents well enough the data structure of the original descriptor space. �us, from 

Figure 3.  Boxplots showing distributions of Shannon’s entropy for the iFeature descriptor families, as well as 
the starPep descriptors. �is �gure has been created using the R so�ware package (version 3.5.1), available at 
https ://cran.r-proje ct.org/.

https://cran.r-project.org/
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Table 1.  Exploring the e�ect of changing the correlation method (Pearson’s or Spearman’s coe�cient) and 
cuto� value ( θ2 ) for assessing the similarity between subsets of candidate features and the original ones. 
Datasets and descriptors used in this experimental study are publicly  available28. a �ese datasets were retrieved 
from the database  StarPepDB7. b NR stands for Non-Redundant at a given percentage (number) of sequence 
identity. To carry out the sequence identity comparisons, we used a local alignment algorithm (Smith–
Waterman30) implemented in  BioJava31, with the BLOSUM62 substitution matrix.

Datasetsa,b Instances

Correlation threshold ( θ2)

Number of �ltered descriptors (goodness-of-�t)

0.5 0.6 0.7 0.8 0.9

Pearson

Overall_NR98 32300 108 (0.36) 156 (0.27) 199 (0.22) 275 (0.15) 374 (0.09)

Overall_NR90 22512 111 (0.35) 160 (0.27) 208 (0.21) 279 (0.15) 372 (0.1)

Overall_NR70 14559 108 (0.37) 150 (0.29) 207 (0.21) 276 (0.14) 382 (0.08)

Overall_NR50 9428 108 (0.37) 155 (0.28) 198 (0.21) 279 (0.14) 378 (0.09)

Overall_NR30 4735 112 (0.37) 155 (0.28) 205 (0.19) 281 (0.14) 385 (0.08)

Antibacterial_NR98 10303 94 (0.35) 147 (0.25) 191 (0.19) 282 (0.13) 379 (0.09)

Antifungal_NR98 4546 101 (0.36) 150 (0.26) 202 (0.2) 272 (0.14) 380 (0.08)

Antiviral_NR98 3849 100 (0.37) 143 (0.28) 186 (0.21) 280 (0.13) 393 (0.08)

Anticancer_NR98 1557 98 (0.35) 132 (0.28) 188 (0.19) 274 (0.12) 395 (0.07)

Antiparasitic_NR98 501 111 (0.28) 153 (0.21) 211 (0.15) 298 (0.1) 402 (0.06)

Averages 105 (0.35) 150 (0.27) 200 (0.2) 280 (0.13) 384 (0.08)

Spearman

Overall_NR98 32300 94 (0.38) 126 (0.3) 177 (0.23) 235 (0.18) 338(0.09)

Overall_NR90 22512 95 (0.37) 127 (0.31) 174 (0.24) 241 (0.18) 327 (0.1)

Overall_NR70 14559 94 (0.38) 127 (0.32) 175 (0.25) 235 (0.18) 324 (0.1)

Overall_NR50 9428 95 (0.39) 132 (0.31) 174 (0.26) 241 (0.18) 327 (0.1)

Overall_NR30 4735 99 (0.37) 134 (0.29) 188 (0.22) 241 (0.18) 342 (0.1)

Antibacterial_NR98 10303 90 (0.35) 121 (0.29) 170 (0.22) 232 (0.16) 334 (0.1)

Antifungal_NR98 4546 87 (0.39) 122 (0.29) 177 (0.22) 236 (0.16) 338 (0.09)

Antiviral_NR98 3849 99 (0.35) 133 (0.3) 172 (0.22) 241 (0.16) 346 (0.09)

Anticancer_NR98 1557 92 (0.37) 128 (0.27) 172 (0.22) 245 (0.14) 352 (0.08)

Antiparasitic_NR98 501 94 (0.32) 129 (0.24) 179 (0.17) 251 (0.12) 361 (0.07)

Averages 94 (0.37) 128 (0.29) 176 (0.23) 240 (0.16) 339 (0.09)

Figure 4.  Exploring the e�ect of changing the similarity threshold: (a) the average number of retained features 
is shown as an increasing function in similarity threshold; and, (b) the average goodness-of-�t between the 50 
PCs of both the original and reduced features is shown as a decreasing function in similarity threshold. �is 
�gure has been created using the Python library Matplotlib (version 3.3.0), available at https ://matpl otlib .org/
users /insta lling .html.

https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
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now on, the Spearman correlation-based �lter with a threshold equal to 0.8 will be the one used during the �rst 
stage of the feature selection process to compute a candidate set.

Feature subset optimization. So far, the resulting candidate set is still not enough lower-dimensional for 
the similarity network construction. �us, the goal of the second stage is not the data structure preservation of 
the original descriptor space, but the optimization of a merit function (Eq. 7) to obtain an adequate feature sub-
set. Table 2 shows the results for Algorithm SI2-2, where the best subset found for each dataset is characterized 
by the number of features and merit score. In general, the best-retained features are between 30 and 50, taking 
the square root of the number of instances as the number of bins (square-root  choice32) for computing entropy 
and mutual information at this stage. Although there is no “correct” answer for the number of bins, the square-
root choice led to good results in terms of the size of optimized subsets and merit scores, if compared with other 
alternatives (data not shown here).

Additionally, Table 3 shows a comparison between the optimized subsets and the top-k ranked descriptors 
(with k between 20 and 60) from the full set of candidate features (without being optimized), according to their 
entropy values in descending order. For this comparison, a Pairwise Wilcoxon Rank Sum  Test33 with  Hochberg34 
correction was used to evaluate di�erences among the selected groups of descriptors in Table 3. �e statistical 
test revealed that the optimized subset is signi�cantly better ( p < 0.05 ) than the top-k descriptors. Also, there 
are no signi�cant di�erences between the top 30, top 40, and top 50 descriptors, which are likely to give the 
second-best scores. Furthermore, Fig. 5 summarizes the distribution of merit scores, and there can be observed 
atypical merit scores (outliers) for most groups of top-k descriptors. �e presence of these outliers may sug-
gest that the selection of those top-k descriptors may be a�ected by a small number of instances, such as the 
Antiparasitic_NR98 dataset (Table 3). �erefore, it can be concluded that the optimized descriptors (SI3-1) are 
suitable to characterize the chemical space of BPs.

Table 2.  Performance of feature subset optimization. a �e number of bins (data intervals) when constructing 
the histograms for computing the entropy and mutual information. b �e feature subset optimization was 
performed in a Mac Pro Server with 2 x Intel Xeon Processor 2.66 GHz 6-cores, and memory 64 GB.

Datasets Instances (n) Number of  binsa ( ⌊
√
n⌋)

Best subset found

CPU  Timeb (hh:mm:ss)Number of features Merit scores

Overall_NR98 32300 179 39 3.985 12:07:03

Overall_NR90 22512 150 40 3.87 05:17:40

Overall_NR70 14559 120 42 3.667 01:27:46

Overall_NR50 9428 97 39 3.474 00:34:04

Overall_NR30 4735 68 33 3.13 00:08:12

Antibacterial_NR98 10303 101 45 3.41 00:38:57

Antifungal_NR98 4546 67 39 3.059 00:07:17

Antiviral_NR98 3849 62 45 3.031 00:05:38

Anticancer_NR98 1557 39 36 2.588 00:00:50

Antiparasitic_NR98 501 22 40 2.11 00:00:05

Table 3.  Comparison among the best subsets found and top-k ranked descriptors. a Merit scores of best 
subsets found. b Merit scores of the top-k ranked descriptors from the candidate feature set.

Datasets Instances Best merit  scoresa

Merit scores of top-k ranked 
 descriptorsb

k

20 30 40 50 60

Overall_NR98 32300 3.985 3.92 3.96 3.962 3.958 3.942

Overall_NR90 22512 3.87 3.79 3.827 3.829 3.822 3.807

Overall_NR70 14559 3.667 3.577 3.608 3.616 3.607 3.589

Overall_NR50 9428 3.474 3.368 3.396 3.406 3.403 3.388

Overall_NR30 4735 3.13 3.051 3.057 3.044 3.038 3.035

Antibacterial_NR98 10303 3.41 3.336 3.361 3.364 3.356 3.334

Antifungal_NR98 4546 3.059 2.98 3.018 3.01 3.011 2.993

Antiviral_NR98 3849 3.031 2.956 2.992 3.001 3.001 2.995

Anticancer_NR98 1557 2.588 2.517 2.552 2.55 2.54 2.529

Antiparasitic_NR98 501 2.11 2.042 2.063 2.06 2.065 2.061

Averages 3.232 3.154 3.183 3.184 3.180 3.167
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To illustrate that the optimized descriptors adequately characterize a particular chemical space, we have 
accounted for the number of distinct datasets that include a selected descriptor. �e results are presented in Fig. 6. 
�e x-axis lists descriptors sorted by the most common ones in all datasets. �e y-axis represents the number 
of datasets that include the speci�ed descriptors. It can be noted that there are just three descriptors repeated 
in nine out of the ten datasets. Besides, the trend in the chart indicates that the majority of descriptors reappear 
only in a few databases. Indeed, many of them appear solely in a single dataset.

Generating molecular similarity networks. According to the above results, we used the optimized 
descriptors (SI3-1) to built molecular similarity networks based on (i) the traditional  CSNs14–16, or (ii) the sparse 
 HSPNs35. Note that whereas the fully connected CSN at threshold t = 0 is prohibitive for large datasets, an alter-
native connected network may be successfully generated based on HSPNs (Algorithm SI2-3). �e feasibility of 
building such HSPNs from the experimental datasets is illustrated in Table 4. It can be observed that the gener-
ated HSPNs achieve low-density levels in all cases, including large datasets.

Furthermore, the impact of optimized descriptors can also be seen in the construction of the molecular 
similarity networks, either CSNs or HSPNs. As depicted in Fig. 7, by interpreting the performance of descrip-
tors as a function of network density, the optimized feature subset yields lower density levels with a smoother 

Figure 5.  Box plot of merit scores. �is �gure has been created using the R so�ware package (version 3.5.1), 
available at https ://cran.r-proje ct.org/.

Figure 6.  Number of distinct datasets that include a selected descriptor. �is �gure has been created in Excel 
2016, available at https ://www.micro so�.com/es-mx/so�w are-downl oad/o�c e.

https://cran.r-project.org/
https://www.microsoft.com/es-mx/software-download/office
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appearance than the density curves of the complete candidate feature set. �is shows that, even for large datasets 
such as Overall_NR98 (Fig. 7c), the optimized descriptors are suitable for generating a lower-density similarity 
network to be analyzed by visual inspection (Fig. 8).

Visual analysis of chemical space. Visualization and interactive exploration of the generated similarity 
networks may serve to form a visual image into the mind aimed at facilitating analytical reasoning not possible 

Table 4.  Summary for the alternative HSPNs generated at threshold t = 0. a �e maximum distance between 
two points in the de�ned descriptors space. b Similarity relationships at t = 0 . �e HSPN at t = 0 is a connected 
subnetwork having a low-density level in all datasets.

Datasets Nodes

Max Similarity  relationshipsb

distancea Edges Network density

Overall_NR98 32300 29.80 353 213 6.8E-4

Overall_NR90 22512 27.22 242 227 9.6E-4

Overall_NR70 14559 27.03 157 590 0.001

Overall_NR50 9428 27.01 102 226 0.002

Overall_NR30 4735 23.65 46338 0.004

Antibacterial_NR98 10303 27.95 95605 0.002

Antifungal_NR98 4546 24.00 36765 0.004

Antiviral_NR98 3849 24.12 31709 0.004

Anticancer_NR98 1557 21.56 9552 0.008

Antiparasitic_NR98 501 19.13 2560 0.02

Figure 7.  Examining the impact of using the optimized feature subset versus the full set of candidate features 
for similarity network construction. Density curves were generated at varying the similarity threshold in the 
following networks: (a) CSNs from Anticancer_NR98, (b) HSPNs from Anticancer_NR98, and (c) HSPNs from 
Overall_NR98. In contrast to CSNs, the natural density of HSPNs is low at any threshold, even for t = 0 . �is 
�gure has been created using Python Matplotlib (version 3.3.0), available at https ://matpl otlib .org/users /insta 
lling .html.

https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
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before. However, understanding networks through visual inspection is not a straightforward  process37, and thus 
we propose a systematic network exploration using a combination of clustering and network science techniques. 
During this exploration process, three aspects of visual inspection are useful for aiding human thinking: posi-
tioning, �ltering, and customizing the appearance of  nodes7.

To facilitate the above-mentioned network analysis, the proposed work�ow in Fig. 1 has been implemented 
in the so�ware starPep toolbox (http://mobio sd-hub.com/starp ep/), allowing end-user to generate and navigate 
similarity networks by their own needs and interests. On this basis, as described next, we illustrate the use of 
the proposed work�ow to carry out three case studies for �nding and analyzing relevant nodes in molecular 
similarity networks of BPs.

Case study I: navigating a biologically relevant chemical space. �e 1557 anticancer peptides (Anticancer_NR98) 
to be analyzed here are given in SI4-1 (FASTA �le). Also, for each peptide discovered to be a relevant node, addi-
tional information  (metadata7) is available in SI4-2 (Excel �le). As the dataset Anticancer_NR98 is not large 
enough, we generate traditional similarity networks (CSNs) from the similarity/distance matrix calculation. To 
visualize these similarity networks in a meaningful way, we examine a family of force-directed layout algorithms 
that can be used to spatialize the network and rearrange  nodes38. �ese algorithms change the position of nodes 
by considering that they repulse each other, whereas similarity relationships may attract their attached nodes 
like springs. Particularly, the Fruchterman-Reingold  algorithm39 was the most suitable for drawing the network 
of anticancer dataset (Fig. 9).

Exploring and mining community structures. A CSN having an arbitrary low density ( < 1% ) can be visual-
ized at �rst sight by setting a large threshold (Fig. 7a). Also, networks become more interpretable through visual 
inspection if having a community  structure40. Note that communities of BPs may represent some biologically 
relevant regions of chemical space where bioactive compounds  reside9. Hence, we have explored the CSNs by 
varying the similarity threshold until a well-de�ned community structure emerged. In this way, a �nal CSN 
has been analyzed by adjusting the similarity threshold to 0.86, at network density of 0.006, achieving network 
modularity (Q) of 0.83 (Fig. 9).

Based on our visual exploration, we corroborate what other authors have previously  remarked41; there is 
higher network modularity at large similarity threshold. Nonetheless, the interval within which the threshold 
value should be explored is not �xed, and it depends on the input dataset. We also suggest that the �nal deci-
sion for picking a high threshold value should be made carefully to avoid an edgeless network structure (Fig. 7).

Local centrality analysis. Once a community structure is found, we rank nodes in decreasing order according 
to the community Hub-Bridge centrality measure (Eq. 13) for retaining the top-k of the ranked list. Particularly, 
the top 1000 exposes densely connected groups of nodes like cliques, which are de�ned to be complete subgraphs 
(Fig. 10a). �ese related sequences may be forming families in the chemical space of anticancer peptides, and 
detecting them may be of use in future  works42,43.

Of course, nodes inside large communities have higher centrality value and better ranking than those inside 
smaller groups. �en, we select the top 500 as the representative ones of eight leading communities (Fig. 10b). 
�ese local central peptides inside each leading community are given in SI4-3 (FASTA �les), and they may be 
representing sequence fragments or naturally occurring peptides that could be identi�ed as starting points for 
lead  discovery1,20. For instance, the peptide starpep_00185 (known as ascaphin-844) is the most central node 

Figure 8.  Visualizing the similarity network (HSPN) of a vast set of BPs (Overall_NR98) at threshold t = 0 , 
using the ForceAtlas2 layout  algorithm36. �is �gure has been created using the so�ware starPep toolbox 
(version 0.8), available at http://mobio sd-hub.com/starp ep/, and PowerPoint 2016 available at https ://www.
micro so�.com/es-mx/so�w are-downl oad/o�c e.

http://mobiosd-hub.com/starpep/
http://mobiosd-hub.com/starpep/
https://www.microsoft.com/es-mx/software-download/office
https://www.microsoft.com/es-mx/software-download/office
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inside Community 1 (Fig. 11), and some of its peptide neighbors are analogs containing aminoacids substitutions 
(Table 5). When looking for additional information about this peptide (SI4-2), we noticed that ascaphin-8 is the 
naturally occurring one, while chemically modi�ed peptide analogs may have greater therapeutic  potential45,46.

Ascaphin-8 is a 19-mer peptide containing a C-terminally α-amidated residue (GFKDLLKGAAKALVKTVLF.
NH2). It is one out of eight structurally related antimicrobial peptides, termed ascaphin 1-8, that were origi-
nally isolated from the skin secretions of the tailed frog Ascaphus  truei44. Among the eight puri�ed peptides, 
ascaphin-8 was the most active compound against a range of pathogenic microorganisms, but it also had limited 
therapeutic potential due to the greatest hemolytic  activity44. However, its lysine-substituted analogs showed 
very low hemolytic activity while displaying potent antibacterial activity against a range of clinical isolates of 
extended-spectrum β-lactamase producing  bacteria46. In addition to the broad-spectrum antimicrobial activity, 
the anticancer property of ascaphin-8 and its analogs has been tested on human hepatoma-derived cells (HepG2), 
where analogs showed enhanced cytotoxicity to the HepG2 cells and reduced toxicities against mammalian cells 
when compared with ascaphin-845. Furthermore, other  studies47–49 revealed that ascaphin-8 may be considered 
as a starting point for Lead Discovery.

Case study II: �nding central but non-redundant peptides. As can be observed in Table 5, some neighbor nodes 
in the interior of communities may be representing a family of similar peptides. Another example of closely 
related structures can be seen in all 50 members of the Community 5 (see Comm_5 in Fig.10b). �e peptides 
inside this community have the same sequence length of 10 aa. Also, the same amino acid residues compose 
those 50 peptides, with two amino acids �xed at positions 6 and 10 (see SI4-3 for more sequence details). �ere-
fore, in general, it is expected that there are many nodes with similar centrality values in the network, and it may 
be better to extract some non-redundant nodes from communities than just selecting the highest-ranked ones.

Next, to clearly extract central but non-redundant peptides from each community in Fig. 10b, we �rst sort 
nodes according to the decreasing order of their local centrality values. Following that order, the redundant 
sequences are removed at a given percentage of sequence identity. �e resulting subnetwork is presented in 
Fig. 12a. We have used 70% of sequence identity to consider that a particular sequence is related to an already 
selected central peptide and, as a consequence, removed from the network. For these sequence comparisons, 
we also applied the Smith–Waterman  algorithm30 implemented in  BioJava31, with the BLOSUM62 substitution 
matrix. Finally, we ranked the non-redundant peptides according to their decreasing values of Harmonic central-
ity measure (Eq. 12). �e sorted list is given in SI4-4 (FASTA �le), and the topmost ranked peptides are those 
having relatively small similarity paths to all other nodes in the network.

Case study III: embedding new sequences into a network model. Projecting new sequences into similarity net-
works of known bioactive peptides may serve to identify the region in a chemical reference space where the 
new compounds reside. Firstly, the currently selected descriptors are computed for the new peptides to be 
inserted. �en, each projected peptide is connected to its k nearest neighbors in the de�ned metric space for 
further analysis. To illustrate this process, we have embedded four in-silico designed anticancer  peptides50 in the 
molecular similarity network under study: Peptide1 (WLFKFLAWKKK), Peptide2 (FPKLLLKFLRLG), Peptide3 
(KKFALKLFWWK), and Peptide4 (RLLRRLRIRG).

Figure 9.  Visualizing the CSN of anticancer peptides (Anticancer_NR98) at similarity threshold of 0.86, using 
the Fruchterman-Reingold layout  algorithm39. Nodes are colored according to the leading communities to 
which they belong. �is �gure has been created using the so�ware starPep toolbox (version 0.8), available at 
http://mobio sd-hub.com/starp ep/ , and PowerPoint 2016 available at https ://www.micro so�.com/es-mx/so�w 
are-downl oad/o�c e.

http://mobiosd-hub.com/starpep/
https://www.microsoft.com/es-mx/software-download/office
https://www.microsoft.com/es-mx/software-download/office
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Figure 10.  Visualizing the subnetwork of anticancer peptides having the (a) Top 1000 and (b) Top 500 ranked 
nodes by the Community Hub-Bridge centrality. �is �gure has been created using the so�ware starPep toolbox 
(version 0.8), available at http://mobio sd-hub.com/starp ep/, and PowerPoint 2016 available at https ://www.
micro so�.com/es-mx/so�w are-downl oad/o�c e.

Table 5.  A family of central peptides inside community 1. a ID of the peptides in  starPepDB7. b Additional 
information can be found in SI4-2.

IDa Sequenceb Length

starPep_00185 GFKDLLKGAAKALVKTVLF 19

starPep_05498 GFKDLLKGAAKALVKAVLF 19

starPep_05497 GFKDLLKGAAKALKKTVLF 19

starPep_05500 GFKDLLKGAKKALVKTVLF 19

starPep_03114 GFKKLLKGAAKALVKTVLF 19

starPep_05499 GFKDLLKGAAKALVKTVKF 19

http://mobiosd-hub.com/starpep/
https://www.microsoft.com/es-mx/software-download/office
https://www.microsoft.com/es-mx/software-download/office
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As can be seen in Fig.  12b, Peptide1, and Peptide2 are occupying di�erent positions in a chemical reference 
space of anticancer peptides. According to Ref.50, these two experimentally veri�ed peptides were the most active 
peptides, and molecular dynamics simulations suggest that they have di�erent interaction mechanisms with 
heterogenous POPC/POPS lipid bilayer membranes. Whereas the Peptide1 remains adsorbed to the membrane 
surface, the Peptide2 has membrane penetration  capability50.

Furthermore, Fig. 13 reveals the K-Nearest Neighbor Graph (K-NNG), with k = 3 , based on the Euclidean 
distances in the de�ned descriptor space. It can be observed that Peptide3, which is an active compound too, is 
lying on a similarity path between Peptide1 and Peptide2. Indeed, Peptide3 is more similar to Peptide1 by the 
length of their similarity path, and less similar to Peptide2, which is expected since Peptide3 and Peptide1 are 
analogs of the same  peptide50. However, despite Peptide2 and Peptide4 are having a common origin, Peptide4 
is  inactive50, and it is not connected to the previous ones in the K-NNG. �erefore, this retrospective analysis 
points out that the approach presented here may be useful for getting insight into the chemical space of BPs.

Conclusion
Here, we have designed and implemented a work�ow that transforms automatically raw data of amino acid 
sequences into a meaningful graph-based representation of chemical space, such as a molecular similarity 
network. �e proposed work�ow takes peptide sequences as input to project all these n compounds into an 
m-dimensional descriptor space, where both n and m are natural numbers with n >> m . To project each pep-
tide sequence, we calculate molecular descriptors by applying statistical and aggregation operators on amino 
acid property vectors. �en, using the concepts of entropy and mutual information, an optimized subset of the 
original features is automatically selected for removing the irrelevant and redundant ones. �is allows reduc-
ing dimensionality to avoid dealing with high-density networks and increasing e�ciency in the de�nition of 
descriptor space. We also have conducted experiments for learning and tuning the fully automatic construction 
of similarity networks from raw data of known bioactive peptides. Our experimental results showed the e�cacy 
of our approach for supporting visual graph mining of the chemical space occupied by a comprehensive collec-
tion of bioactive peptides. To illustrate this mining task, we applied a systematic procedure based on network 
centrality analysis for navigating and mining a biologically relevant chemical space known to date. �erefore, we 
hope to encourage researchers to use our approach for turning bioactive peptide data into similarity networks 
into information that could be used in future studies.

Methods
�is section �rstly describes how to de�ne a multi-dimensional descriptor space from the amino acid sequences 
of BPs, which involves molecular descriptors calculation and unsupervised feature selection method. �e sec-
ond part of the section is about how to generate a similarity network from the de�ned descriptor space, and 
consequently, how to understand the generated networks through clustering and network science  techniques40.

Defining a multi‑dimensional descriptor space. �e molecular features to be calculated from the 
peptide sequences may account for physicochemical properties and information about structural fragments or 
molecular  topology51. To this end, we extend our in-house Java  library7 to compute hundreds or thousands of 
proposed MDs (Tables SI1-1 and SI1-2). �e MDs described in Table SI1-1 are legacy descriptors accounting for 
physicochemical properties, and they were formerly implemented by reusing free so�ware packages to carry out 
previous  studies52,53. Unlike the legacy descriptors, new descriptors (those in Table SI1-2) are implemented by 

Figure 11.  A zoom into the Community 1 for highlighting the most central node (starPep_00185) based on 
the Hub-Bridge centrality. Nodes are resized according to their local centrality measures. �is �gure has been 
created using the so�ware starPep toolbox (version 0.8), available at http://mobio sd-hub.com/starp ep/, and 
PowerPoint 2016 available at https ://www.micro so�.com/es-mx/so�w are-downl oad/o�c e.

http://mobiosd-hub.com/starpep/
https://www.microsoft.com/es-mx/software-download/office
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applying statistical and aggregation operators on amino acid property vectors, e.g., measures of central tendency, 
statistical dispersion, OWA  operators54,55, and fuzzy Choquet integral  operators56,57. Further, it should be noted 
that the reasons for using these operators in the calculation of MDs have been demonstrated  elsewhere58–62.

Let D = [xij]n×m be a descriptor matrix whose rows and columns represent peptide instances and calculated 
features, respectively, i.e., xij encodes the numerical value for the jth descriptor of the ith peptide sequence. �en, 
denoting the feature j as fj = D

(j) , which is the jth column of matrix D , an optimization method for feature 
selection is aiming to identify the best subset of features F∗ = {fj | j ∈ I ⊆ {1, 2 . . .m}} among all possible subsets. 
Nonetheless, �nding the optimal subset F∗ is a hard goal to achieve since the assessment of all possible subsets is 
not feasible (there are 2m subsets, where m is the number of original features), and no e�cient algorithm is known 
that solves this problem. Accordingly, to be able to formulate and solve an optimization problem for subset selec-
tion, we �rst need to introduce some basic de�nitions for analyzing the relevance and redundancy of features.

Basic de�nitions. Shannon’s entropy63. Entropy can be considered as one criterion for measuring relevance in 
the �eld of unsupervised feature  selection64,65. A particular calculation of entropy has been proposed in Ref.23 
to capture the information content of descriptor distributions represented in histograms. For instance, Fig. 14 
shows the histograms generated for two molecular descriptors and their information contents. �e histograms 

Figure 12.  Visualizing the (a) subnetwork of anticancer peptides having central but non-redundant structures 
at 70% of sequence identity, and (b) the projection into this network of four in-silico designed anticancer 
peptides (Peptide1–4)50. �is �gure has been created using the so�ware starPep toolbox (version 0.8), available 
at http://mobio sd-hub.com/starp ep/, and PowerPoint 2016 available at https ://www.micro so�.com/es-mx/so�w 
are-downl oad/o�c e.

http://mobiosd-hub.com/starpep/
https://www.microsoft.com/es-mx/software-download/office
https://www.microsoft.com/es-mx/software-download/office
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were constructed by dividing the data range of each variable into the same number of data intervals (bins). Using 
this binning scheme is possible to transform continuous features into discrete variables that count the number of 
feature values per bins. Note that the de�nition of entropy for continuous variables is hard to  compute66. On this 
basis, a discretization mechanism can be applied to compute the entropy measure as follows.

Suppose that for each feature, its range is divided into the same number of bins nb . �en, new data represen-
tation is generated looking at the peptides that adopt a value located at bin i for each feature. Let S

j
i be the set 

of peptides whose value fall in the bin i for feature j, the frequentist probability pj(i) of �nding a value within 
a speci�c data range i for feature j is calculated by dividing the data count |S

j
i| by the summed count of all bins:

�is frequentist probability pj(i) is used to compute the entropy H of feature j:

As an upper bound, the maximum entropy Hmax = log nb is reached when all data intervals are equally popu-
lated, i.e., each bin is occupied by the same amount of peptides. By contrast, the minimum entropy ( Hmin = 0 ) 

(1)pj(i) =
|S

j
i|

∑n
i=1

|S
j
i|

(2)H(fj) = −

nb∑

i=1

pj(i) log pj(i)

Figure 13.  Visualizing the K-Nearest Neighbor Graph ( k = 3 ) of the new compounds of interest (Peptide1–4)50 
and the recovered peptides (neighbor nodes) from a chemical reference space. Additional information for 
the recovered peptides can be found in SI4-2. �is �gure has been created using the so�ware starPep toolbox 
(version 0.8), available at http://mobio sd-hub.com/starp ep/, and PowerPoint 2016 available at https ://www.
micro so�.com/es-mx/so�w are-downl oad/o�c e.

Figure 14.  Shannon entropy calculated for two molecular descriptors using the bining scheme of histograms. 
(a) Shannon entropy (H) = 0.068; and, (b) Shannon entropy (H) = 2.21. �is �gure has been created using the R 
so�ware package (version 3.5.1), available at https ://cran.r-proje ct.org/.

http://mobiosd-hub.com/starpep/
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is reached if all feature values fall within a single bin i. In general, broad histograms result in higher entropy 
values than narrow histograms, as can be seen in Fig. 14. �erefore, a descriptor with high entropy near to the 
maximum value means uniform distribution of feature values and should be retained. Conversely, a descriptor 
with low entropy near to the minimum value is having low information content and should be removed.

Mutual information66. Considering two discrete random variables X and Y with a joint probability p(x, y), 
the mutual information I(X, Y) is a measure of the dependency between them, and can be used as redundancy 
criterion between two molecular descriptors (Fig. 15)67. Let S

j
i ∩ Skl  be the intersection set containing those 

peptides whose values fall in the bins i and l, for features j and k, respectively. �e joint probability pj,k(i, l) of 
observing at the same time two values falling in the bin i and l is estimated as:

�en, using the marginal and joint probabilities de�ned in Eqs. 1 and 3, respectively, we computed the mutual 
information between two features:

In addition to the mutual information criterion, a correlation coe�cient is another measure for assessing the 
redundancy between  variables68.

Correlation-based measures69. Pearson correlation coe�cient ( ρ ) is a well-known criterion for measuring 
the linear association of a pair of variables X and Y69. �is correlation coe�cient as a criterion of redundancy 
between two features is given by

where xij and x̄j indicate, respectively, the ith value and the mean of the feature fj . We used the absolute value 
|ρ(fj , fk)| since the sign of the coe�cient only indicates that, in case of positive sign, both feature values tend to 
increase together or, in case of negative sign, the values of one feature increase as the values of the other feature 
decrease. If two features have an exact linear dependency relationship, |ρ(fj , fk)| is 1; if two features are totally 
independent, |ρ(fj , fk)| is 0; whereas larger values in the range [0, 1] indicate higher linear correlation. However, 
this correlation coe�cient is not suitable to capture the dependency between two variables that is not linear in 
nature.

(3)pj,k(i, l) =
|S

j
i ∩ Skl |

∑
r

∑
s |S

j
r ∩ Sks |

(4)I(fj , fk) =

nb∑

i=1

nb∑

l=1

pj,k(i, l) log
pj,k(i, l)

pj(i)pj(l)

(5)ρ(fj , fk) =

∑n
i=1(xij − x̄j)(xik − x̄k)

√

∑n
i=1(xij − x̄j)2

√

∑n
i=1(xik − x̄k)2

Figure 15.  �is �gure depicts the relationship between entropy H(·) and mutual information I(·, ·) for 
two variables X and Y. I(X, Y) measures the amount of information content that one variable contains 
about another. (a) I(X, Y) is equal to zero if and only if X and Y are statistically independent; and, (b) 
I(X,Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) , which corresponds to the reduction in the entropy 
of one variable due to the knowledge of the other. Hence, the I(X, Y) can take values in the interval: 
0 ≤ I(X,Y) ≤ min{H(X),H(Y)} ; the larger the value of I(X, Y) is, the more the two variables are related. �is 
�gure has been created using the package TikZ (version 0.9f 2018-11-19) in Latex, available at https ://www.ctan.
org/pkg/tikz-cd.
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In addition to the Pearson correlation coe�cient, Spearman’s rank correlation coe�cient ( rs ) measures the 
monotonic relationship (whether linear or not) for a pair of variables X and Y69. �is correlation coe�cient rs 
relies on the rank order of values for each variable instead of the value itself, i.e., it assesses the similarity between 
the two rankings rank(X) and rank(Y) rather than comparing raw values of X and Y, where rank() denotes the 
data transformation in which original values are replaced by their position when the data are sorted. �e formula 
for Spearman’s coe�cient is based on Pearson’s correlation ( ρ ) with the distinction of being computed on ranks:

We also used the absolute value of the monotonic correlation coe�cient |rs(fj , fk)| as a criterion of similarity 
between two features. If one feature is a perfect monotone function of another, then |rs(fj , fk)| is 1; if they are 
totally uncorrelated, |rs(fj , fk)| is 0; otherwise, |rs(fj , fk)| lies in the range [0,1] and it is high when the values of 
two features have a rank correlation, and low when values have a dissimilar rank.

Unsupervised feature selection. Here we present a two-stage procedure for solving a feature subset selection 
problem. In the �rst stage, a candidate feature subset is selected by removing irrelevant and redundant features 
from the original set (Algorithm SI2-1). At this stage, descriptors are ranked in descending order of their entropy 
values to choose the top-ranked ones or those having entropy values greater than a given threshold. In this way, 
relevant features are progressively selected as long as they are not correlated to any of the already selected ones. 
Moreover, an assessment helped to decide whether two features are correlated or not, since either Pearson’s or 
Spearman’s coe�cient may be used with di�erent correlation thresholds.

�e e�ect of changing both the correlation method and cuto� value was analyzed in an experimental study. 
We used a Procrustes  analysis29 to quantitatively assess the quality of retained features in the candidate subset 
for representing the original  ones70,71. �is analysis consists of measuring proximities between the original and 
reduced descriptor spaces describing the same set of peptides. So the optimal transformation should be applied 
to one feature space based on scaling, rotations, and re�ections, to minimize the sum of squared errors as a meas-
ure of �t (goodness-of-�t criterion). Since the original feature space and the reduced space are having di�erent 
dimensions, they can be properly comparable by using the same amount of principal  components13. �erefore, 
the goodness-of-�t criterion equals to 0 may indicate that the two descriptor spaces coincide. On the contrary, 
a goodness-of-�t value equals to 1 means that the two descriptor spaces are utterly dissimilar.

In the second stage, the aim is to �nd the best subset containing the most informative and less redundant 
features from the candidate set. Indeed, the number of previously selected features can be further reduced by 
�nding a solution to an optimization problem. We de�ne the problem to solve as

where �(F) is the objective function, and F is a subset of features over the search space � of all possible subsets 
from the candidate feature set. By looking more deeply into the objective function, one can see that �(F) is 
de�ned as a subtraction between the average of entropy values and the average of normalized mutual information 
as a penalization term. Maximizing this subtraction expression is a simple form of maximizing the �rst term as 
a measure of relevance, while minimizing the second term as a measure of  redundancy67.

Our de�nition of �(F) is based on a previous  work67, where the class label information is available. In our case 
of unsupervised feature selection, no class labels are available. �us, we modify the previous de�nition in Ref.67 
to satisfy our needs. Additionally, we have incorporated the ranking and �ltering stage for an early removing of 
irrelevant and redundant features. In that early stage, both the features with low entropy values a�ecting the aver-
age in the �rst term of �(F) , and those with high redundancy in the second term of the subtraction are removed.

Despite an early removal of useless and correlated features, an exhaustive search over all possible subsets of 
the candidate feature set is computationally una�ordable. �us, it is possible to use a heuristic search strategy 
that may give good results, although there is not guarantee of �nding the optimal subset. We adopt a greedy 
hill-climbing procedure (Algorithm SI2-2) that starts with the full set of candidate features and eliminates them 
progressively (backward  elimination64). �is procedure traverses the search space by considering all possible 
single feature deletions at a given set, and picking the subset with the highest evaluation according to the objec-
tive function �(F).

Translating a descriptor space into similarity networks. A�er calculating and selecting MDs, the 
work�ow stage is the translation of the molecular descriptor space into similarity networks. Assuming no dis-
tinction between a node and the peptide it represents, the similarity network is constituted by a set of nodes that 
are characterized by feature vectors (descriptors) in a metric space. �en, the Euclidean distance d(u, v) between 
two nodes u, v can be transformed into a pairwise similarity measure sim(u, v) ∈ [0, 1] by using the following 
formula:

As it was suggested in Ref.41, the de�nition of sim(u, v) is suitable to construct a similarity network: there 
is an edge < u, v >∈ E between nodes u and v if their pairwise similarity value is equal or greater than a given 
threshold t, i.e., if sim(u, v) ≥ t . In our case, we considered these networks as weighted graphs. �at is, for a 

(6)rs(fj , fk) = ρ(rank(fj), rank(fk))

(7)Maximize
F∈�

�(F) =
1

|F|

∑

fj∈F

H
(

fj
)

−
1

|F|2

∑

fj,fk∈F

I
(

fj , fk
)

(8)sim(u, v) = 1 −

d(u, v)

maxp,q∈V d(p, q)
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given threshold t the similarity matrix SM = [sij]n×n that stores the similarity values ( 0 ≤ sij ≤ 1 ) of every pair 
of peptides becomes an adjacency matrix A = [aij]n×n whose values are given by

Keeping in mind that the perception of similarity is in the eyes of the  beholder72, we considered that the 
threshold t ∈ [0, 1] is a user-de�ned parameter to be explored. Besides, a prede�ned constant value for t is not 
useful in practice because the distribution of similarity values may strongly vary depending on the input dataset. 
Note that when the threshold t is modi�ed, the number of edges might change, whereas the number of nodes 
remains unchanged. �us, some network properties can be altered as a function of the parameter t, e.g., network 
density (Fig. 16).

Network density is de�ned as the ratio between the number of edges and the total number of possible 
relationships:

where m = |E| , and n = |V | . In the extreme case where threshold t = 0 , all compounds are considered similar, 
and the complete network with n(n − 1)/2 edges would be drawn ( network_density = 1 ). On the contrary, 
when t = 1 , a minimally connected network is realized ( network_density is almost, if not 0 ). In general, when 
t increases the network density tends to decrease (Fig. 16).

Of course, the task of understanding what networks are telling us depends on a chosen value of t. It may 
become more complicated at low threshold values yielding densely connected nodes, since a picture with too 
many lines will be di�cult for human eye perception. Networks cannot be readily interpretable at high levels of 
their density values. Moreover, large networks with thousands of nodes and millions of possible relationships 
may require high memory usage. It may cause out of memory errors when computing and loading the graph 
into the RAM of personal computers.

A straightforward way of achieving low levels of density is using a high value of threshold t (Fig. 16). At large 
values of t, the similarity networks can be readily  interpretable41. Nonetheless, increasing too much this value 
may give rise to edgeless networks, either disconnecting many nodes or isolating groups of them. �erefore, 
the parameter t should be handled carefully to achieve interpretable graphs without losing information from 
the network topology. Setting an inappropriate value for the threshold t may be yielding networks where the 
topological information is  hidden15.

Half-space proximal networks. When constructing a similarity network for a large dataset of BPs (ten of thou-
sands of them), the amount of RAM required is very high to store the matrix SM = [sij]n×n to be pruned. 
Hence, what is needed here is the creation of a sparse network with similarity/distance properties near to that 
of the complete graph, but where only a small fraction of the possible maximum number of links among nodes 
are used. One such network is achieved by the Half-Space Proximal (HSP)  test35, which is a simple algorithm 
that may be applied to build similarity networks with lower-density levels than CSNs. �e HSP test extracts a 
connected network over a set of points in a metric space, in our case, the multi-dimensional descriptor space, 
and it works as follows.

(9)aij =

{

sij if i �= j, sij ≥ t
0 otherwise.

(10)network_density =

2m

n(n − 1)

Figure 16.  Network density at varying similarity thresholds. �is �gure has been created using the so�ware 
starPep toolbox (version 0.8), available at http://mobio sd-hub.com/starp ep/, and PowerPoint 2016 available at 
https ://www.micro so�.com/es-mx/so�w are-downl oad/o�c e.

http://mobiosd-hub.com/starpep/
https://www.microsoft.com/es-mx/software-download/office
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Assuming for simplicity a two-dimensional (2D) space, Fig. 17 illustrates how the HSP test is applied to an 
arbitrary set of points. For an initial point u, its nearest neighbor v is taken to add an edge between them. �en, 
the 2D space is divided into two half-planes by an imaginary perpendicular line passing through the midpoint of 
the edge connecting u and v. Notice in Fig. 17 that one half-plane is the region of points (the shaded ones) closer 
to v than to u, and this region is called the forbidden area for the point u. Next, from the remaining candidate 
points that do not belong to the forbidden area, the nearest point is taken to be the new neighbor of u. �ese 
steps are repeated until the candidate set of points is empty.

�e procedure described above can be independently applied to each point in the metric space. �us, we 
made a parallel implementation of the HSP test (Algorithm SI2-3). �e resulting relationships between nodes 
and their HSP neighbors comprise the HSP network called in short as HSPNs. �ese HSPNs G

′

= (V ,E
′

,w) are 
subgraphs of the CSNs, denoted by G = (V ,E) , where E

′

⊂ E for an arbitrary threshold t. We also consider G
′

 
as a weighted network, where the weight function w : E

′

→ [0, 1] is indicating the similarity values (Eq. 8) of 
connected peptides.

Understanding the generated similarity networks. So far, we have emphasized on how to build a 
molecular descriptor space and meaningful network representations describing similarity relationships between 
peptides. Now, we will suggest how network science techniques can be used to get a deeper insight into the 
generated similarity networks. In practice, we implement some functionalities based on the open source project 
 Gephi73. �e main idea we pursue is that researchers may perceive the graph structure and seek nodes occupying 
important roles within a network of interest.

Detecting communities. Clustering is a fundamental technique in unsupervised learning for �nding and 
understanding the hidden structure in the data. �is technique consists of separating data elements into several 
groups, such that elements in the same group are similar and elements in di�erent groups are dissimilar to each 
other. �e resulting groups are called clusters or communities in the case of  networks40. As such, the usage of 
clustering to identify densely connected nodes has been known as community  detection74, and the detected 
communities may represent various groups of compounds having di�erent chemical properties in the context of 
a molecular similarity network.

One e�ective approach for network community detection has been to maximize a quality function called 
 modularity75, which is useful for evaluating the goodness of a partition into communities. �is modularity 
measure is the fraction of edges connecting nodes in the same community minus the expected value of the same 
quantity in a network with identical community structure and degrees of vertices, but where edges are placed 
randomly. Formally, modularity (Q) for a weighted network has been de�ned  as76:

(11)Q =

1

2m

∑

ij

(

aij −
kikj

2m

)

δ(ci , cj)

(a) (b)

(c) (d) (e) (f)

Figure 17.  Applying the HSP test for extracting neighbors of a given point: (a) Initial con�guration; (b) Final 
con�guration; (c) 1st neighbor; (d) 2nd neighbor; (e) 3rd neighbor; and, (f) 4th neighbor. �e above image is a 
modi�ed version of Fig. 1 in Ref.35. �is �gure has been created using the so�ware IPE (version 7.2.20), available 
at http://ipe.otfri ed.org/.

http://ipe.otfried.org/
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where aij is the weight of the edge (in our case the similarity value) between nodes i and j or 0 if there is no such 
connection, m =

1

2

∑
ij aij is the total sum of weights in the whole network, ki =

∑
j aij is the sum of weights of 

the edges attached to node i, ci is the community to which node i is assigned, and δ(ci , cj) is 1 if both vertex i and 
j are members of the same community ( ci = cj ) or 0 otherwise.

�e modularity Q (Eq. 11) can be either positive or negative, and its maximum value is  175. For maximizing 
Q over possible network divisions, we used the Louvain Clustering  algorithm77 implemented in Gephi. �is 
algorithm has achieved good results in terms of accuracy and computing time if compared with other available 
methods in the  literature77,78. It initially assigns a di�erent community to each node of the network. �en, for 
each node u, it evaluates the gain of modularity that would take place by moving node u to the community of its 
neighbors. �e movement of placing node u in the community of node v is done if the gain achieves the high-
est positive contribution to the modularity. If no positive gain contribution is achieved, the node u stays in its 
original community. �is �rst phase is repeated for all nodes until no further improvement is possible. Later, in 
a second phase, the algorithm builds a new network whose nodes are the communities found in the previous 
phase. Once again, the �rst phase is reapplied to the new network and stops when there is not a movement that 
can improve the modularity.

Ranking nodes based on centrality measures. Centrality is a concept that has been widely used in another �eld of 
sciences, such as social network analysis, to identify in�uential nodes in a network under  study40,79,80. Formally, 
a centrality measure C(u) is a function that assigns a non-negative real number to each node u in the  network40. 
�en, a basic analytic task lies in �nding those nodes that are more likely to be of interest for drug discovery 
according to the values of C(u)20. To this end, one may focus on quantifying either a global or local measure of 
how important a node is in a given  network80.

Global centrality measures consider the whole network, and of course, they are more costly to compute than 
local measures using only neighborhood  information80. For instance, Harmonic  Centrality81 is one distance-
based centrality measure deemed to be global. �is centrality for a node i is de�ned as

where the geodesic distance dg (i, j) is the length of the shortest path from i to j. At considering that the shortest 
path length is calculated using Dijkstra’s algorithm, by convention, dg (i, j) = ∞ and 1/∞ = 0 if there is no such 
path when dealing with unreachable nodes in disconnected networks. �at means that the worst-case complexity 
is quadratic in the number of nodes, which may be ine�cient for many large  networks82.

In contrast to global measures, local centrality measures are only based on information around  nodes80, 
and they are shown to be useful by exploiting the community structure. Indeed, it is reasonable to �nd network 
communities to identify which are the most in�uential nodes by analyzing the detected communities. Although 
sometimes another strategy is required to capture information based on locally available network  structures80. 
Nodes may play a role within a network depending on their positions in the community to which they belong. 
For instance, nodes are local hubs if they are connecting many internal nodes in their own communities, while 
those at the boundary may act as bridges between groups. On the one hand, local hubs may represent local cen-
tral molecules in the chemical space of  BPs20. On the other hand, nodes connecting communities may represent 
intermediate structures between groups of similar  peptides20,83.

By considering a network with community structure, the number of both intra- and inter-community links 
attached to a node can be useful to identify those nodes acting as hubs or bridges. So, the internal and external 
connectivity strength for each node i in its community ci is measured by using the formula:

• Internal strength: kinti =

∑
j∈ci

ai,j
• External strength: kexti =

∑
j/∈ci

ai,j

where ai,j contains the weight of the edge (i, j), i.e., the similarity value between nodes i and j, or 0 if there is no 
such edge.

It should be noted that, for an unweighted network, the value of ai,j would be 1 if nodes i and j are adjacent, 
or 0 otherwise. �us, in the unweighted counterpart, the internal strength kint

i
 would be analogous to the num-

ber of neighbors of node i that belong to the same community ci , whereas the external strength kext
i

 would be 
the number of neighbors that do not belong to the same community. Following this analogy, the total strength 
k
int
i

+ k
ext
i

 would be the degree of node i.
Based on the above idea, both kint

i
 and kext

i
 can also be combined to compute a recently proposed centrality 

measure, called Community Hub-Bridge  centrality84:

where card(ci) is the size of the community to which the node i belongs, and nnc(i) is the number of neighboring 
communities that a node i can reach by its inter-community links. �is centrality measure is intended to identify 
preferentially nodes acting as hubs inside large communities and bridges targetting various communities.
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(12)CH (i) =
∑

j �=i

1

dg (i, j)

(13)CHB(i) = k
int
i ∗ card(ci) + k

ext
i ∗ nnc(i)
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